646 research outputs found

    Distributed Consensus to Enable Merging and Spacing of UAS in an Urban Environment

    Get PDF
    This paper presents a novel approach to enable multiple Unmanned Aerial Systems approaching a common intersection to independently schedule their arrival time while maintaining a safe separation. Aircraft merging at a common intersection are grouped into a network and each aircraft broadcasts its arrival time interval to the network. A distributed consensus algorithm elects a leader among the aircraft approaching the intersection and helps synchronize the information received by each aircraft. The consensus algorithm ensures that each aircraft computes a schedule with the same input information. The elected leader also dictates when a schedule must be computed, which may be triggered when a new aircraft joins the network. Preliminary results illustrating the collaborative behavior of the vehicles are presented

    Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments

    Get PDF
    The use of multiple aerial vehicles for autonomous missions is turning into commonplace. In many of these applications, the Unmanned Aerial Vehicles (UAVs) have to cooperate and navigate in a shared airspace, becoming 3D collision avoidance a relevant issue. Outdoor scenarios impose additional challenges: (i) accurate positioning systems are costly; (ii) communication can be unreliable or delayed; and (iii) external conditions like wind gusts affect UAVs’ maneuverability. In this paper, we present 3D-SWAP, a decentralized algorithm for 3D collision avoidance with multiple UAVs. 3D-SWAP operates reactively without high computational requirements and allows UAVs to integrate measurements from their local sensors with positions of other teammates within communication range. We tested 3D-SWAP with our team of custom-designed UAVs. First, we used a Software-In-The-Loop simulator for system integration and evaluation. Second, we run field experiments with up to three UAVs in an outdoor scenario with uncontrolled conditions (i.e., noisy positioning systems, wind gusts, etc). We report our results and our procedures for this field experimentation.European Union’s Horizon 2020 research and innovation programme No 731667 (MULTIDRONE

    Learning-based perception and control with adaptive stress testing for safe autonomous air mobility

    Get PDF
    The use of electrical vertical takeoff and landing (eVTOL) aircraft to provide efficient, high-speed, on-demand air transportation within a metropolitan area is a topic of increasing interest, which is expected to bring fundamental changes to the city infrastructures and daily commutes. NASA, Uber, and Airbus have been exploring this exciting concept of Urban Air Mobility (UAM), which has the potential to provide meaningful door-to-door trip time savings compared with automobiles. However, successfully bringing such vehicles and airspace operations to fruition will require introducing orders-of-magnitude more aircraft to a given airspace volume, and the ability to manage many of these eVTOL aircraft safely in a congested urban area presents a challenge unprecedented in air traffic management. Although there are existing solutions for communication technology, onboard computing capability, and sensor technology, the computation guidance algorithm to enable safe, efficient, and scalable flight operations for dense self-organizing air traffic still remains an open question. In order to enable safe and efficient autonomous on-demand free flight operations in this UAM concept, a suite of tools in learning-based perception and control systems with stress testing for safe autonomous air mobility is proposed in this dissertation. First, a key component for the safe autonomous operation of unmanned aircraft is an effective onboard perception system, which will support sense-and-avoid functions. For example, in a package delivery mission, or an emergency landing event, pedestrian detection could help unmanned aircraft with safe landing zone identification. In this dissertation, we developed a deep-learning-based onboard computer vision algorithm on unmanned aircraft for pedestrian detection and tracking. In contrast with existing research with ground-level pedestrian detection, the developed algorithm achieves highly accurate multiple pedestrian detection from a bird-eye view, when both the pedestrians and the aircraft platform are moving. Second, for the aircraft guidance, a message-based decentralized computational guidance algorithm with separation assurance capability for single aircraft case and multiple cooperative aircraft case is designed and analyzed in this dissertation. The algorithm proposed in this work is to formulate this problem as a Markov Decision Process (MDP) and solve it using an online algorithm Monte Carlo Tree Search (MCTS). For the multiple cooperative aircraft case, a novel coordination strategy is introduced by using the logit level-kk model in behavioral game theory. To achieve higher scalability, we introduce the airspace sector concept into the UAM environment by dividing the airspace into sectors, so that each aircraft only needs to coordinate with aircraft in the same sector. At each decision step, all of the aircraft will run the proposed computational guidance algorithm onboard, which can guide all the aircraft to their respective destinations while avoiding potential conflicts among them. In addition, to make the proposed algorithm more practical, we also consider the communication constraints and communication loss among the aircraft by modifying our computational guidance algorithms given certain communication constraints (time, bandwidth, and communication loss) and designing air-to-air and air-to-ground communication frameworks to facilitate the computational guidance algorithm. To demonstrate the performance of the proposed computational guidance algorithm, a free-flight airspace simulator that incorporates environment uncertainty is built in an OpenAI Gym environment. Numerical experiment results over several case studies including the roundabout test problem show that the proposed computational guidance algorithm has promising performance even with the high-density air traffic case. Third, to ensure the developed autonomous systems meet the high safety standards of aviation, we propose a novel, simulation driven approach for validation that can automatically discover the failure modes of a decision-making system, and optimize the parameters that configure the system to improve its safety performance. Using simulation, we demonstrate that the proposed validation algorithm is able to discover failure modes in the system that would be challenging for humans to find and fix, and we show how the algorithm can learn from these failure modes to improve the performance of the decision-making system under test

    Nonlinear Model Predictive Control for Multi-Micro Aerial Vehicle Robust Collision Avoidance

    Full text link
    Multiple multirotor Micro Aerial Vehicles sharing the same airspace require a reliable and robust collision avoidance technique. In this paper we address the problem of multi-MAV reactive collision avoidance. A model-based controller is employed to achieve simultaneously reference trajectory tracking and collision avoidance. Moreover, we also account for the uncertainty of the state estimator and the other agents position and velocity uncertainties to achieve a higher degree of robustness. The proposed approach is decentralized, does not require collision-free reference trajectory and accounts for the full MAV dynamics. We validated our approach in simulation and experimentally.Comment: Video available on: https://www.youtube.com/watch?v=Ot76i9p2ZZo&t=40

    Implicitly Coordinated Detect and Avoid Capability for Safe Autonomous Operation of Small UAS

    Get PDF
    As the airspace becomes increasingly shared by autonomous small Unmanned Aerial Systems (UAS), there would be a pressing need for coordination strategies so that aircraft can safely and independently maneuver around obstacles, geofences, and traffic aircraft. Explicitly coordinating resolution strategies for small UAS would require additional components such as a reliable vehicle-to-vehicle communication infrastructure and standardized protocols for information exchange that could significantly increase the cost of deploying small UAS in a shared airspace. This paper explores a novel approach that enables multiple aircraft to implicitly coordinate their resolution maneuvers. By requiring all aircraft to execute the proposed approach deterministically, it is possible for all of them to implicitly agree on the region of airspace each will be occupying in a given time interval. The proposed approach lends itself to the construction of a suitable feedback mechanism that enables the real-time execution of an implicitly conflict-free path in a closed-loop manner dealing with uncertainties in aircraft speed. If a network infrastructure is available, the proposed approach can also exploit the benefits of explicit information
    corecore