6 research outputs found

    Delay and Peak-Age Violation Probability in Short-Packet Transmissions

    Get PDF
    This paper investigates the distribution of delay and peak age of information in a communication system where packets, generated according to an independent and identically distributed Bernoulli process, are placed in a single-server queue with first-come first-served discipline and transmitted over an additive white Gaussian noise (AWGN) channel. When a packet is correctly decoded, the sender receives an instantaneous error-free positive acknowledgment, upon which it removes the packet from the buffer. In the case of negative acknowledgment, the packet is retransmitted. By leveraging finite-blocklength results for the AWGN channel, we characterize the delay violation and the peak-age violation probability without resorting to approximations based on large deviation theory as in previous literature. Our analysis reveals that there exists an optimum blocklength that minimizes the delay violation and the peak-age violation probabilities. We also show that one can find two blocklength values that result in very similar average delay but significantly different delay violation probabilities. This highlights the importance of focusing on violation probabilities rather than on averages.Comment: 5 pages, 5 figures, accepted for IEEE International Symposium on Information Theory 2018, Edit: corrected peak-age of information formul

    Reliable Transmission of Short Packets through Queues and Noisy Channels under Latency and Peak-Age Violation Guarantees

    Get PDF
    This work investigates the probability that the delay and the peak-age of information exceed a desired threshold in a point-to-point communication system with short information packets. The packets are generated according to a stationary memoryless Bernoulli process, placed in a single-server queue and then transmitted over a wireless channel. A variable-length stop-feedback coding scheme---a general strategy that encompasses simple automatic repetition request (ARQ) and more sophisticated hybrid ARQ techniques as special cases---is used by the transmitter to convey the information packets to the receiver. By leveraging finite-blocklength results, the delay violation and the peak-age violation probabilities are characterized without resorting to approximations based on large-deviation theory as in previous literature. Numerical results illuminate the dependence of delay and peak-age violation probability on system parameters such as the frame size and the undetected error probability, and on the chosen packet-management policy. The guidelines provided by our analysis are particularly useful for the design of low-latency ultra-reliable communication systems.Comment: To appear in IEEE journal on selected areas of communication (IEEE JSAC

    Spatial-Temporal Routing for Supporting End to End Hard Deadlines in Multi-hop Networks

    Get PDF
    abstract: We consider the problem of routing packets with end-to-end hard deadlines in multihop communication networks. This is a challenging problem due to the complex spatial-temporal correlation among flows with different deadlines especially when significant traffic fluctuation exists. To tackle this problem, based on the spatial-temporal routing algorithm that specifies where and when a packet should be routed using concepts of virtual links and virtual routes, we proposed a constrained resource-pooling heuristic into the spatial-temporal routing, which enhances the ``work-conserving" capability and improves the delivery ratio. Our extensive simulations show that the policies improve the performance of spatial-temporal routing algorithm and outperform traditional policies such as backpressure and earliest-deadline-first (EDF) for more general traffic flows in multihop communication networks.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    A New Competitive Ratio for Network Applications with Hard Performance Guarantee

    Get PDF
    Online algorithms are used to solve the problems which need to make decisions without future knowledge. Competitive ratio is used to evaluate the performance of an online algorithm. This ratio is the worst-case ratio between the performance of the online algorithm and the offline optimal algorithm. However, the competitive ratios in many current studies are relatively low and thus cannot satisfy the need of the customers in practical applications. To provide a better service, a practice for service provider is to add more redundancy to the system. Thus we have a new problem which is to quantify the relation between the amount of increased redundancy and the system performance. In this dissertation, to address the problem that the competitive ratio is not satisfactory, we ask the question: How much redundancy should be increased to fulfill certain performance guarantee? Based on this question, we will define a new competitive ratio showing the relation between the system redundancy and performance of online algorithm compared to offline algorithm. We will study three applications in network applications. We propose online algorithms to solve the problems and study the competitive ratio. To evaluate the performances, we further study the optimal online algorithms and some other commonly used algorithms as comparison. We first study the application of online scheduling for delay-constrained mobile offloading. WiFi offloading, where mobile users opportunistically obtain data through WiFi rather than through cellular networks, is a promising technique to greatly improve spectrum efficiency and reduce cellular network congestion. We consider a system where the service provider deploys multiple WiFi hotspots to offload mobile traffic with unpredictable mobile users’ movements. Then we study online job allocation with hard allocation ratio requirement. We consider that jobs of various types arrive in some unpredictable pattern and the system is required to allocate a certain ratio of jobs. We then aim to find the minimum capacity needed to meet a given allocation ratio requirement. Third, we study online routing in multi-hop network with end-to-end deadline. We propose reliable online algorithms to schedule packets with unpredictable arriving information and stringent end-to-end deadline in the network
    corecore