784 research outputs found

    Unified Analysis of Collapsible and Ordered Pushdown Automata via Term Rewriting

    Full text link
    We model collapsible and ordered pushdown systems with term rewriting, by encoding higher-order stacks and multiple stacks into trees. We show a uniform inverse preservation of recognizability result for the resulting class of term rewriting systems, which is obtained by extending the classic saturation-based approach. This result subsumes and unifies similar analyses on collapsible and ordered pushdown systems. Despite the rich literature on inverse preservation of recognizability for term rewrite systems, our result does not seem to follow from any previous study.Comment: in Proc. of FRE

    Left-linear Bounded TRSs are Inverse Recognizability Preserving

    Get PDF

    On the descriptional complexity of iterative arrays

    Get PDF
    The descriptional complexity of iterative arrays (lAs) is studied. Iterative arrays are a parallel computational model with a sequential processing of the input. It is shown that lAs when compared to deterministic finite automata or pushdown automata may provide savings in size which are not bounded by any recursive function, so-called non-recursive trade-offs. Additional non-recursive trade-offs are proven to exist between lAs working in linear time and lAs working in real time. Furthermore, the descriptional complexity of lAs is compared with cellular automata (CAs) and non-recursive trade-offs are proven between two restricted classes. Finally, it is shown that many decidability questions for lAs are undecidable and not semidecidable

    The Parametric Ordinal-Recursive Complexity of Post Embedding Problems

    Full text link
    Post Embedding Problems are a family of decision problems based on the interaction of a rational relation with the subword embedding ordering, and are used in the literature to prove non multiply-recursive complexity lower bounds. We refine the construction of Chambart and Schnoebelen (LICS 2008) and prove parametric lower bounds depending on the size of the alphabet.Comment: 16 + vii page

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    Bisimulation Equivalence of First-Order Grammars is ACKERMANN-Complete

    Full text link
    Checking whether two pushdown automata with restricted silent actions are weakly bisimilar was shown decidable by S\'enizergues (1998, 2005). We provide the first known complexity upper bound for this famous problem, in the equivalent setting of first-order grammars. This ACKERMANN upper bound is optimal, and we also show that strong bisimilarity is primitive-recursive when the number of states of the automata is fixed
    • …
    corecore