4,945 research outputs found

    Subquadratic time encodable codes beating the Gilbert-Varshamov bound

    Full text link
    We construct explicit algebraic geometry codes built from the Garcia-Stichtenoth function field tower beating the Gilbert-Varshamov bound for alphabet sizes at least 192. Messages are identied with functions in certain Riemann-Roch spaces associated with divisors supported on multiple places. Encoding amounts to evaluating these functions at degree one places. By exploiting algebraic structures particular to the Garcia-Stichtenoth tower, we devise an intricate deterministic \omega/2 < 1.19 runtime exponent encoding and 1+\omega/2 < 2.19 expected runtime exponent randomized (unique and list) decoding algorithms. Here \omega < 2.373 is the matrix multiplication exponent. If \omega = 2, as widely believed, the encoding and decoding runtimes are respectively nearly linear and nearly quadratic. Prior to this work, encoding (resp. decoding) time of code families beating the Gilbert-Varshamov bound were quadratic (resp. cubic) or worse

    Iterative Algebraic Soft-Decision List Decoding of Reed-Solomon Codes

    Get PDF
    In this paper, we present an iterative soft-decision decoding algorithm for Reed-Solomon codes offering both complexity and performance advantages over previously known decoding algorithms. Our algorithm is a list decoding algorithm which combines two powerful soft decision decoding techniques which were previously regarded in the literature as competitive, namely, the Koetter-Vardy algebraic soft-decision decoding algorithm and belief-propagation based on adaptive parity check matrices, recently proposed by Jiang and Narayanan. Building on the Jiang-Narayanan algorithm, we present a belief-propagation based algorithm with a significant reduction in computational complexity. We introduce the concept of using a belief-propagation based decoder to enhance the soft-input information prior to decoding with an algebraic soft-decision decoder. Our algorithm can also be viewed as an interpolation multiplicity assignment scheme for algebraic soft-decision decoding of Reed-Solomon codes.Comment: Submitted to IEEE for publication in Jan 200

    Feng-Rao decoding of primary codes

    Get PDF
    We show that the Feng-Rao bound for dual codes and a similar bound by Andersen and Geil [H.E. Andersen and O. Geil, Evaluation codes from order domain theory, Finite Fields Appl., 14 (2008), pp. 92-123] for primary codes are consequences of each other. This implies that the Feng-Rao decoding algorithm can be applied to decode primary codes up to half their designed minimum distance. The technique applies to any linear code for which information on well-behaving pairs is available. Consequently we are able to decode efficiently a large class of codes for which no non-trivial decoding algorithm was previously known. Among those are important families of multivariate polynomial codes. Matsumoto and Miura in [R. Matsumoto and S. Miura, On the Feng-Rao bound for the L-construction of algebraic geometry codes, IEICE Trans. Fundamentals, E83-A (2000), pp. 926-930] (See also [P. Beelen and T. H{\o}holdt, The decoding of algebraic geometry codes, in Advances in algebraic geometry codes, pp. 49-98]) derived from the Feng-Rao bound a bound for primary one-point algebraic geometric codes and showed how to decode up to what is guaranteed by their bound. The exposition by Matsumoto and Miura requires the use of differentials which was not needed in [Andersen and Geil 2008]. Nevertheless we demonstrate a very strong connection between Matsumoto and Miura's bound and Andersen and Geil's bound when applied to primary one-point algebraic geometric codes.Comment: elsarticle.cls, 23 pages, no figure. Version 3 added citations to the works by I.M. Duursma and R. Pellikaa
    corecore