147 research outputs found

    A max-flow algorithm for positivity of Littlewood-Richardson coefficients

    Get PDF
    Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the general linear group GL(n,C)\mathrm{GL}(n,\mathbb{C}). They have a wide variety of interpretations in combinatorics, representation theory and geometry. Mulmuley and Sohoni pointed out that it is possible to decide the positivity of Littlewood-Richardson coefficients in polynomial time. This follows by combining the saturation property of Littlewood-Richardson coefficients (shown by Knutson and Tao 1999) with the well-known fact that linear optimization is solvable in polynomial time. We design an explicit combinatorial\textit{combinatorial} polynomial time algorithm for deciding the positivity of Littlewood-Richardson coefficients. This algorithm is highly adapted to the problem and it is based on ideas from the theory of optimizing flows in networks

    On vanishing of Kronecker coefficients

    Full text link
    We show that the problem of deciding positivity of Kronecker coefficients is NP-hard. Previously, this problem was conjectured to be in P, just as for the Littlewood-Richardson coefficients. Our result establishes in a formal way that Kronecker coefficients are more difficult than Littlewood-Richardson coefficients, unless P=NP. We also show that there exists a #P-formula for a particular subclass of Kronecker coefficients whose positivity is NP-hard to decide. This is an evidence that, despite the hardness of the positivity problem, there may well exist a positive combinatorial formula for the Kronecker coefficients. Finding such a formula is a major open problem in representation theory and algebraic combinatorics. Finally, we consider the existence of the partition triples (λ,μ,π)(\lambda, \mu, \pi) such that the Kronecker coefficient kμ,πλ=0k^\lambda_{\mu, \pi} = 0 but the Kronecker coefficient klμ,lπlλ>0k^{l \lambda}_{l \mu, l \pi} > 0 for some integer l>1l>1. Such "holes" are of great interest as they witness the failure of the saturation property for the Kronecker coefficients, which is still poorly understood. Using insight from computational complexity theory, we turn our hardness proof into a positive result: We show that not only do there exist many such triples, but they can also be found efficiently. Specifically, we show that, for any 0<ϵ10<\epsilon\leq1, there exists 0<a<10<a<1 such that, for all mm, there exist Ω(2ma)\Omega(2^{m^a}) partition triples (λ,μ,μ)(\lambda,\mu,\mu) in the Kronecker cone such that: (a) the Kronecker coefficient kμ,μλk^\lambda_{\mu,\mu} is zero, (b) the height of μ\mu is mm, (c) the height of λ\lambda is mϵ\le m^\epsilon, and (d) λ=μm3|\lambda|=|\mu| \le m^3. The proof of the last result illustrates the effectiveness of the explicit proof strategy of GCT.Comment: 43 pages, 1 figur

    All Kronecker coefficients are reduced Kronecker coefficients

    Get PDF
    We settle the question of where exactly do the reduced Kronecker coefficients lie on the spectrum between the Littlewood-Richardson and Kronecker coefficients by showing that every Kronecker coefficient of the symmetric group is equal to a reduced Kronecker coefficient by an explicit construction. This implies the equivalence of a question by Stanley from 2000 and a question by Kirillov from 2004 about combinatorial interpretations of these two families of coefficients. Moreover, as a corollary, we deduce that deciding the positivity of reduced Kronecker coefficients is NP-hard, and computing them is #P-hard under parsimonious many-one reductions

    On the complexity of computing Kronecker coefficients

    Full text link
    We study the complexity of computing Kronecker coefficients g(λ,μ,ν)g(\lambda,\mu,\nu). We give explicit bounds in terms of the number of parts \ell in the partitions, their largest part size NN and the smallest second part MM of the three partitions. When M=O(1)M = O(1), i.e. one of the partitions is hook-like, the bounds are linear in logN\log N, but depend exponentially on \ell. Moreover, similar bounds hold even when M=eO()M=e^{O(\ell)}. By a separate argument, we show that the positivity of Kronecker coefficients can be decided in O(logN)O(\log N) time for a bounded number \ell of parts and without restriction on MM. Related problems of computing Kronecker coefficients when one partition is a hook, and computing characters of SnS_n are also considered.Comment: v3: incorporated referee's comments; accepted to Computational Complexit

    Generalized Littlewood-Richardson coefficients for branching rules of GL(n) and extremal weight crystals

    Get PDF
    Following the methods used by Derksen-Weyman in \cite{DW11} and Chindris in \cite{Chi08}, we use quiver theory to represent the generalized Littlewood-Richardson coefficients for the branching rule for the diagonal embedding of \gl(n) as the dimension of a weight space of semi-invariants. Using this, we prove their saturation and investigate when they are nonzero. We also show that for certain partitions the associated stretched polynomials satisfy the same conjectures as single Littlewood-Richardson coefficients. We then provide a polytopal description of this multiplicity and show that its positivity may be computed in strongly polynomial time. Finally, we remark that similar results hold for certain other generalized Littlewood-Richardson coefficients.Comment: 28 pages, comments welcom

    Rectangular Kronecker coefficients and plethysms in geometric complexity theory

    Full text link
    We prove that in the geometric complexity theory program the vanishing of rectangular Kronecker coefficients cannot be used to prove superpolynomial determinantal complexity lower bounds for the permanent polynomial. Moreover, we prove the positivity of rectangular Kronecker coefficients for a large class of partitions where the side lengths of the rectangle are at least quadratic in the length of the partition. We also compare rectangular Kronecker coefficients with their corresponding plethysm coefficients, which leads to a new lower bound for rectangular Kronecker coefficients. Moreover, we prove that the saturation of the rectangular Kronecker semigroup is trivial, we show that the rectangular Kronecker positivity stretching factor is 2 for a long first row, and we completely classify the positivity of rectangular limit Kronecker coefficients that were introduced by Manivel in 2011.Comment: 20 page
    corecore