5 research outputs found

    EEG data processing in ADHD diagnosis and neurofeedback

    Get PDF
    In this paper, EEG data processing was conducted in order to define the parameters for neurofeedback. A new survey was conducted based on a brief review of previous research. Two groups of participants were chosen: ADHD (3) and nonADHD (14). The main part of this study includes EEG signal data pre-processing and processing. We have outlined statistical features of observed EEG signals such as mean value, grand-mean value and their ratios. It can be concluded that an increase in grand-mean values of power theta-low beta ratio on Cz electrode gives confirmation of previous research. The value of alpha-delta power ratio higher than 1 on C3, Cz, P3, Pz, P4 in ADHD group is proposed as a new approach to classification. Based on these conclusions we will design a neurofeedback protocol as a continuation of this work

    Predicting ADHD Using Eye Gaze Metrics Indexing Working Memory Capacity

    Get PDF
    ADHD is being recognized as a diagnosis that persists into adulthood impacting educational and economic outcomes. There is an increased need to accurately diagnose this population through the development of reliable and valid outcome measures reflecting core diagnostic criteria. For example, adults with ADHD have reduced working memory capacity (WMC) when compared to their peers. A reduction in WMC indicates attention control deficits which align with many symptoms outlined on behavioral checklists used to diagnose ADHD. Using computational methods, such as machine learning, to generate a relationship between ADHD and measures of WMC would be useful to advancing our understanding and treatment of ADHD in adults. This chapter will outline a feasibility study in which eye tracking was used to measure eye gaze metrics during a WMC task for adults with and without ADHD and machine learning algorithms were applied to generate a feature set unique to the ADHD diagnosis. The chapter will summarize the purpose, methods, results, and impact of this study

    Aberrant Modulation of Brain Oscillatory Activity and Attentional Impairment in Attention-Deficit/Hyperactivity Disorder

    Get PDF
    Electroencephalography and magnetoencephalography are noninvasive neuroimaging techniques that have been used extensively to study various resting-state and cognitive processes in the brain. The purpose of this review is to highlight a number of recent studies that have investigated the alpha band (8-12 Hz) oscillatory activity present in magnetoencephalography and electroencephalography, to provide new insights into the maladaptive network activity underlying attentional impairments in attention-deficit/hyperactivity disorder (ADHD). Studies reviewed demonstrate that event-related decrease in alpha is attenuated during visual selective attention, primarily in ADHD inattentive type, and is often significantly associated with accuracy and reaction time during task performance. Furthermore, aberrant modulation of alpha activity has been reported across development and may have abnormal or atypical lateralization patterns in ADHD. Modulations in the alpha band thus represent a robust, relatively unexplored putative biomarker of attentional impairment and a strong prospect for future studies aimed at examining underlying neural mechanisms and treatment response among individuals with ADHD. Potential limitations of its use as a diagnostic biomarker and directions for future research are discussed

    Decision Support Algorithm for Diagnosis of ADHD Using Electroencephalograms

    No full text
    Attention deficit hyperactivity disorder is a complex brain disorder which is usually difficult to diagnose. As a result many literature reports about the increasing rate of misdiagnosis of ADHD disorder with other types of brain disorder. There is also a risk of normal children to be associated with ADHD if practical diagnostic criteria are not supported. To this end we propose a decision support system in diagnosing of ADHD disorder through brain electroencephalographic signals. Subjects of 10 children participated in this study, 7 of them were diagnosed with ADHD disorder and remaining 3 children are normal group. Our main goal of this sthudy is to present a supporting diagnostic tool that uses signal processing for feature selection and machine learning algorithms for diagnosis.Particularly, for a feature selection we propose information theoretic which is based on entropy and mutual information measure. We propose a maximal discrepancy criterion for selecting distinct (most distinguishing) features of two groups as well as a semi-supervised formulation for efficiently updating the training set. Further, support vector machine classifier trained and tested for identification of robust marker of EEG patterns for accurate diagnosis of ADHD group. We demonstrate that the applicability of the proposed approach provides higher accuracy in diagnostic process of ADHD disorder than the few currently available methods. © 2011 Springer Science+Business Media, LLC.1
    corecore