
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

1-1-2010

XenITH: Xen in the Hand XenITH: Xen in the Hand

Kyle Super
University of Pennsylvania

Jonathan M. Smith
University of Pennsylvania, jms@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Kyle Super and Jonathan M. Smith, "XenITH: Xen in the Hand", . January 2010.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-10-23.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/932
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F932&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/932
mailto:repository@pobox.upenn.edu

XenITH: Xen in the Hand XenITH: Xen in the Hand

Abstract Abstract
Usability and portability have been key commercial drivers for increasingly capable handheld devices,
which have been enabled by advances in Moore’s Law and well as in wireless systems. The nature of such
devices makes them extremely personal, and yet they offer an untapped resource for new forms of peer-
to-peer and cooperative communications relaying. Taking advantage of such capabilities requires
concurrent resource control of the handheld’s computational and communications capacities.
Virtualization platforms, such as the Xen system, have opened the possibility of multiplexing a handheld
device in useful and unobtrusive ways, as personal applications can be used while additional services
such as decentralized communications are also in operation. The purpose of this project is to
experimentally demonstrate the ability of modern smartphone units to support a programmable network
environment. We attempt to validate the system with a series of measurement experiments which
demonstrate concurrent use of two operating systems, each using computational and network resources,
in two virtual machines. Moreover, we demonstrate an acceptable level of user performance while
maintaining a MANET using a programmable network router.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-10-23.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/932

https://repository.upenn.edu/cis_reports/932

Abstract

Usability and portability have been key commercial
drivers for increasingly capable handheld devices, which
have been enabled by advances in Moore’s Law and well
as in wireless systems. The nature of such devices makes
them extremely personal, and yet they offer an untapped
resource for new forms of peer-to-peer and cooperative
communications relaying. Taking advantage of such
capabilities requires concurrent resource control of the
handheld’s computational and communications
capacities. Virtualization platforms, such as the Xen
system, have opened the possibility of multiplexing a
handheld device in useful and unobtrusive ways, as
personal applications can be used while additional
services such as decentralized communications are also
in operation. The purpose of this project is to
experimentally demonstrate the ability of modern
smartphone units to support a programmable network
environment. We attempt to validate the system with a
series of measurement experiments which demonstrate
concurrent use of two operating systems, each using
computational and network resources, in two virtual
machines. Moreover, we demonstrate an acceptable level
of user performance while maintaining a MANET using a
programmable network router.

1. Introduction
Mobile computing and wireless telephony are

increasing converging, with many handheld devices, such

as the Apple iPhone and the RIM Blackberry, able to

assume roles as either cellular telephones or as computers.

A key research question that arises as a consequence of

this convergence is whether the strategies such as

virtualization used for isolation and resource sharing in

larger cabled computers will be applicable to machines

that are limited by size, computational power, and battery

life. This question also has great bearing on the extent to

which the National Science Foundation's Global

Environment for Network Innovation (GENI) initiative

will impact the most numerous network endpoints; the

International Telecommunications Union estimated that

the number of cellular subscriptions worldwide would

reach 4.6 billion by the end of 2009 [1].

The impact of expanding virtualized network

capabilities to the mobile edge is broad. Being so

pervasive, cellular phones exist in many locations where a

more traditional networking infrastructure does not. For

example, according to the ITU, less than 0.5 percent of

African villages have a PC-based communications

network, yet more than half of all Africans use mobile

telephony [1]. As such, the creation of mobile ad-hoc

computer networks, using cell phones as intermediate

nodes, could provide key network services in developing

nations or remote locations. Moreover, such capabilities

would be useful in environments where a network

infrastructure does exist, but whose operational abilities

have been limited, such as in a disaster recovery scenario.

When used as packet relay devices in an emergency, cell

phones could provide local-area emergency response

broadcast or emergency responder services. The recent

disaster in Haiti demonstrates the need for such

capabilities. Following the earthquake, the Inveneo

company, known for providing network services to NGO

workers in remote location, setup a temporary network

using satellites and WiFi to be used by the aid workers in

their recovery efforts [2]. The National Association for

Amateur Radio even sent HAM radio equipment to fill the

communications void left by the earthquake [3]. Such

networks could potentially be replaced by a MANET

consisting of cell phone nodes, at least as a short term

solution to the communication problems caused by a

natural disaster.

Finally, the ubiquity of wireless communication

systems is an ever increasing phenomenon, as state and

local governments realize the value of such infrastructures

to all citizens. The Digital Impact Group's Wireless

Philadelphia project aims to provide network access to

underprivileged households and small businesses through

a city wide WiFi network. The service is free to anyone

This work was supported by the National Science Foundation under Award Number CNS-0739347
1

XenITH: Xen In The Hand

Kyle Super

University of Pennsylvania
super@seas.upenn.edu

Jonathan Smith

University of Pennsylvania
jms@cis.upenn.edu

that can access it, and receives approximately 125,000

unique users each month. However, the project still does

not cover over half of the city [4]. A low-cost MANET

composed of cell phones could extend the reach of these

wireless access points significantly and allow Wireless

Philadelphia to achieve its ultimate goal of turning

Philadelphia into the nation's most connected city.

2. Related Research
Despite outnumbering PCs, little research effort has

been put forth to develop virtualization for a cell phone

platform in the past. A large hurdle to overcome is the

fact that cell phones typically operate on ARM-based

architectures, while most virtualization software is

designed for the x86 architecture found in almost all PCs

and server machines. However, recently several

commercial software companies have begun making

investments in this area. VMWare, a developer of

virtualization software, has announced plans to release a

version of their product for cell phones in 2012, the

purpose being to allow cell phone users to maintain

separate environments for different uses, such as one for

personal use and one for work [5]. Moreover, OK Labs,

another virtualization specialist, currently offers the

OKL4 microvisor, which supports Linux, Android,

Symbian, and Windows embedded operating systems.

The OKL4 software is currently in use on the Motorola

Evoke, the first commercially available virtualized cell

phone [6]. Finally, the VirtualLogix company has

developed the VLX virtualization system, which can run

on a variety of ARM-based platforms [7].

The development of an open-source virtualization

solution for an ARM-based platform has been somewhat

less successful. The VirtualBox software package, a

product of Oracle, only supports the x86 architecture.

Moreover, the software requires a host operating system

on top of which guest operating systems can be run,

making VirtualBox unsuitable for our purposes. Another

common open source virtualization package, the Xen

virtual machine monitor, developed by the University of

Cambridge, allows users to run multiple instances of

operating systems, such as Linux, NetBSD, Solaris, and

Windows, on top of the Xen hypervisor, the lowest layer

of the system that interfaces with the hardware. However,

the latest version of Xen only supports the x86

architecture, with ports to the IA64 and PowerPC

architectures underway. Two active Xen community

projects are attempting to port Xen to the ARM

architecture as well, but these efforts are in their infancy.

The first, Embedded Xen on ARM Platforms, is intended

to be run on embedded and real-time systems. The project

currently has an alpha release designed to run on the

Colibri PXA270, a SODIMM-sized computer module that

features an Intel Xscale PXA270 processor [8]. The

second community project, Secure Xen on ARM, is more

mature than the first project and is being developed by a

team of researchers from Samsung lead by Sang-bum

Suh. Secure Xen has an alpha release as well, intended to

run on the Freescale i.MX21 development board, as well

as a patched version of the Goldfish Android emulator.

However, the version for the Android emulator currently

only supports a toy operating system, not a full Linux

system [9].

3. Experimental Setup
The purpose of the experiment is to demonstrate the

effectiveness of virtualizing the wireless network

connection of a resource constrained computing

environment, similar to that present on modern

smartphones. We considered a number of potential

experimental setups, rejecting many for various reasons

before deciding on a workable version. First we discuss

those setups that we rejected.

3.1. Rejected Experimental Setups

The first platform we considered for the experiment

was the HP iPaq hw6945 smartphone device, due to prior

experience with the device and availability of the units.

The device employs the Intel Xscale PXA270 processor,

and so could potentially be used with the Embedded Xen

alpha software release. More importantly, the device has

built-in 802.11b wireless capabilities, making it suitable

to be used as a MANET node. However, the iPaq hw6945

has limited support for the Linux operating system due to

a proprietary hardware configuration, and uses the

Windows Mobile Pocket PC operating system natively.

Since the Xen hypervisor does not support running

Windows under the privileged first domain, we ruled out

the HP iPaq as a viable experimental platform.

We next considered a Google Android based solution.

Applications for Android are written in the Java language,

but are compiled into a proprietary bytecode format that

runs on the Dalvik virtual machine. Each application runs

on its own instance of the virtual machine, and so the

applications are sufficiently sandboxed from each other,

making the use of another underlying virtualization

solution such as Xen unnecessary. Moreover, unlike most

other cell phone platforms, Android allows developers to

write applications that do not have a user interface [10].

Such a capability could be used to develop a MANET

This work was supported by the National Science Foundation under Award Number CNS-0739347
2

routing service that runs in the background, not interfering

with normal user applications. However, in order to make

use of an existing software router, the software would first

have to be ported to use Java and the Android application

programming interface. Such a development would be too

great an undertaking to warrant the use of Android and its

Dalvik virtual machine.

We also considered using the patched Goldfish

Android emulator from the Secure Xen on ARM project.

In this setup, we could avoid using the Dalvik virtual

machine altogether by running Android in one virtual

environment and the Linux kernel and MANET routing

software in another, both running on top of the Secure

Xen hypervisor. Unfortunately, the patched Goldfish

emulator only supports a mini toy operating system on top

of the hypervisor at the moment, and efforts to make the

hypervisor operable with the Linux kernel failed. Thus,

until the patched Goldfish emulator becomes more stable,

it remains unsuitable for our experimental needs. In

addition, the Android emulator appears to be largely

inefficient, and so such an environment may be too

underpowered to be of use in an experiment even if it

were capable of supporting a full fledged operating

system.

Another platform we considered was the Freescale

i.MX21 development board on which the Secure Xen on

ARM software was developed. The board features a 266

MHz ARM9 processor and 64 megabytes of SDRAM.

The board does not have built-in WiFi capabilities, but

does have a PCMCIA expansion slot, allowing a wireless

card to be added. Unfortunately the board is extremely

difficult to find, due to United States import restrictions.

After months of trying, we did eventually get our hands

on the development board, but found it difficult to use.

First, due to the immaturity of the Secure Xen system, the

Xen hypervisor, as well as the Linux kernels for the

different virtualized domains, must be directly loaded into

memory, requiring the u-Boot bootloader. However, the

u-Boot bootloader does not support the i.MX21

development board natively. We contacted the research

team at Samsung in an attempt to get their custom version

of the bootloader, but received no response. Second, while

the Secure Xen software package contains everything

needed to create Linux kernel binaries designed for the

ARM architecture, the package does not contain a ported

filesystem. Thus, a full Linux system would need to be

cross-compiled for the ARM architecture. Moreover, the

MANET routing software we chose would need to be

ported as well. Finally, the i.MX21 system is obsolete

compared to modern smartphone platforms, which contain

far more powerful ARM-based processor cores. The

combination of these difficulties led us to conclude that

the creation of an experimental setup using the i.MX21

development board would be too time consuming, and so

we abandoned work with the system.

3.2. Selected Experimental Setup

In order to simplify our experimental setup, we finally

decided to abandon an ARM-based system in favor of an

Intel Atom-based netbook. The Atom processor is a low-

power implementation of the x86 instruction set

architecture, meaning the mature Xen hypervisor will run

on Atom-based devices without modification.

Specifically, we chose an Asus Eee PC 1101HA netbook

to serve as the test environment. The netbook features an

Intel Atom Z520 processor operating at 1.33 Gigahertz

and 1 Gigabyte of DDR2 RAM. This test system

resembles some of the high-end smartphones on the

market today, such as the Google Nexus One. The Nexus

One features a Qualcomm QSD 8250 ARM processor

operating at 1 Gigahertz and 512 Megabytes of RAM. In

fact, this Qualcomm 'Snapdragon' platform is to be used

in the Lenovo Skylight smartbooks due out sometime this

quarter [11]. Moreover, at CES 2010 earlier this year, LG

announced their plans for the LG GW990, an Atom-based

smartphone device [12]. While the company has yet to

release the technical specifications or release date for the

device, the announcement indicates that an Atom-based

netbook platform is a reasonable proxy for a smartphone

device. Finally, the specific Atom processor in the

1101HA netbook supports Intel Virtualization

Technology, meaning that our virtualization software will

be able to take advantage of the efficiency afforded by

hardware virtualization extensions.

The Xen virtualization software served as the

underlying software platform for this experiment, on top

of which ran multiple instances of the Ubuntu Linux

software distribution. One of these instances served as the

user operating system (i.e.: provided the interface with

which the user directly interacted). On an actual

smartphone platform, this user operating system would be

the native operating system, such as Google Android. The

other Xen environments contained a stripped down

version of the Ubuntu distribution. These instances

provided the network infrastructure for a mobile ad-hoc

network by sharing the Atheros 802.11b wireless network

card on the netbook with the user operating system. Such

an infrastructure could be used in disaster recovery

scenarios or other settings in which a network either does

not exist or has been disrupted.

This work was supported by the National Science Foundation under Award Number CNS-0739347
3

On top of the stripped down Ubuntu distributions and

providing the actual network routing was the RapidNet

declarative language based network system developed at

the University of Pennsylvania. The system makes use of

routing protocols written in Network Datalog, a

distributed recursive query language for querying

networks. Prior research has shown the effectiveness of

RapidNet and Network Datalog in implementing a wide

variety of proactive, reactive, and epidemic MANET

routing protocols, as well as hybrid versions of these

protocols. However, the purpose of this experiment was

not to validate the effectiveness of RapidNet, but rather to

demonstrate that such a system can operate in a

virtualized, resource-constrained environment, without

greatly impacting the user experience.

In order to measure the impact of RapidNet and the

second virtual machine, we conducted a series of three

experiments; the first two measured the CPU usage of the

RapidNet system under varying operating environments,

and the third measured the ability of the two concurrent

virtual machines to share the available network

bandwidth. The first two experiments used the same basic

setup (see Figure 1), consisting of five wireless nodes,

which were commodity laptops available to our lab, as

well as the Asus netbook. In the first experiment, we

measured the peak CPU usage of the second Xen virtual

machine while the RapidNet system composed MANETs

using a simple path vector protocol. We varied the

number of wireless nodes included in the system between

zero and five. In the second experiment, we measured

both peak and average CPU usage of the second virtual

machine while randomly adding and removing wireless

links from the MANET at varying, regular intervals. Note

that in both experiments, we measured the CPU usage of

the entire second virtual machine, not just the RapidNet

applications. This measure provides a better idea of the

total overhead from such a concurrent system. In both

cases, we used the XenStat Perl application in conjunction

with the Xentop utility to poll CPU usage.

In the third experiment, we used a second experimental

setup (see Figure 2), consisting of two wireless nodes and

the Asus netbook. Here, we measured the total bandwidth

available to the user virtual machine while varying the

bandwidth utilization of the second virtual machine. To

do so, we composed a simple network application capable

of sending dummy traffic to another wireless node at a

specific rate. The application running on the user virtual

machine communicated with one wireless node, while

that running on the second virtual machine communicated

with a second wireless node. Note that Xen maintains the

ability to limit outgoing bandwidth used by different

virtual machines. While we did not make use of this

capability in our experiments, it would most likely be

useful in a real-world setup.

4. Experimental Results
In the first chart, we present the results from

experiment one. As can be seen, the peak CPU usage

required by the second virtual machine and the RapidNet

system scales almost perfectly linearly as we add more

nodes to the ad-hoc network. With as many as five nodes

entering the MANET concurrently, the total CPU usage

peaks at only 14.48%. Note that in compiling these

results, each node had links available to every other

wireless node, but we modified the link weights to ensure

that every route would always proceed through the

netbook as an intermediate hop.

This work was supported by the National Science Foundation under Award Number CNS-0739347
4

In the second chart, we see the results from experiment

two, where we randomly add and remove links from the

ad-hoc network at regular intervals (between one and

twenty seconds for each addition/removal). We see that

for additions and removals that occur at rates of less than

once every five seconds, the average CPU usage of the

second virtual machine and the RapidNet system remains

less than two percent. Moreover, the peak CPU usage

remains below seven percent for rates of less than once

every one second. Thus, both the average and peak CPU

usages of the second virtual machine remain quite

reasonable for all but the most volatile mobile ad-hoc

networks.

Finally, in the third chart, we see the results from

experiment three. Here we send dummy data from both

the user virtual machine and the second virtual machine,

varying the maximum rate that the second virtual machine

can send data. As expected, the total bandwidth available

for the user virtual machine drops in concert with a rise in

utilization from the second. Moreover, we also see that

the total bandwidth utilized by both virtual machines

remains relatively constant around 2675 KB/s. This

stability indicates that we incur very little overhead by

sharing the network connection between two virtual

machines. Any variability we did see seemed fairly

random and was most likely due to external

environmental factors.

5. Conclusion
Considering the results of our experiment, we hope to

have demonstrated two properties of virtualized network

setups in resource constrained environments. First, at a

reasonable level of volatility, the RapidNet MANET

system will quickly establish links between nodes without

requiring an overbearing amount of CPU consumption.

Second, at reasonable levels of bandwidth usage, the

RapidNet MANET system will not greatly interfere with

the user's personal operating experience. Thus, we see that

such a system would be useful in a real-world setting.

Specifically, we see that current smartphone technology is

capable of dually supporting a normal user operating

environment, as well as an environment devoted to the

maintenance of a mobile ad-hoc network infrastructure.

As discussed earlier, such an infrastructure could provide

the basis for network capabilities in disaster recovery

scenarios, or in settings in which a more permanent

network infrastructure does not exist. Moreover, the

capability of smartphone technology to virtualize the

built-in WiFi hardware demonstrates that the mobile edge

This work was supported by the National Science Foundation under Award Number CNS-0739347
5

can and should be considered in the context of larger

initiatives, such as Wireless Philadelphia and GENI.

Further experimentation related to this project could

involve utilizing a larger network testbed, such as the

Orbit system, to see how well everything scales as the

number of wireless nodes increases. Such scaling would

be necessary in larger, real world applications, where

nodes could be very densely distributed. In addition, some

specific measure of the user operating experience, such as

using the e-Model for voice quality when analyzing a

user's VoIP connection, could be used to better quantify

our results and provide a more concrete analysis of what

operating parameters are reasonable from a user's

perspective.

Further research not directly related to this project

could involve making use of the commercially available

cell phone virtualization platforms discussed earlier.

While our project demonstrates the effectiveness of

virtualizing a resource constrained system similar to a

smartphone device, we did not develop anything to be

used in a real-world application. As our difficulty in

finding a suitable experimental platform shows, currently

only commercial solutions seem to be viable for such

development. Hopefully the efforts to port Xen to the

ARM architecture will eventually provide the tools

needed to virtualize actual cell phone devices, but for now

any real world development and experimentation will

require commercial support.

6. Acknowledgments
Special thanks to University of Pennsylvania Professor

Boon Thau Loo, as well as to his graduate students

Shivkumar Muthukumar and Xiaozhou Li, for all their

help in getting the RapidNet experimental setup up and

running.

References
[1] Richard Heeks, "ICT4D 2.0: The Next Phase of Applying

ICT for International Development," Computer, pp. 26-33,

June 2008

[2] Nancy Gohring, “NGO networks in Haiti cause problems

for local ISPs,” PC World Business Center, PCWorld.com,

February 2010

[3] “ARRL Sends Ham Aid Equipment to Haiti,” The National

Association for Amateur Radio, ARRL.org, January 2010

[4] “About Digital Impact Group,” Digital Impact Group,

WirelessPhiladelphia.org, January 2010

[5] Tim Lohman, “VMware developing dual OS smartphone

virtualisation,” Computerworld, Computerworld.com.au,

December 2009

[6] Chris Walker, “OK Labs Enables World’s First Virtualized

Smartphone, with Mobile Virtualization Solution ,” Open

Kernel Labs, OK-Labs.com, March 2009

[7] Olga Kharif, “Virtualization Goes Mobile,” BusinessWeek,

BusinessWeek.com, April 2008

[8] Daniel Rossier, “Embedded Xen on Arm Platforms,”

http://sourceforge.net/projects/embedde
dxen/

[9] Sang-bum Suh, “Xen ARM Project,”
http://wiki.xensource.com/xenwiki/XenAR
M

[10] “A Spectrum White Paper: Thoughts on Google Android,”

Spectrum Data Technologies, SpectrumDT.com, February

2008

[11] Brian Chen, “Hands-On with the Lenovo Skylight

Smartbook,” Wired Gadget Lab, Wired.com, January 2010

[12] Vladislov Savov, “LG GW990 Hands-on video,” Engadget,

Engadget.com, January 2010

[13] Changbin Liu, “Declarative Policy-based Adaptive

MANET Routing,” University of Pennsylvania, October

2009,
http://netdb.cis.upenn.edu/rapidnet/

This work was supported by the National Science Foundation under Award Number CNS-0739347
6

	XenITH: Xen in the Hand
	Recommended Citation

	XenITH: Xen in the Hand
	Abstract
	Comments

	tmp.1275659567.pdf.cPHdM

