4,925 research outputs found

    (Un)Decidability Results for Word Equations with Length and Regular Expression Constraints

    Full text link
    We prove several decidability and undecidability results for the satisfiability and validity problems for languages that can express solutions to word equations with length constraints. The atomic formulas over this language are equality over string terms (word equations), linear inequality over the length function (length constraints), and membership in regular sets. These questions are important in logic, program analysis, and formal verification. Variants of these questions have been studied for many decades by mathematicians. More recently, practical satisfiability procedures (aka SMT solvers) for these formulas have become increasingly important in the context of security analysis for string-manipulating programs such as web applications. We prove three main theorems. First, we give a new proof of undecidability for the validity problem for the set of sentences written as a forall-exists quantifier alternation applied to positive word equations. A corollary of this undecidability result is that this set is undecidable even with sentences with at most two occurrences of a string variable. Second, we consider Boolean combinations of quantifier-free formulas constructed out of word equations and length constraints. We show that if word equations can be converted to a solved form, a form relevant in practice, then the satisfiability problem for Boolean combinations of word equations and length constraints is decidable. Third, we show that the satisfiability problem for quantifier-free formulas over word equations in regular solved form, length constraints, and the membership predicate over regular expressions is also decidable.Comment: Invited Paper at ADDCT Workshop 2013 (co-located with CADE 2013

    Quadratic Word Equations with Length Constraints, Counter Systems, and Presburger Arithmetic with Divisibility

    Full text link
    Word equations are a crucial element in the theoretical foundation of constraint solving over strings, which have received a lot of attention in recent years. A word equation relates two words over string variables and constants. Its solution amounts to a function mapping variables to constant strings that equate the left and right hand sides of the equation. While the problem of solving word equations is decidable, the decidability of the problem of solving a word equation with a length constraint (i.e., a constraint relating the lengths of words in the word equation) has remained a long-standing open problem. In this paper, we focus on the subclass of quadratic word equations, i.e., in which each variable occurs at most twice. We first show that the length abstractions of solutions to quadratic word equations are in general not Presburger-definable. We then describe a class of counter systems with Presburger transition relations which capture the length abstraction of a quadratic word equation with regular constraints. We provide an encoding of the effect of a simple loop of the counter systems in the theory of existential Presburger Arithmetic with divisibility (PAD). Since PAD is decidable, we get a decision procedure for quadratic words equations with length constraints for which the associated counter system is \emph{flat} (i.e., all nodes belong to at most one cycle). We show a decidability result (in fact, also an NP algorithm with a PAD oracle) for a recently proposed NP-complete fragment of word equations called regular-oriented word equations, together with length constraints. Decidability holds when the constraints are additionally extended with regular constraints with a 1-weak control structure.Comment: 18 page

    The First-Order Theory of Sets with Cardinality Constraints is Decidable

    Full text link
    We show that the decidability of the first-order theory of the language that combines Boolean algebras of sets of uninterpreted elements with Presburger arithmetic operations. We thereby disprove a recent conjecture that this theory is undecidable. Our language allows relating the cardinalities of sets to the values of integer variables, and can distinguish finite and infinite sets. We use quantifier elimination to show the decidability and obtain an elementary upper bound on the complexity. Precise program analyses can use our decidability result to verify representation invariants of data structures that use an integer field to represent the number of stored elements.Comment: 18 page

    What's Decidable About Sequences?

    Full text link
    We present a first-order theory of sequences with integer elements, Presburger arithmetic, and regular constraints, which can model significant properties of data structures such as arrays and lists. We give a decision procedure for the quantifier-free fragment, based on an encoding into the first-order theory of concatenation; the procedure has PSPACE complexity. The quantifier-free fragment of the theory of sequences can express properties such as sortedness and injectivity, as well as Boolean combinations of periodic and arithmetic facts relating the elements of the sequence and their positions (e.g., "for all even i's, the element at position i has value i+3 or 2i"). The resulting expressive power is orthogonal to that of the most expressive decidable logics for arrays. Some examples demonstrate that the fragment is also suitable to reason about sequence-manipulating programs within the standard framework of axiomatic semantics.Comment: Fixed a few lapses in the Mergesort exampl

    Verification for Timed Automata extended with Unbounded Discrete Data Structures

    Full text link
    We study decidability of verification problems for timed automata extended with unbounded discrete data structures. More detailed, we extend timed automata with a pushdown stack. In this way, we obtain a strong model that may for instance be used to model real-time programs with procedure calls. It is long known that the reachability problem for this model is decidable. The goal of this paper is to identify subclasses of timed pushdown automata for which the language inclusion problem and related problems are decidable

    Decidability of Univariate Real Algebra with Predicates for Rational and Integer Powers

    Full text link
    We prove decidability of univariate real algebra extended with predicates for rational and integer powers, i.e., (xnQ)(x^n \in \mathbb{Q}) and (xnZ)(x^n \in \mathbb{Z}). Our decision procedure combines computation over real algebraic cells with the rational root theorem and witness construction via algebraic number density arguments.Comment: To appear in CADE-25: 25th International Conference on Automated Deduction, 2015. Proceedings to be published by Springer-Verla

    Decidable Classes of Tree Automata Mixing Local and Global Constraints Modulo Flat Theories

    Get PDF
    We define a class of ranked tree automata TABG generalizing both the tree automata with local tests between brothers of Bogaert and Tison (1992) and with global equality and disequality constraints (TAGED) of Filiot et al. (2007). TABG can test for equality and disequality modulo a given flat equational theory between brother subterms and between subterms whose positions are defined by the states reached during a computation. In particular, TABG can check that all the subterms reaching a given state are distinct. This constraint is related to monadic key constraints for XML documents, meaning that every two distinct positions of a given type have different values. We prove decidability of the emptiness problem for TABG. This solves, in particular, the open question of the decidability of emptiness for TAGED. We further extend our result by allowing global arithmetic constraints for counting the number of occurrences of some state or the number of different equivalence classes of subterms (modulo a given flat equational theory) reaching some state during a computation. We also adapt the model to unranked ordered terms. As a consequence of our results for TABG, we prove the decidability of a fragment of the monadic second order logic on trees extended with predicates for equality and disequality between subtrees, and cardinality.Comment: 39 pages, to appear in LMCS journa

    On the Path-Width of Integer Linear Programming

    Full text link
    We consider the feasibility problem of integer linear programming (ILP). We show that solutions of any ILP instance can be naturally represented by an FO-definable class of graphs. For each solution there may be many graphs representing it. However, one of these graphs is of path-width at most 2n, where n is the number of variables in the instance. Since FO is decidable on graphs of bounded path- width, we obtain an alternative decidability result for ILP. The technique we use underlines a common principle to prove decidability which has previously been employed for automata with auxiliary storage. We also show how this new result links to automata theory and program verification.Comment: In Proceedings GandALF 2014, arXiv:1408.556
    corecore