127 research outputs found

    A Declarative Perspective on Adaptive MANET Routing

    Get PDF
    In this paper, we present a declarative perspective on adaptable extensible MANET protocols. Our work builds upon declarative networking, a recent innovation for building extensible network architectures using declarative languages. We make the following contributions. First, we demonstrate that traditional MANET protocols, ranging from proactive, reactive, to epidemic can be expressed in a compact fashion as declarative networks, and we validate experimentally the use of declarative techniques to implement traditional MANETs emulated on a testbed cluster. Second, we show that the declarative framework enables policy-driven adaptation, in which a generic set of declarative rule-based policies are used to make runtime decisions on the choice of MANET protocols. Third, we present some initial ideas on fine-grained protocol composition and adaptation, where a typical MANET protocol can be composed and adapted from simpler components

    Expressing application and network adaptivity : time variations and adaptation paths

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2001.Includes bibliographical references (leaves 45-48).Existing wireless networks provide a wide variety of service capabilities. Due to the inherent nature of wireless transmissions, these services are often characterized by high error rates, variable bandwidths and delays, and unpredictable interruptions. Users and applications are somewhat adaptive in their ability to handle these variable service conditions. However applications are not completely flexible nor does the user perceived quality vary in uniform fashion with the changes in network service. By characterizing flexibility, network service variations and application behaviors can be correlated to improve the QoS provided. To this end, this thesis argues that two new concepts, adaptation paths and time constraints, are important. Adaptation paths specify the ways in which network services and traffic can or do change with time. Time constraints capture aspects of QoS requirements related to time. In particular, two time constraints are introduced. First, a Discernible Service Time (DST) captures the duration for which a level of service must or will be provided before it is changed. Second, Interrupt Time (IT) captures durations for which a particular service may be interrupted for whatever reason. To demonstrate the utility of theses constructs this thesis provides a number of examples for how these extensions can be employed in wireless networks to improve QoS.by Steven J. Bauer.S.M

    XenITH: Xen in the Hand

    Get PDF
    Usability and portability have been key commercial drivers for increasingly capable handheld devices, which have been enabled by advances in Moore’s Law and well as in wireless systems. The nature of such devices makes them extremely personal, and yet they offer an untapped resource for new forms of peer-to-peer and cooperative communications relaying. Taking advantage of such capabilities requires concurrent resource control of the handheld’s computational and communications capacities. Virtualization platforms, such as the Xen system, have opened the possibility of multiplexing a handheld device in useful and unobtrusive ways, as personal applications can be used while additional services such as decentralized communications are also in operation. The purpose of this project is to experimentally demonstrate the ability of modern smartphone units to support a programmable network environment. We attempt to validate the system with a series of measurement experiments which demonstrate concurrent use of two operating systems, each using computational and network resources, in two virtual machines. Moreover, we demonstrate an acceptable level of user performance while maintaining a MANET using a programmable network router

    WIRELESS GRIDS: APPROACHES, ARCHITECTURES, AND TECHNICAL CHALLENGES

    Get PDF
    Grid computing and grid topologies are attracting a growing amount of attention. Originating as a concept for sharing computing resources among wired participants, the grid concept is gradually been extended into the wireless world. A Wireless Grid is an augmentation of a wired grid that facilitates the exchange of information and the interaction between heterogeneous wireless devices. While similar to the wired grid in terms of its distributed nature, the requirement for standards and protocols, and the need for adequate Quality of Service; a Wireless Grid has to deal with the added complexities of the limited power of the mobile devices, the limited bandwidth, and the increased dynamic nature of the interactions involved. Depending on the nature of the interactions among the constituencies served by the wireless grid, various layouts can be envisaged. The ability of these models to address needs at the enterprise, partner, and service levels is contingent upon the efficient resolution of multiple technical challenges of the gri

    Contents

    Get PDF

    PUMA: Policy-Based Unified Multi-radio Architecture for Agile Mesh Networking

    Get PDF
    This paper presents the design and implementation of PUMA, a declarative constraint-solving platform for policy-based routing and channel selection in multi-radio wireless mesh networks. In PUMA, users formulate channel selection policies as optimization goals and constraints that are concisely declared using the PawLog declarative language. To efficiently execute PawLog programs in a distributed setting, PUMA integrates a high performance constraint solver with a declarative networking engine. We demonstrate the capabilities of PUMA in defining distributed protocols that cross-optimize across channel selection and routing. We have developed a prototype of the PUMA system that we extensively evaluated in simulations and on the ORBIT testbed. Our experimental results demonstrate that PUMA can flexibly and efficiently implement a variety of centralized and distributed channel selection protocols that result in significantly higher throughput compared to single channel and identical channel assignment solutions

    Maximizing availability of content in disruptive environments by cross-layer optimization

    Full text link

    Cologne: A Declarative Distributed Constraint Optimization Platform

    Get PDF
    This paper presents Cologne, a declarative optimization platform that enables constraint optimization problems (COPs) to be declaratively specified and incrementally executed in distributed systems. Cologne integrates a declarative networking engine with an off-theshelf constraint solver. We have developed the Colog language that combines distributed Datalog used in declarative networking with language constructs for specifying goals and constraints used in COPs. Cologne uses novel query processing strategies for processing Colog programs, by combining the use of bottom-up distributed Datalog evaluation with top-down goal-oriented constraint solving. Using case studies based on cloud and wireless network optimizations, we demonstrate that Cologne (1) can flexibly support a wide range of policy-based optimizations in distributed systems, (2) results in orders of magnitude less code compared to imperative implementations, and (3) is highly efficient with low overhead and fast convergence times
    • …
    corecore