460,413 research outputs found

    Satisfiability Modulo ODEs

    Full text link
    We study SMT problems over the reals containing ordinary differential equations. They are important for formal verification of realistic hybrid systems and embedded software. We develop delta-complete algorithms for SMT formulas that are purely existentially quantified, as well as exists-forall formulas whose universal quantification is restricted to the time variables. We demonstrate scalability of the algorithms, as implemented in our open-source solver dReal, on SMT benchmarks with several hundred nonlinear ODEs and variables.Comment: Published in FMCAD 201

    Accurate and Efficient Expression Evaluation and Linear Algebra

    Full text link
    We survey and unify recent results on the existence of accurate algorithms for evaluating multivariate polynomials, and more generally for accurate numerical linear algebra with structured matrices. By "accurate" we mean that the computed answer has relative error less than 1, i.e., has some correct leading digits. We also address efficiency, by which we mean algorithms that run in polynomial time in the size of the input. Our results will depend strongly on the model of arithmetic: Most of our results will use the so-called Traditional Model (TM). We give a set of necessary and sufficient conditions to decide whether a high accuracy algorithm exists in the TM, and describe progress toward a decision procedure that will take any problem and provide either a high accuracy algorithm or a proof that none exists. When no accurate algorithm exists in the TM, it is natural to extend the set of available accurate operations by a library of additional operations, such as x+y+zx+y+z, dot products, or indeed any enumerable set which could then be used to build further accurate algorithms. We show how our accurate algorithms and decision procedure for finding them extend to this case. Finally, we address other models of arithmetic, and the relationship between (im)possibility in the TM and (in)efficient algorithms operating on numbers represented as bit strings.Comment: 49 pages, 6 figures, 1 tabl

    Revisiting the Complexity of Stability of Continuous and Hybrid Systems

    Full text link
    We develop a framework to give upper bounds on the "practical" computational complexity of stability problems for a wide range of nonlinear continuous and hybrid systems. To do so, we describe stability properties of dynamical systems using first-order formulas over the real numbers, and reduce stability problems to the delta-decision problems of these formulas. The framework allows us to obtain a precise characterization of the complexity of different notions of stability for nonlinear continuous and hybrid systems. We prove that bounded versions of the stability problems are generally decidable, and give upper bounds on their complexity. The unbounded versions are generally undecidable, for which we give upper bounds on their degrees of unsolvability

    The Role of Tacit Routines in Coordinating Activity

    Get PDF
    We explore the influence of tacit routines in obtaining coordination. Our experiment uses simple laboratory "firms," in which we interfere with one kind of firm's ability to develop tacit routines. Thus, our firms vary in the degree to which they rely on this kind of knowledge – instead of other, explicit, mechanisms – for obtaining coordination. We find that interfering with the development of tacit routines harms firms’ ability to coordinate. We then explore the extent to which firms are able to transfer their ability to coordinate activity, either to a new domain or to new members. Our results indicate that tacit routines transfer more easily than other mechanisms to a new, but closely related, domain. However, routine-based firms perform slightly worse in their ability to incorporate new members

    Computing with Classical Real Numbers

    Get PDF
    There are two incompatible Coq libraries that have a theory of the real numbers; the Coq standard library gives an axiomatic treatment of classical real numbers, while the CoRN library from Nijmegen defines constructively valid real numbers. Unfortunately, this means results about one structure cannot easily be used in the other structure. We present a way interfacing these two libraries by showing that their real number structures are isomorphic assuming the classical axioms already present in the standard library reals. This allows us to use O'Connor's decision procedure for solving ground inequalities present in CoRN to solve inequalities about the reals from the Coq standard library, and it allows theorems from the Coq standard library to apply to problem about the CoRN reals

    Invariant Generation through Strategy Iteration in Succinctly Represented Control Flow Graphs

    Full text link
    We consider the problem of computing numerical invariants of programs, for instance bounds on the values of numerical program variables. More specifically, we study the problem of performing static analysis by abstract interpretation using template linear constraint domains. Such invariants can be obtained by Kleene iterations that are, in order to guarantee termination, accelerated by widening operators. In many cases, however, applying this form of extrapolation leads to invariants that are weaker than the strongest inductive invariant that can be expressed within the abstract domain in use. Another well-known source of imprecision of traditional abstract interpretation techniques stems from their use of join operators at merge nodes in the control flow graph. The mentioned weaknesses may prevent these methods from proving safety properties. The technique we develop in this article addresses both of these issues: contrary to Kleene iterations accelerated by widening operators, it is guaranteed to yield the strongest inductive invariant that can be expressed within the template linear constraint domain in use. It also eschews join operators by distinguishing all paths of loop-free code segments. Formally speaking, our technique computes the least fixpoint within a given template linear constraint domain of a transition relation that is succinctly expressed as an existentially quantified linear real arithmetic formula. In contrast to previously published techniques that rely on quantifier elimination, our algorithm is proved to have optimal complexity: we prove that the decision problem associated with our fixpoint problem is in the second level of the polynomial-time hierarchy.Comment: 35 pages, conference version published at ESOP 2011, this version is a CoRR version of our submission to Logical Methods in Computer Scienc

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP
    • …
    corecore