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Abstract 

The descriptional complexity of iterative arrays (lAs) is studied. Iterative ar­
rays are a parallel computational model with a sequential processing of the input. 
It is shown that lAs when compared to deterministic finite automata or pushdown 
automata may provide savings in size which are not bounded by any recursive 
function, so-called non-recursive trade-oirs. Additional non-recursive trade-offs 
are proven to exist between lAs working in linear time and lAs working in real 
time. Furthermore, the descriptional complexity of lAs is compared with cellular 
automata (CAs) and non-recursive trade-offs are proven between two restricted 
classes. Finally, it is shown that many decidability questions for lAs are undecid­
able and not semidecidable. 

1 Intro d uction 

The descriptional complexity of abstract machines is a field of theoretical computer 
science where the conciseness of the representation of a formal language in one model 
is compared with the size of representation in other models. One early result is the 
exponential trade-off between nondeterministic finite automata (NFAs) and determin­
istic finite automata (DFAs). On the one hand, it is known that each n-state NFA can 
be converted to a DFA with at most 2n states. On the other hand, Meyer and Fischer 
[9] proved that there is an infinite sequence of languages such that each language can 
be accepted by an n-state NFA, but every DFA accepting the same language needs 
at least 2n states. Apart from this exponential trade-off between two descriptional 
systems, Meyer and Fischer proved that the trade-off between context-free grammars 
and DFAs is not bounded by any recursive function. Such a trade-off is said to be 
non-recursive. Recursive and non-recursive trade-offs have been proven between many 
language classes. For a summary of results we refer to [3]. 

In this paper, we continue the investigation of cellular models which started in [7] with 
the study of cellular automata (CAs). The main results obtained there may be sum­
marized as follows. There are non-recursive trade-offs between CAs and the sequential 
models DFAs and pushdown automata (PDAs), between lineartime-CAs and realtime­
CAs, and between realtime-CAs with one-way communication and realtime-CAs with 
two-way communication. H~re, these results are complemented by studying iterative 
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arrays (lAs) which are identical to CAs except that the input mode is sequential. In 
a.n&logy to the approach in [7], which is based on a technique of ~artmanis [4], we are 
going to show non-recursive trade-offs between lAs and sequentIal models as well as 
between lineartime--IAB and realtime-lAs. It is known that the two language classes 
generated by realtime-lAs and realtime-CAs are incomparable. Here, it is shown that 
ooth language classes are incomparable from a descriptional complexity point of view, 
since there exist non-recursive trade-offs between realtime-lAs and realtime-CAs and 
vice-versa.. In [7J it is shown that many decidabiHty questions for CAs are undecidable 
and that CA language classes P08Sess no pumping lemma. Identical results can be 

achieved for lAs. 

2 Preliminaries and Definitions 

Let E* denote the set of all words over the finite alphabet E, E+ = E* \ {E}. By 
Iwl we denote the length of a string w, and the reversal of a word w is denoted by 
wR.. Let REG, nCF, CF, RE denote the families of regular, deterministic context­
free, context-free and recursively enumerable languages. DCF{ denotes the family of 
languages which can be accepted by a deterministic pushdown automaton (DPDA) 
with no £-moves. In this paper we do not distinguish whether a language L contains 
the empty word f or not. Le., L is identified with L \ if}. We assume that the reader 
is familiar with the common notions of formal language theory as presented in [5]. Let 
S be a set of recursively enumerable languages. Then S is said to be a property of the 
recursively enumerable languages. A set L has the property S, if L E S. Let Ls be 
the set {<M> IT(M) E S} where <M> is an encoding of a Turing machine M. If 
Ls is recursive, we say the property S is decidable; if Ls is recursively enumerable, 
we say the property S is semidecidable. Concerning cellular automata and iterative 
arrays, We largely follow the notations and definitions given in [6]. 

Definition: A two-way cellular automaton (CA) A is a quintuple A = (Q, #, E, 0, F), 
where 

1. Q # 0 is the finite set of cell states, 
2. # ¢ Q is the boundary state, 
3. E ~ Q is the input alphabet, 
4. F ~ Q is the set of accepting cell states and 

5. 0: (Q U {# }) x (Q U {#}) x (Q U {#}) -t Q is the local transition function. 

Restricting the flow of information only from the right to the left, we get a one-way 
cellular automaton (GCA) and the local transition function maps from (Q U {#}) x 
(Q U {#}) to Q. To simplify matters we identify the cells by positive integers. 

A configuration of a cellular automaton at some time step t ~ 0 is a description of its 
glo?al stat~, for~ally a mapping Ct : {I, ... , n} -t Q for n E N. The initial configu­
ratl~n at tIme 0 IS .defined by the input word w = Xl •• 'Xn: co,w(i) = Xi, 1 ~ i ~ n~ , 
Durmg a computatIOn the G(CA) steps through a sequence of configurations whereby . 
successor configurations are computed according to the global transition function b.. 
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Let etl t ;::: 0, be a configuration, then its successor configuration is defined as follows. 

Ct+l = Do{ct) <=> 
Ct+l(I) = c5(#,ct(1),Ct(2)) 
Ct+l(i) = c5(ct(i -1), Ct(i),ct(i + 1)),2 ::; i ::; n-l 
Ct+l (n) = o(ct(n - 1), ct(n), #) 

for CAs and 

Ct+l = Do(Ct) <=> 
Ct+l (i) = o(ct(i), ct(i + 1)), 1 ::; i ::; n - 1 
Ct+l(n) = o(ct(n) , #) 

for OCAs. Thus, Do is induced by O. 

Definition: A two-way iterative array (IA) A is a tuple A = (Q, qo, V, E, 15, 150, F), 
where 

1. Q =f. 0 is the finite set of cell states, 
2. qo E Q is the initial (quiescent) state, 
3. V f/. E is the end-of-input symbol, 
4. E is the input alphabet, 
5. ° : Q3 -+ Q is the local transition function for non-communication cells where 

5(qo, qo, qo) = qo, 
6. 50 : Q3 x (E U {V'}) -t Q is the local transition function for the communication 

cell and 
7. F ~ Q is the set of accepting cell states. 

A configuration of an IA at some time t ;::: 0 is a pair (Wt, Ct) where Wt E E* is the 
remaining input sequence and Ct : Z -t Q is a function that maps the single cells to 
their current states. The configuration (COl wo) at time 0 is defined by the input word 
Wo and the mapping co(i) = qo, i E Z. The global transition function Do is induced by 
c5 and c50 as follows. Let (Wt, Ct), t ;::: 0, be a configuration. 

(Wt+l, Ct+l) = Do( (Wt, cd) <¢=> 

Ct+l (i) = o(Ct(i -1), ct(i), ct(i + 1», i E Z \ {O} 
Ct+1 (0) = 50(Ct (-1), Ct(O), Ct (1), x) 

where x = 'V, Wt+ I = E if Wt = E, and x = WI, Wt+ I = W2 •.• Wn if Wt = WI ••• Wn • 

An input string W is accepted by an (O)CA (IA) if at some time step i during its 
computation the leftmost cell (communication cell) enters an accepting state from the 
set of accepting states F ~ Q. 

Definition: Let A = (Q,#,E,5,F) be an (O)CA (A = (Q,qo,V,E,o,50 ,F) be an 
IA). 

. .' 1. A word W E E+ is accepted by A if there exists a time step i E N such that 
Ci(I) E F holds for the configuration Ci = Doi(CO,w) ((wi,Ci) = D.i(W, co)). 
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2. T(A) = {w E E+ I w is accepted by A} is the language accepted by A. 
3. Let t : N -t N, ten) ~ n, be a mapping and iw be the minimal time step at which 

A accepts w E T(A). If all wE T(A) are accepted within iw =:; t(lwl) time steps, 
then T(A) is said to be of time complexity t. 

4. Ct((O)CA) = {L 1 L is accepted by an (O)CA with time complexity t}. Lt(IA) = 
{L IL is accepted by an IA with time complexity t}. 

5. If ten) = n (t(n) = n + 1), we say these languages are accepted in real time. 
The corresponding language classes are denoted by Lrt((O)CA) {Crt (IA». The 
languages accepted in linear time Llt((O)CA) are defined as Clt((O)CA) = 
UkEQ,k2::1 Lk.t((O)CA) with ten) = n. LIt(IA) is. defined anal~gousl!. The cor­
responding cellular devices are denoted by realtIme-(O)CA, lmeartIme-(O)CA, 
realtime-lA, and lineartime-IA. 

It is known that DCF f c .crt(IA) and that CF and Lrt(IA) are incomparable [6]. 
Crt(IA) is closed under union, intersection, complementation, right concatenation with 
regular sets, marked iteration, and marked concatenation [10]. 

In the sequel we will use the set of valid computations of a Turing machine. Details are 
presented in [4] and [5]. The definition of a Turing machine and of an instantaneous 
description (ID) of a Turing machine may be found in [5]. 

Definition: Let M = (Q, E, r, 8, qo, B, F) be a deterministic Turing machine. 

VALC[M] = {IDo (x)#IDl (x)R#ID2(x)#ID3 (x)R# .,. I 
x E E*,IDo(x) E qoE* is an initial ID, 1Dn(x) E r*Fr* is an accepting ID, 
1Di+l(x) E r*Qr*results from IDi(x),Le., 1Di(x) fM1Di+l(X)} 

The invalid computations INVALC[M] are defined as the complement of VALC[M] 
with respect to a suitable coding alphabet. 

Remark: Let M be an arbitrary Turing machine and Q1 C Q denote the set of states 
being assumed in M's first computation, i.e., Q1 = {q E Q 13/1, /2 E r, S E {L, R} : 
8(qO,/1) = (q'/2'S)}, Then, M can be modified such that all q E Ql are entered only 
in the first computation. This can be achieved by copying the state set Q to Q' and 
by replacing each transition 0 (q, /t) = (p, "12, S) with 0 (q, "11) = (P', /2, S) for q :f. qo 
and by adding transitions 0 (q', "It) = (P', /2, S) for each transition 8 (q, /1) == (p, /2 , S). 

Concerning the notations and definitions of descriptional complexity we follow the 
presentation in [3]. A descriptional system K is a set of finite descriptors (e.g. au­
tomata or grammars) relating each M E K to a language T(M). The language class 
being described by K is T(K).= {T(M) 1M E K}. For every language L we define 
K(L) = {M E K 1 T(M) = L}. A complexity measure for K is a total function 
I· I : K -t N. Comparing two descriptional systems KI and K2 , we assume that 
T(K1) n T(K2) is not finite. We say that a function f : N -t N, fen) ?: n is an upper 
bound for the trade-off when changing from a minimal description in KI for an' arbi- , 
trary language to an equivalent minimal description in K2, iffor all L E T(Kl) nT(K2) 
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the following holds. 

If no recursive function is an upper bound for the trade-off between two descriptional 
systems K1 and K2) we say the trade-off is non-recursive and write K1 nOn1iec K 2. 

3 N on-Recursive Trade-Oft's 

Theorem 1 Let M be a Turing machine. Then two realtime-lAs Al and A2 can be 
constructed such that T{A1) = VALC[M] and T(A2) = INVALC[M]. 

Proof: It is known [6] that DOFf: C £rt{IA). We show that VALC[M] is the 
intersection of two languages L1, L2 E DOF e' Since Crt{IA) is effectively closed under 
intersection and complementation, we then can construct two realtime-lAs accepting 
VALO[M] and INVALC[M], respectively. We first observe that DOFe is closed under 
marked concatenation and marked iteration, since both operations do not introduce 
E-moves. It is shown in [5] that VALC[M] = L1 n L2 where 

Ll = (La{#})*({€} Uf*Ff*{#}), 
L2 = {qo}2:*{#}(L4{#})*({€} Uf*Ff*{#}), 
La = {y#zR I y~z}, 
L4 = {yR#zly~z}. 

In [5] it is described.how two pushdown automata can be constructed to accept L3 and 
L4) respectively. It is not difficult to modify this construction such that L3 and L4 
are accepted by DPDAs with accepting states and no E-moves. Thus, L3, L4 E DOF e' 

Then, (L3{#})*, (L4{#})* E DCFe, since DOFe is closed under marked iteration and 
every second # acts as a marking symbol. Since DCF e is closed under marked con­
catenation, we obtain that {qo}E*{#}(L4{#})* is in DOFe. It remains to be shown 
that the right concatenation with the regular set ({ €} U f* Ff* { #}) does not introduce 
(S-moves. This can be realized with a second component in the state sets of the DPDAs 
accepting (L3 { # } ) * and (L4 { # } ) *, respectively. This component checks after every 
second # whether the remaining input is of the form ({ €} U f* Fr* {#} ). If so, the 
input is accepted. Obviously, no E-moves are necessary. Hence, two DPDAs without 
E-moves can be constructed accepting L1 and L2, respectively. 0 

The next theorem provides a criterion for the existence of non-recursive trade-offs. The 
proof uses a technique given by Hartmanis [4] and may be found in [7]. . 

Theorem 2 Let Kl and K2 be two descriptional systems. If for every Turing machine 
M a language LM E T(Kl) can be effectively constructed such that LM E T(K2) {:} 
T(M) is finite, then the trade-off between K1 and K2 is non-recursive. 

Remark: Let A be a realtime-lAo In [6] it is explained that the result of t~e com­
putation of a remaining input of length m in A depends on the states of the cells 
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-m - 1, •.. ,0, ... , m + 1. These cells will be denoted by the term m-window. It is 
observed in [6J that there are at most n2(m+1)+1 different m-windows, where n denotes 
the number of states in A. 

Remark: Every x E VALC(MJR is ending with a string #yqO where # is a separating 
symbol, y E 2:* the reversal of the input and qo the initial state of M. The mapping 
7r: VALC[MJR -+ 2:* is defined as 7r(x) = y and extracts the input. 

Lemma 1 Let A be a realtime-IA accepting VALC[MJR where M is a Turing machine 
accepting an infinite language L ~ 2:*. Let U = {UI, U2, ... } be an infinite subset of 
VALC[MJR which has the property that 17r(uj)1 > 17r(Ui)1 + 3 and IUil < IUjl for i ~ 1 
and j > i. Then there exists a natural number m such that there exist Ui, Uj E U 
with j > i, /7r(Ui) I > m and the m-window of the configuration at time IUil - m 
when processing Ui occurs in at least one m-window of the configurations up to time 
IUj I - m - 3 when processing Uj. 

Proof: By way of contradiction we assume that the above statement does not hold. 
Then, for all natural numbers m there exist no such words Ui and Uj. Or, in other 
words, for arbitrary m holds: each Ui E U with 17r(Ui)I > m has an m-window at time 
IUil- m which occurs in no other computation of words Uj E U with j > i up to time 
IUjl - m - 3. We now consider the words WI = Ui+l, W2 = ui+2, ... ,W/Q/2(m+l)+1+1 = 

UH/Q/2(m+l)+1+1' Due to our assumption, we know that, for 1 ~ j ~ IQI2(m+l)+1 + 1, 
Wj has an m-window Cj at time IWjl - m that does not occur in any m-window of 
computations of Wj+1, ... , W/Q/2(m+1)+1+1 up to time IWII - m - 3 for j + 1 ~ 1 ~ 
/QI2

(m+l)+1 + 1. Hence the set {Cl, C2, ••• , C/Q/2(m+l)+1+1} is pairwise distinct which is 

a contradiction to the fact that there are at most IQI2(m+I)+1 different m-windows. 0 

Lemma 2 Let M be a Turing machine and L[MJ = {w/wj! Jw E {#o} VALC[M]{ #r}}. 

(1) INVALC(M] E REG {} T(M) is finite 
(2) VALC(M] E CF {} T(M) is finite 
(3) VALC(M]R E Crt(IA) {:} T(M) is finite 
(4) INVALC(MJR E Crt(IA) {:} T(M) is finite 
(5) L[M] E Crt ( aCA) {:} T(M) is finite 
(6) L[MJ E"Crt(IA) 

Proof: (2) is proven in [5J and (1) is then easy to show. The "if" portion of (3) is 
obvious, since REG is a subset of Crt(IA). The "only if" portion is proven by using 
Lemma 1. We show that VALC[M]R ~ Crt(IA) if T(M) is infinite: we assume that 
VALC(MJR E Crt(IA). Let mEN be the integer from Lemma 1 which can be applied, 
since T(M) is infinite. Then there exist two words u, u' E VALC(M]R with lu'l > lui 
and 11T(U)1 ;- m. Let U = UIU2 ~ith IU21 = m and u' = u~u2 where u~ is the shortest 
prefix of U such that the m-wmdow C after processing u' is identical to that after 
processing Ul. It is easily observed that U has a suffix ID~(7r(u»R#7r(u)qO and that 
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u' has a suffix ID1(7r(u,))R#7r(u')qo. We now consider the string w = UiU2 and have 
to differentiate three cases. At first, w may have the wrong format of an ID. Then 
w ¢ VALC[M]R. If w has the correct format, then w has a suffix #IDI(1r(u'))#XU21 if 
l is even, or #IDI(7r(U,))R#xU2 otherwise. Since U2 is a suffix of 1r(u)qO E r:+ {qo}, we 
can assume that x E r:*. If 1 > 1, then w ¢ VALC[M]R, since M can be modified such 
that, due to an above remark, certain states are assumed only in the first computation. 
If l = 1, then w has a suffix 1D1(1r(u,))R#xu2 and IXU21 ~ 11r(u')qol-3 < 17r(u')qol-2, 
since the identical m-window c is assumed after at most lu'l - m - 3 time steps. We 
can observe that an ID changes its length when compared to its preceding ID by at 
most 1. I.e., IIDk+dy) I = IIDk(y)1 + p with p E {-1, 0, l} and k ~ 0, Y E r:*. 
Hence, IID1(7r(u'))1 = IXU21 + p ~ IXU21 + 1 < 17r(u')qol- 1 = IIDo(1r(u'))I- 1. This 
implies that w ¢ VALC[M]R. So we obtain in all three cases that w ¢ VALC[M]R. 
On the other hand, since the m-window c leads to acceptance when processing U2, 
we obtain w = ui U2 E VALC[M]R which is a contradiction. This proves (3). Since 
INVALC[M]R = VALC[M]R a:nd Crt(IA) is closed under complementation, (4) follows 
from (3). A proof of (5) may be found in [7]. To prove (6) we show how to construct a 
realtime-IA recognizing L[ M]. L [M] is the intersection of the following three languages 
L1, L2, L3. Let VALC[M] c:E* and #0, #1 be new symbols with {#o, #1} n r: = 0. 

Ll = {w Iw E ({#o}VALC[M]{#I})*} 
L2 = {wn I w E {#0}r:*{#1}, n ~ 2, n is even} 
L3 = {wxlw E {#0}:E*{#1}, X E ({#0}r:*{#1})*,lwxl#o = Iwll} 

Since Crt(lA) is closed under intersection, it remains to be shown that Li E Crt(IA) 
for 1 ~ i ~ 3 .. Ll E Crt(IA) , since {#o} VALC[M] E Crt(lA) and Crt(IA) is closed 
under marked concatenation where #1 acts as a marking symbol. 

In[l] it is shown that {ww Iw E r:*} E Crt(IA). Thus, L = {ww Iw E {#o}:E*{#t}} E 
Crt(IA). We can observe that L* E Crt(lA), because the iteration of languages L is 
in a way a marked iteration: after the second #1, the next L starts. By a similar 
argument and the fact that Crt (IA) is closed under right concatenation with regular 
sets, we can see that {#0}:E*{#I}L*{#0}r:*{#1} E Crt(IA). Hence, L2 = L* n 
{#o}r:*{#dL*{#0}r:*{#1} E Crt(lA). 

Now it remains for us to show that L3 E Crt(IA). We sketch the construction. We 
use an iterative array where each cell is split into four subcells, so we can speak of 
four tracks. On the first track we are checking whether the input string has the 
correct format ({ #o} r:* { #1} ) * . The second track computes the factorials according 
to the construction presented in [8]. I.e., the communication cell assumes a designated 
state whenever a factorial has been computed. On the third and fourth track we 
install binary counters (Counterl, Counter2) starting in the communication cell. The 
number of cells used for storing is varying with the size of the number that has to be 
stored. The rightmost cell used is marked with a special symbol. A construction of 
such counters is possible in realtime-lAs due to their two-way communication. While 
reading the input up to the first #1, Counterl is incremented in every step. Whenever 
a factorial has been computed on the second track, Counterl is decremented. When 
Counterlis decremented to zero, we know that Iwl! has been computed. Up to this 
moment, Counter2 is incremented in every time step. Whenever #0 is read, Counter2 
is decremented. When Counter2 is decremented to zero, we know that Iwl! #o's have 
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b d If th ..' put l'S a string in ~*#l the input is accepted, otherwise een rea . e remammg m , 
the input is rejected. Hence, a realtime-IA accepting L3 can be constructed. Thu6 
L[M1 E Crt{IA). 

Now, we can show the following non-recursive trade-offs by combining Theorem 2 and 

Lemma 2. 

Theorem 3 (1) realtime-fA n~c DFA 

. nonrec DA (12) realt~me-fA .:........t P 

(3) PDA n~c realtime-IA 

( 1) z· . LA nonrec Zt' LA "I meart~me- --t rea zme-

(5) realtime-GCA nonrfc realtime-fA 

(6) realtime-fA n~c realtime-GCA 

Proof: (1) and (2) can be shown with LM = INVALC[M) and LM == VALC[MJ, 
respectively. To prove (3) we set LM = INVALC[M)R. LM E CF, since INVALC[M] E 
CF [5] and CF is closed under reversal. Now, we consider LM= VALC[M]R. It is 
shown in [7} that VALC[M} E Crt(OCA). Since Crt(OCA) is closed under reversal, 
we obtain that LM E Crt(OCA) C Clt(CA) = Clt(IA) [2). This proves (4) and (5). 
Finally, (6) can be shown with LM = L[M1. 0 

4 Decidability Questions 

Due to the theorem of Rice [5J, all non-trivial decidability questions for Turing machines 
are undecidable. Furthermore, it is known that certain decidability questions such 
as emptiness, inclusion, equivalence, finiteness, infiniteness, regularity, and context­
freedom are not semidecidable for Turing machines [5}. The fact that VALC[M] is 
in Crt(IA) and the results of Lemma 2 imply that many decidability questions for 
lAs can be reduced to decidability questions for Turing machines. Hence, the above­
mentioned decidability questions are undecidable and not semidecidable for lAs. A 
detailed discussion may be found in [7] where similar results are sh~wn for cellular 
automata. It should be noted that some of the undecidability results for realtime­
lAs were first proven by Seidel in [1O} using reductions of the Post Correspondence 
Problem. The approach discussed here provides simpler proofs and shows the non-. 
semidecidability of the questions. 

Theorem 4 It is not semidecidable for arbitrary realtime-fAs A, A' whether 

• T(A) = 0, T(A) = ~* 
• T(A) is finite, T(A) is infinite 
.f'T(A) = T(A'), T(A) ~ T(A') 

."" 
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• T(A) E REG, T(A) E OF 

In [7] it is shown that there exists no pumping lemma and no minimization algorithm 
for cellular automata. The proofs rely on the fact that for cellular automata infiniteness 
is not semidecidable and emptiness is undecidable. Since both statements are valid for 
lAs, we obtain that there exists no pumping lemma and no minimization algorithm 
for lAs. 

Theorem 5 Crt(IA) and each language class containing Crt(IA) does not possess a 
pumping lemma. 

Theorem 6 For realtime-lAs there is no minimization algorithm converting an arbi­
trary realtime-lA A to a realtime-lA A' which accepts T(A) and has a minimal number 
of states. 

5 Conclusion 

We studied descriptional complexity aspects of iterative arrays. The results known for 
GAs were complemented by similar results for lAs. Moreover, non-recursive trade-offs 
were shown to exist between CAs and lAs operating in real time. 
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