17,319 research outputs found

    Decision Procedure for Entailment of Symbolic Heaps with Arrays

    Full text link
    This paper gives a decision procedure for the validity of en- tailment of symbolic heaps in separation logic with Presburger arithmetic and arrays. The correctness of the decision procedure is proved under the condition that sizes of arrays in the succedent are not existentially bound. This condition is independent of the condition proposed by the CADE-2017 paper by Brotherston et al, namely, one of them does not imply the other. For improving efficiency of the decision procedure, some techniques are also presented. The main idea of the decision procedure is a novel translation of an entailment of symbolic heaps into a formula in Presburger arithmetic, and to combine it with an external SMT solver. This paper also gives experimental results by an implementation, which shows that the decision procedure works efficiently enough to use

    An Optimal Decision Procedure for MPNL over the Integers

    Get PDF
    Interval temporal logics provide a natural framework for qualitative and quantitative temporal reason- ing over interval structures, where the truth of formulae is defined over intervals rather than points. In this paper, we study the complexity of the satisfiability problem for Metric Propositional Neigh- borhood Logic (MPNL). MPNL features two modalities to access intervals "to the left" and "to the right" of the current one, respectively, plus an infinite set of length constraints. MPNL, interpreted over the naturals, has been recently shown to be decidable by a doubly exponential procedure. We improve such a result by proving that MPNL is actually EXPSPACE-complete (even when length constraints are encoded in binary), when interpreted over finite structures, the naturals, and the in- tegers, by developing an EXPSPACE decision procedure for MPNL over the integers, which can be easily tailored to finite linear orders and the naturals (EXPSPACE-hardness was already known).Comment: In Proceedings GandALF 2011, arXiv:1106.081

    A Decision Procedure for Herbrand Formulas without Skolemization

    Get PDF
    This paper describes a decision procedure for disjunctions of conjunctions of anti-prenex normal forms of pure first-order logic (FOLDNFs) that do not contain V within the scope of quantifiers. The disjuncts of these FOLDNFs are equivalent to prenex normal forms whose quantifier-free parts are conjunctions of atomic and negated atomic formulae (= Herbrand formulae). In contrast to the usual algorithms for Herbrand formulae, neither skolemization nor unification algorithms with function symbols are applied. Instead, a procedure is described that rests on nothing but equivalence transformations within pure first-order logic (FOL). This procedure involves the application of a calculus for negative normal forms (the NNF-calculus) with A -||- A & A (= &I) as the sole rule that increases the complexity of given FOLDNFs. The described algorithm illustrates how, in the case of Herbrand formulae, decision problems can be solved through a systematic search for proofs that reduce the number of applications of the rule &I to a minimum in the NNF-calculus. In the case of Herbrand formulae, it is even possible to entirely abstain from applying &I. Finally, it is shown how the described procedure can be used within an optimized general search for proofs of contradiction and what kind of questions arise for a &I-minimal proof strategy in the case of a general search for proofs of contradiction
    • …
    corecore