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ABSTRACT 

ADHD is being recognized as a diagnosis that persists into adulthood 
impacting educational and economic outcomes. There is an increased need 
to accu~ately diagnose this population through the development of reliable 
and vah~ outcome measures reflecting core diagnostic criteria. For example, 
adults with ADHD have reduced working memory capacity (WMC) when 
compared to their peers. A reduction in WMC indicates attention control 
deficits which align with many symptoms outlined on behavioral checklists 
used :o diagnose ADHD. Using computational methods, such as machine 
learning, to generate a relationship between ADHD and measures of WMC 
would be ~seful to advancing our understanding and treatment of ADHD in 
adults. Thzs chapter will outline a feasibility study in which eye tracking was 
us_ed to measure eye gaze metrics during a WMC task for adults with and 
wzthout ADHD_and machine learning algorithms were applied to generate 
a feature set unique to the ADHD diagnosis. The chapter will summarize the 
purpose, methods, results, and impact of this study. 
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INTRODUCTION 

Attention-Deficit/Hyperactivity Disorder is being recognized as a diagnosis 
which persists into adulthood impacting economic, occupational, and 
educational outcomes. Estimates indicate that 3-5% of adults have a diagnosis 
of ADHD (Willcutt 2012) with prevalence estimated to have increased from 
6.1 % of the United States population in 1997 to 10.2% of the population 
in 2016 (Xu et al. 2018). The disorder is behaviorally marked by difficulty 
with attention to important details, difficulty initiating and completing tasks, 
and difficulty modulating behaviors appropriately in relation to the situation 
(Fields et al. 2017; Fostick 2017). According to Barkley ( 1997), adult ADHD 
symptoms result from impairments of inhibition or the inability to regulate 
and modulate prepotent responses. While a diagnosis of adult ADHD 
presumes disinhibition, little is known about the physiological underpinnings 
of that cognitive skill in relation to an adult ADHD diagnosis. There is an 
increased need to accurately diagnose ADHD through the development and 
implementation of objective and reliable outcome measures which reflect 
core diagnostic criteria, like inhibition. 

Researchers in cognitive psychology evidence attention control as the 
measurable psychological construct which facilitates inhibitory responses 
by allocating attention according to task demands, especially in the presence 
of distracting stimuli (Conway et al. 2005; Engle 2002; Kane et al. 2001). 
Attention control differentiates success during tasks requiring intentional and 
sustained constraints for effective inhibition, like dichotic listening (Colflesh 
and Conway 2007) or processing speech in noise (Ronnberg et al. 2013). 
Measurements of attention control are demonstrated through differences in 
working memory capacity (WMC) accounting for approximately 60% of 
the variance seen across people on measures of WMC, like complex span 
tasks (Engle et al. 1999). Adults with ADHD have reduced WMC when 
compared to their peers (Michalek et al.2014) and, despite the understanding 
that disinhibition is central to an ADHD diagnosis and differences in WMC 
mathematically represent the resource which makes inhibition possible, there 
is a paucity of research investigating physiological responses during measures 
of WMC which could differentiate adults with and without ADHD. 

The primary goal of this work is to determine the feasibility of identifying 
and integrating eye gaze metrics from a WMC task using machine learning to 
generate a valid and reliable feature set which indexes and predicts an ADHD 
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diagnosis. This chapter investigates gaze measures that map onto these valid 
neurocognitive deficits that are central to ADHD within the context of a WMC 
task. The development of these objective measures of ADHD will facilitate 
its diagnosis and reveal strategies that can enhance the future design effective 
intervention strategies and accessible classroom environments. 

BACKGROUND 

Working Memory Capacity (WMC) Tasks 

Working memory is the cognitive system which makes it possible to mentally 
hold and manipulate information simultaneously. Over a decade of work 
by Engle and colleagues Conway et al. (2008) supports the use of complex 
span tasks as not only measures of working memory but as a reflection of 
individual differences in WMC. Performance on complex span tasks generates 
a composite working memory score numerically indicating how well someone 
can manipulate and hold information. However, differences in WMC or that 
composite score represent a person's ability to moderate and control attention. 
Adults with ADHD have reduced working memory when compared to their 
peers demonstrating significant differences in WMC (Alderson et al. 2013). 
This finding suggests that adults with ADHD have a reduced ability to 
monitor and control attention, especially during situations with competing 
stimuli (Michalek et al. 2014) or that require response inhibition (Lee et 
al. 2015; Roberts et al. 2011). Little is known about the underlying covert 
processes engaged during inhibitory tasks which rely on attention allocation. 
Using physiological measures during a task which validly reflects attention 
control, like a complex span task, provides objective diagnostic information 
for adults with ADHD. 

The reading span task (R-Span) is one complex span task widely used as 
a valid measure of working memory yielding a WMC score (Conway et al. 
2005). The R-span was originally developed by Daneman and Carpenter ( 1983) 
as a predictor of reading comprehension and was subsequently modified by 
Engle and colleagues Engle et al. (1999). During the R-Span people see one 
sentence on a computer screen, read the sentence out loud, determine if the 
sentence is meaningful with a yes or no response, and then verbally identify 
a letter typed at the end of each sentence. After a set of sentences, the person 
is asked to verbally recall as many letters as possible in order of presentation. 
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This task represents the person's ability to hold and manipulate information 
simultaneously. To date, there have been no empirical studies investigating eye 
gaze metrics collected during this task which might differentiate performance 
and further explain diagnostic differences for adults with and without AD HD. 

Machine Learning and ADHD 

Typically, experts diagnose ADHD using subjective checklists and related 
academic and cognitive performance measures (Greenhill 1998). These 
comprehensive assessments can be time consuming, inconsistent, and can 
inaccurately represent deficits making differential diagnosis challenging. 
Ideally, it would be more efficient and reliable to develop predictive algorithms 
based on physiological metrics reflecting core diagnostic criteria. However, 
designing this type of computer program can be difficult because there is no 
existing set of confirmed mathematical features which accurately differentiate 
between adults with and without ADHD. Machine learning principles offer 
a solution to this barrier. While it is not practical to develop algorithms 
by providing a specific set of instructions, machine learning uses numeric 
features representing a cognitive skill to teach the computer data patterns 
and inferences which can be applied to groups of data for predicting accurate 
classifications. 

In machine learning there are several varieties of sub categorical learning 
algorithms. Supervised learning is an example of such a subcategory. The 
core objective of supervised learning is to build a mathematical model which 
can be used to predict the outputs of new samples using the training data. 
Usually, the training data set is stored in a matrix. Each row of the training data 
matrix corresponds to one training instance which also contains the desired 
output. For example, in the ADHD/Non-ADHD literature, supervised learning 
algorithms are iterated through the training dataset to learn a mathematical 
model to predict or classify the output associated with unseen inputs. When 
determining whether a person does or does not have ADHD using eye gaze 
as the outcome metric, the training data would consist of eye tracking data 
of each person and each person would have a class specifying whether that 
person is identified as having ADHD or not having ADHD. Supervised 
learning algorithm will build a general mathematical model which covers 
the training data space. When a previously unseen person's eye gaze data is 
entered, the model will use its past experience to accurately predict whether 
or not that person has ADHD. 
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Some experts may question the reliability and validity of using machine 
learning for predicted outputs because those outputs do not consider experts 
knowledge from psychology or medicine in the decision process. Even with 
the involvement of expert physicians, it is reported that "diagnostic errors 
contribute to approximately 10% of patient deaths", by Institute of Medicine 
at the National Academies of Science, Engineering and Medicine (National 
Academies of Sciences et al. 2016). Causes for such diagnostic errors could 
be communication errors between patients and physicians and other failures 
of the healthcare system. These challenges could be addressed by identifying 
patterns of the symptoms patients confirm and use them to predict potential 
diagnostic codes. Even if there is a lack of communication between the patient 
and the physician or there is a failure in a healthcare system, the symptom 
patterns of the patient would be highlighted so that accurate diagnosis 
prediction could be facilitated. 

Currently, machine learning is being used for diagnostic prediction not 
only based on reported symptoms, but also based on patient history and 
data extracted from wearable devices. Classification algorithms compare 
the symptoms pattern of the patient and other related data with the other 
patients in the training dataset in order to predict an accurate diagnosis. In 
literature using machine learning for ADHD diagnosis and classification, 
Mueller et al. (2010) attempt to classify adult ADHD patients and healthy 
controls using a machine learning algorithms. They conducted research to 
classify ADHD patients and healthy controls using support vector machine 
(SVM) learning based on event related potential (ERP) components. They 
examined data from 148 adult participants. Among them, 50% were diagnosed 
as ADHD while the rest did not have a diagnosis of ADHD. Both groups of 
adults were selected in a manner that age and gender did not vary between 
the two group. Each participant performed a visual two stimulus GO/NOGO 
task and ERP responses of participants were decomposed into independent 
components and created the feature set. Classification accuracy of assigning 
ADHD participants and healthy controls to the corresponding groups using 
a non-linear SVM with 10-fold cross-validation was 92%, whereas it was 
90% for linear SVM. This research suggests that classification by means of 
non-linear methods is more accurate for experiments conducted in a clinical 
context. Even-though this study uses machine learning approaches to predict 
ADHD, it does not use eye gaze metrics nor working memory capacity. 

Peng et al. (2013) shows that extreme learning machine (ELM), a machine 
learning algorithm, achieves 90.18% accuracy when predicting ADHD 
using structural MRI data. This study confirmed that linear support vector 
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machine and support vector machine-RBF achieves an accuracy of 84.73% 
and 86.55% respectively when the same structural MRI dataset is used. Both 
extreme learning machine and support vector machine have been evaluated 
to find the classification accuracy using cross-validation. The goal of their 
study was proposing an ADHD classification model using the extreme 
learning machine (ELM) algorithm for ADHD diagnosis. They assessed 
the computational efficiency and the effect of sample size on both extreme 
learning machine and support vector machine. They acquired MRI images 
from 110 participants with 50% of them having a diagnosis of ADHD. This 
study gives us insight about how applying a machine learning model can 
accurately predict ADHD. 

Marcano et al. (2016) aimed to classify people with ADHD and without 
ADHD using autoregressive models. They used EEG data collected using 
26 electrodes from a group of children between the ages of 6 and 8 to 
discriminate between ADHD and Non-ADHD. Children participated in 
multiple experimental conditions, such as eyes open, eyes closed, and quiet 
video baseline tasks while collecting EEG data. This study verified that KNN 
classifier is able to provide high classification accuracy when classifying 
children as either ADHD or typically developing ADHD. The accuracy 
achieved in this study was high and varying between 85% and 95%. Abibullaev 
and An (2012) used EEG data with semi-supervised learning in order to predict 
a ADHD and Non-AD HD diagnosis. They had 10 children participants with 7 
of them having a diagnosis of ADHD and 3 were typically. They trained and 
tested support vector machine with EEG data of each participant achieving an 
accuracy of 97% for AD HD prediction using support vector machine learning. 

Taken together, the literature affirms the successful use of machine learning 
to accurately predicate a diagnosis of ADHD. However, an empirical gap exists 
with regard to the training dataset used to train the machine learning model. 
The majority of studies conducted have primarily used MRI, fMRI, or EEG 
data to train the machine learning model used to discriminate between ADHD 
and Non-AD HD. Our goal of this work is to predict diagnosis of ADHD using 
eye gaze metrics and measures of working memory as the training data for 
the machine learning algorithms. In this work we employ machine learning 
algorithms fora diagnosis of ADHD using eye gaze metrics collected during 
a WMC task. The output of our task is based on binary classes, ADHD and 
Non-ADHD. We employed supervised learning classification algorithms 
and evaluated the predicted output in terms of how close it is to the actual 
output. Our evaluation matrices include standard information retrieval domain 
evaluation measurements such as accuracy, precision, recall , and fl . 
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Eye Movements and ADHD 

Eye movement behavior is a result of complex cognitive processes; therefore 
eye gaze metrics can reveal objective and quantifiable information about th~ 
quality, predictability, and consistency of these covert processes (Van der 
Stigchel et al. 2007). Eye gaze measurement includes a number of metrics 
relevant to oculomotor control (Komogortsev et al. 2013) including saccadic 
trajectories, fixations, and other relevant measures - such as velocity, duration 
amplitude, pupil dilation (Krejtz et al.2018). A saccade (rapid eye movemen~ 
from one fixation point to another) itself may not be an informative indicator 
of cognition since visual perception is suppressed during a saccade. However 

' 
fixations require preceding saccades to help place the gaze on target stimuli 
to gather salient and relevant information. We believe that analysis of these 
eye movements can provide important cumulative clues about the underlying 
physiological functions of attention control during a WMC task which can 
differentiate a diagnosis of ADHD for adults. 

There is substantial overlap in brain systems that are involved in oculomotor 
control and cognitive dysfunction in ADHD. The precise measurements 
of eye movements during cognitively demanding tasks provide a window 
into underlying brain systems affected by ADHD. The neural substrates of 
oculomotor control are well established (Leigh and Kennard 2004) and show 
proximity to and overlap with the cortical and subcortical structures involved 
in cognitive dysfunction in ADHD. For example, the cortical structures that 
mediate saccadic programming as well as a number of saccadic behaviors 
include frontal-parietal areas such the frontal eye field (FEF), supplementary 
eye field (SEF), parietal eye field (PEF), and DLPC. These areas are also 
affected during cognitive control and WM in ADHD (Rubia 2018). With 
respect to subcortical structures, the accuracy of saccades is maintained 
via cerebellum. For example, saccadic hypometria is an undershooting of a 
saccade to a target that is typically seen in normal subjects, whereas saccadic 
hypermetria, overshooting the target, is a hallmark feature of cerebellar 
dysfunction (Leigh and Zee 2015). A study of saccades during visuo-spatial 
WM has reported significant diagnostic group differences in under- versus 
over-shooting to the target between boys with ADHD and non-affected 
controls, such that the ADHD group tended to overshoot the target and the 
control group tended undershoot the target (Rommelse et al. 2008). Studies 
have shown that individuals with ADHD also have deficits in the suppression 
of saccades relative to controls (Mostofsky et al. 2001; Munoz et al. 2003; 
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Rornmelse et al. 2008). Similarly, people with ADHD demonstrate difficulties 
with intentionally inhibiting ocular responses when compared to their peers 
during tasks which require purposeful anti-saccade behaviors (Lee et al. 2015; 
Roberts et al. 2011 ). Eye gaze metrics, especially saccade features, reliably 
reveal important differences between adults with and without ADHD. 

Based on the diagnostic utility of eye movements, Blazey et al. (2003) 
invented a method which determines whether an individual has ADHD by 
sampling the eye movements of participants when they are in an inactive state. 
This procedure includes a sampling device which has infrared radiation for 
brightening the eye of a participant and detecting reflections from the eye. 
The eye movement data collected using their device determines the value of 
a pre-selected parameter which has a threshold value indicating whether the 
participant has ADHD or not. According to their study, the most significant 
feature of the eye movement data is the angular acceleration of the eyeball 
(Blazey et al. 2003). They have measured ocular angular acceleration for the 
participants by asking them to stare at a blank screen (Blazey et al. 2003). The 
measurement data of the angular acceleration of the eye below the threshold 
value indicates diagnosis of ADHD and the data above the threshold value 
constitutes a classification of healthy/normal. 

Eye Gaze and Machine Learning and ADHD 

There is a paucity of empirical studies which implement machine learning 
to predict ADHD classification using a measures of attention control or 
WMC. However, there are a few investigations which use machine learning in 
combination with measures of inhibition. Hart et al.(2014) measured activation 
patterns using functional magnetic resonance imaging while adolescents 
with ADHD performed a Stop Task. During this task, participants had to 
suppress or inhibit the motoric response of pushing a button. The researchers 
used Gaussian process classifiers and whole activation pattern analysis and 
were able to predict the ADHD diagnosis with 77% accuracy. Likewise, in a 
study with adults with and without a diagnosis of ADHD, machine learning 
predicted the diagnosis with a specificity of .91 and sensitivity of .76 based 
on EEG metrics during a NoGo task measuring inhibition (Biederman et al. 
2017). These results support collecting physiological metrics during tasks 
required attention control to generate pattern recognition analysis for the 
accurate classification of ADHD. 
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Similarly (Tseng et al. 2013) used eye movements in conjunction with 
machine learning to predict ADHD. This study included participants diagnosed 
with ADHD, fetal alcohol spectrum disorder (FASD), and Parkinson's disease 
(PD). Researchers presented short video clips to each participant and analyzed 
the resulting data sets for three specific types of eye movement features: 1) 
oculomotor-based features such as fixation durations and distributions of 
saccade amplitudes; 2) saliency-based features; and 3) group-based features. 
Results confirmed that saliency based features best differentiated children 
with ADHD and FASD from typically developing children. Machine learning 
algorithms predicted ADHD in the sample of children with 77.3% accuracy. 
Taken together, these empirical findings suggest that diagnostic biomarkers 
of ADHD could be generated from eye gaze metrics during a WMC task 
using machine learning. 

As such, in this feasibility study, we examined patterns of saccades and 
stability of fixations generated when completing a measure of WMC to create 
a feature set which could be used to differentiate a diagnosis of ADHD for 
adults. Based on the evidence that WMC is reduced in adults with ADHD 
(Michalek et al. 2014), measurement of eye movements during a measure of 
WMC will address the following research question: 1) do eye gaze feature 
values indexing a WMC task predict the classification of ADHD in adults? 

METHODOLOGY 

Participants 

A total of 14 adult participants without (n = 7) and with a diagnosis (n = 7) 
between the ages of 18-35 were recruited for this study from Old Dominion 
University. The seven adult participants were (6 F, 1 M, M_age=22.85, SD_ 
age=3.01) diagnosed with ADHD by medical practitioners and that diagnosis 
was confirmed through formal and verified documentation. Each ADHD 
participant also completed an informational interview verbally confirming 
their diagnosis. Moreover, adults with ADHD remained medication free for 
the 12 hours prior to study participation. Prior to beginning study tasks, all 
adults were informed of their risks regarding remaining medication free and 
participating in the study. Participants provided their consent by signing 
forms outlining costs and benefits of participation approved the University's 
Institutional Review Board (IRB) in accordance with the Helsinki Declaration. 
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Participants who completed the protocol were given a ten-dollar Amazon or 

Chick-Fil-A gift card. 

working Memory Capacity Task 

WMC is reflected through complex span tasks, including the Reading Span 
(R-Span). The R-Span is a validated task designed to reflect the cognitive 
system's ability to maintain activated representations (Engle et al. 1999; 
Engle 2002). In the R-Span task, participants are asked to read a sentence 
and letter they see on a computer screen. Sentences are presented in varying 
sets of 2-5 sentences. Participants are asked to judge sentence coherency 
by saying 'yes' or 'no' at the end of each sentence. Then, participants are 
asked to remember the letter printed at the end of the sentence. After a 2-5 
sentence set, participants are asked to recall all the letters they can remember 
from that set. WMC scores are generated based on the number of letters 
accurately recalled divided by the total number of possible letters recalled 
in order. However, this work focused on measures of visual attention which 
could differentiate adults with and without ADHD. 

Apparatus 

Eye gaze metrics were recorded and analyzed using the Tobii Pro X2-60 
computer screen-based eye tracker with Tobii Studio analysis software. The 
Tobii Pro X2-60 records eye movements using infrared corneal reflective 
technology at a sampling rate of 60 Hz (i.e. approximately once every 16.23 
milliseconds). Gaze data accuracy was within 0.4 degrees of visual angle 
and precision was within 0.34 degrees of visual angle. Tobii's eye tracking 
technology is effective for generating reliable and valid brain/behavior 
outcomes for children and adolescents (Richmond and Nelson 2009). 

All of the participants fulfilled the following inclusion criteria: 

1. Between 18 and 65 years of age. 
2. Spoke English as their first language. 
3. Self-reported normal vision with or without corrective lenses. 
4. No history of psychotic symptoms. 
5. No comorbid cognitive impairments (e.g. documented learning 

disabilities, reading disabilities). 
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Eye Movement Features 

The human oculomotor plant (OP) (Komogortsev et al. 2010) consists 
of the eye globe and six extraocular muscles and its surrounding tissues 
ligaments each containing thick and thin filaments, tendon-like component~ 
and liquids. In general, there are six major eye movement types: fixations 
saccades, smooth pursuits, optokinetic reflex, vestibule-ocular reflex and 
vergence (Leigh and Zee 2015). An eye-tracker provides eye gaze position 
information as well as other gaze related parameters (pupil dilation etc.) so 
that algorithmic derivation in terms of two primary eye movements, fixations 
(relative gaze position at one point on the screen) and saccades (r.apid eye 
movements of gaze from one fixation point to another) can be analyzed to 
derive the users attention patterns. 

We are interested in investigating number of eye fixation based features in 
the current framework. We developed a detailed saccade and fixation feature 
set using the following qualifiers: gender, number of fixations, fixation duration 
measured in milliseconds, average fixation duration in milliseconds, fixation 
standard deviation in milliseconds, pupil diameter left, pupil diameter right, 
and diagnosis label or class. Due to the sampling rate of the tracking system, 
we were not able to calculate microsaccades and overshoot/undershoot 
saccades as components of the feature set. 

Measuring Attention During WMC 

The data for this study was collected during a larger project involving adults 
with and without ADHD and an audiovisual listening in noise task where 
WMC scores were measured and used as a cognitive covariate without eye 
tracking metrics. The entire testing session for the study took approximately 
45 minutes. The session began with the participant interview, explanation of 
the purpose of the study, and review of the consent form. During the interview, 
the participants provided demographic information and were screened to 
confirm that all inclusion criteria were satisfied. Once participants indicated 
they understood their rights and gave consent, they entered the testing area to 
begin the study. Participants sat at a desk in front of a Dell Computer with a 
21-inch monitor. The distance and position of each participant was modified 
in order to maintain a 45 degree viewing angel of the monitor. For each 
participant, the experimental tasks began with eye gaze calibration. Once 
calibration was confirmed, participants viewed a welcome screen followed 
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by the random presentation of several experimental tasks, including the 
R-SPAN task. The location of the R-SPAN in the order of experimental tasks 
was randomized and counterbalanced across participants in order to maintain 
validity. Participants were randomly assigned to a group determining the 
order of experimental task presentation prior to beginning the study. For all 
of the experimental tasks, participants were given practice trials. 

MACHINE LEARNING ON DATA 

We chose precision, recall, f-measure, and accuracy as the evaluation measures 
for our work. Prior studies (Manevitz and Yousef 2007) have already proven 
that these measures are independent of category distributions provided that 
precision and recall are measured at the same time. Intuitively, precision 
measures exactness of the system (i .e., out of all predicted data instances 
for a specific category label how many are predicted correctly) while recall 
indicates the completeness of the system (i .e., out of all labeled data for a 
specific a category label how many are predicted correctly). F value measures 
the balance between precision and recall in a single value. In our tables with 
results assessing classifiers, precision, and recall refers to their weighted 
average values. Accuracy specifies the fraction of the predictions that the 
classifier predicated correctly. We employed a grid search mechanism to 
identify the best parameter combination for optimal result. The optimal 
parameters are selected based on performance for each classifier after a 10-
fold cross validation. 

RESULTS 

Table 1 shows the RSPAN score for the participants in the current study. 
An independent t-test statistical analysis (p=0.07) confirms that for this 
feasibility study there are no significant group differences on WMC scores 
and are predicted to be a result of the small sample size. The RSPAN is an 
individual differences measure and significance in variance is detected with 
large sample sizes. Additionally, WMC scores are typically generated through 
a composite score of two or more span tasks (Conway et al. 2005), for example, 
a previous investigation by one of the authors confirmed group differences in 
WMC using the RSPAN and operation span (OSPAN) to generate a WMC 
composite score for adults with ADHD (Michalek et al. 2014). 
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Table 1. RSPAN Score of the ADHD Vs Non-ADHD. 

Participant Age Gender RSPAN Classification -
3 18 Female 0.86 Non-A DHD --7 35 Male 0.88 Non-ADHD -l) 19 Female 0.60 Non-ADHD 

17 23 Male 0.55 Non-ADHD 

20 2 1 Female 0.57 Non-ADHD 

25 32 Male 0.88 Non-ADHD 

26 20 Female 0.74 Non-ADHD 

30 2 1 Female 0.5 1 ADHD 

34 19 Male 0.67 ADHD 

35 26 Female 0.76 ADHD 

36 29 Female 0.71 ADHD 

37 2 1 Female 0.60 ADHD 

38 21 Female 0.40 ADHD 

47 23 Female 0.62 ADHD 

Visual Analysis 

Figure 1 presents images of eye gaze patterns from two adult participants, 
one with and one without ADHD. Informal visual analysis indicates that the 
adult with ADHD is fixating primarily below the stimulus items with little 
direct fixation to sentence components including: the words, the decision 
point, or the item to be remembered. Unlike the adults with ADHD, the adult 
without ADHD has a majority of fixations which are in-line with all sentence 
components. Although this is a conclusion generated from informal visual 
inspection, it reveals that adults with ADHD are not visually scanning stimulus 

Figure 1. Comparison of Eye Fixations f or ADHD (Left) and Non-ADHD (Right) 
participant during WMC Task. 
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· path similar to adults without ADHD. The fixation cluster pattern 
items 10 a · · · ·th th . b low the stimulus sentence components. This 1s consistent w1 e 
is JUSt e · · h ADHD 
1
:. dings of .Krejtz et al. (2015) who suggest that while adults wit . 
10 

· ·1ar fixations to salient visual cues when compared to adults without 
had s1rru . 
ADHD, they demonstrated less structured and more chaotic scan patterns. 

Machine Learning for Classification Prediction 

We generated three feature sets categorized according to metric type: 

I. 
2. 
3. 

Fixation feature set. 
Saccade feature set. 
Saccade and Fixation combination feature set. 

Each of the three feature sets were individually entered into 43 different 
classifiers yielding precision rates, recall rates, F 1 scores, and percent accuracy. 
We identified six of the top performing classifiers for each of the three feature 

t . J48 LMT RandomForest, REPTree, K Star, and Bagging. Results for se s. , , 
each feature set are discussed individually. . 

Six of the top performing classifiers for the fixation feat~re set are_hsted 
in the Table 2. The Bagging classifier (ensemble meta-estimator) yielded 
the highest percent accuracy with 78.48% indicating that_ a fixation feat~re 
set collected during a RSPAN task classifies a diagnosis of ADHD with 
greater than 70% accuracy. The REPTree classifier yielded the lowest percent 

accuracy at 76.77%. . 
To further investigate the performance metrics for the 6 most effective 

classifiers for the fixation feature set we generated a Receiver Operating 
Characteristics (ROC) graph (see Figure 2) . The ROC graph displays the 

Table 2. Classification of Eye Fixation Features during WMC. 

Classifier Precision Recall Fl Accuracy 

148 0.77 0.76 0.77 77.79 

LMT 0.77 0.77 0.77 77.92 

RandomForesl 0.76 0.76 0.76 76.79 

REPTree 0.75 0.76 0.75 76.77 

K* 0.76 0.76 0.76 76.92 

Bagging 0.77 0.78 0.77 78.48 
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Figure 2. ROC Graph of the Top Performing Classifiers for Fixation Feature Set 
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relative trade-off between benefits (true positive) rates on the Y axis and 
the costs (false positive) rate on the X axis. The graph shows the Bagging as 
our top performing classifier offering the best trade-off in terms of the cost 
and the benefits. 

Table 3 outlines six of the top performing classifiers for the saccade feature 
set. The Random Forest classifier yielded the highest percent accuracy at 
91.14% indicating that the saccade feature set collected during a RSPAN 
task classifies a diagnosis of ADHD with greater than 90% accuracy. The 
148 classifier yielded the lowest percent accuracy at 88.95%. 

Table 3. Classification of Saccade Features during WMC. 

Classifier Precision Recall Ft Accuracy 

J48 0.89 0.89 0.89 88.95 

LMT 0.89 0.89 0.89 89.51 

Random Forest 0.91 0.91 0.91 91.14 

REPTrcc 0.89 0.89 0.89 89. 16 

K* 0.86 0.86 0.86 85.98 

Bagging 0.91 0.9 1 0.91 90.82 
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We generated a ROC graph (see Figure 3) for the classifiers we selected 
for the saccade feature set to investigate the performance metrics. The ROC 
curve shows that Random Forest classifier has the largest Area Under the 
Curve (AUC) meaning that it has the lowest error. The AUC of Random 
Forest classifier is 0.9114. Therefore, it has 91.14% chance of correctly 
distinguishing between ADHD and Non-ADHD. Random Forest is our top 
performing classifier offering the best trade-off in terms of the cost and the 
benefits for the saccade feature set. 

Finally, table 4 provides results of the six top performing classifiers for 
the combination of saccade and fixations feature set. The Random Forest 
classifier yielded the highest percent accuracy at 91.11 % indicating that the 
combination of fixation and saccade features collected during a RSPAN task 
classified a diagnosis of ADHD with greater than 90%accuracy. The K Star 
classifier yielded the lowest percent accuracy at 77.21 %. 

We generated a ROC graph (see Figure 4) to investigate the performance 
metrics for the classifiers we selected for the combination of saccade and 

Figure 3. ROC Graph of the Top Performing Classifiers for Saccade Feature Set. 
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Table 4. Classification of Eye Fixation and Saccade Features during WMC. 

Classifier Precision Recall Fl Accuracy 

148 0.89 0.89 0.89 89. 19 

-LMT 0.89 0.89 0.89 89.91 

RandomForcsl 0.91 0.91 0.91 91.11 

REPTrcc 0.89 0.89 0.89 89.16 

K* 0.77 0.77 0.77 77.21 

Bagging 0.91 0.9 1 0.91 90.83 

fixations feature set as well. The graph shows that even for the combination of 
sacc~d_e and fi~ations feature set, Random Forest is the top most performing 
class1f1er offenng the best trade-off in terms of the cost and the benefits. 
The AUC of Random Forest classifier is 0.9111 meaning that it has 91.11 % 
chance of correctly distinguishing between ADHD and Non-ADHD. 

Figure 4. ROC Graph of the Top Performing Classifiers for the Combination of 
Fixation and Saccade Features Set. 
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CONCLUSION 

The purpose of this feasibility study was to determine if patterns of saccades 
and stability of fixations generated when completing a measure ofWMC, the 
R-SPAN task, would create a feature set which could be used to differentiate 
a diagnosis of ADHD for adults. We used accuracy, precision, recall, and 
f-measure as the evaluation metrics. While fixation features, saccade features, 
and a combination of saccade and fixation features accurately predicted the 
classification of ADHD with an accuracy of greater than 78%, saccade features 
were the best predictors with an accuracy of 91 %. These results are consistent 
with previous studies confirming significant differences in saccadic behaviors 
for people with ADHD (Lee et al. 2015; Roberts et al. 2011). During the 
R-SPAN task, the rapid movement of the eye across the scan path from one 
fixation point to the other yields a more accurate classification of ADHD than 
the ability to sustain gaze. These preliminary results indicate that detailed and 
discrete eye gaze metrics during a measure of attention control (i.e. WMC) 
provide unique indices of ADHD and offer physiological insight regarding 
cognitive resources underlying WMC, an important cognitive construct 
responsible for behavioral inhibition and attention monitoring. Moreover, they 
are consistent with previous investigations finding that adults with ADHD 
demonstrate similar broad visual attention patterns as adults without ADHD 
but different scan patterns (Krejtz et al. 2015) and different pupillometry 
metrics as a function of visual cue type (Michalek and Roche 2017). 

FUTURE DIRECTIONS 

The results of this feasibility study confirm the utility of eye movement 
feature set indexing WMC as a predictor of a diagnosis of ADHD in adults. 
RandomForest classifiers performed best in-terms of predicting a classification 
of ADHD with 91.14% percent accuracy by combining saccade feature set 
representing a physiological measure of visual attention during a WMC task. 
This project is a necessary first step in delineating a feature set of objective 
physiological biomarkers for important diagnostic criteria, including attention 
control, in adult ADHD. 

In the future, we are interested in expanding the experimental studies 
to further analyze a fixation as well as saccade features set according to 
stimulus areas of interest using a larger sample size. Specifically, identifying 
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relationships between sentence units which determine sentence accuracy, 
the visual point of decision, the item to be remembered, and performance 
on the WMC measure. Using these areas of interest will generate a more 
detailed understanding of the relationships between covert measures of 
visual attention utilized during WMC tasks which also delineate a diagnosis 
of ADHD in adults. 
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