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ABSTRACT

Online algorithms are used to solve the problems which need to make decisions

without future knowledge. Competitive ratio is used to evaluate the performance

of an online algorithm. This ratio is the worst-case ratio between the performance

of the online algorithm and the offline optimal algorithm. However, the compet-

itive ratios in many current studies are relatively low and thus cannot satisfy the

need of the customers in practical applications. To provide a better service, a prac-

tice for service provider is to add more redundancy to the system. Thus we have

a new problem which is to quantify the relation between the amount of increased

redundancy and the system performance.

In this dissertation, to address the problem that the competitive ratio is not

satisfactory, we ask the question: How much redundancy should be increased to

fulfill certain performance guarantee? Based on this question, we will define a

new competitive ratio showing the relation between the system redundancy and

performance of online algorithm compared to offline algorithm. We will study

three applications in network applications. We propose online algorithms to solve

the problems and study the competitive ratio. To evaluate the performances, we

further study the optimal online algorithms and some other commonly used algo-

rithms as comparison.

We first study the application of online scheduling for delay-constrained mo-

bile offloading. WiFi offloading, where mobile users opportunistically obtain data

through WiFi rather than through cellular networks, is a promising technique to

greatly improve spectrum efficiency and reduce cellular network congestion. We

consider a system where the service provider deploys multiple WiFi hotspots to
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offload mobile traffic with unpredictable mobile users’ movements. Then we study

online job allocation with hard allocation ratio requirement. We consider that jobs

of various types arrive in some unpredictable pattern and the system is required to

allocate a certain ratio of jobs. We then aim to find the minimum capacity needed

to meet a given allocation ratio requirement. Third, we study online routing in

multi-hop network with end-to-end deadline. We propose reliable online algo-

rithms to schedule packets with unpredictable arriving information and stringent

end-to-end deadline in the network.
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1. INTRODUCTION

A major theme of this thesis is the trade-off between system resource augmen-

tation and performance guarantee. We explore online scheduling problems in dif-

ferent network applications and quantify how much system redundancy is needed

to achieve certain required performance.

Offline algorihtm makes decision when the entire inputs are available. In con-

trast, when inputs are given one by one and decision is needed upon each input,

we use online algorithm to solve the problem. It is a process which makes decisions

without any knowledge of future events. Competitive ratio is used to evaluated the

performance of an online algorithm. It is the worst-case ratio between the perfor-

mance of an online algorihtm and the offline optimal algorithm. In other words,

the online algorithm guarantees such competitive ratio for any arbitrary inputs.

While the competitive ratios in existing studies reveal the performance of their

proposed online algorithms, they are still not sufficient to fullfill the requirement

in many practical applications. In most practical network applications, the service

providers demand a highly reliable system. But none of these studies can achieve

such performance. To improve the performance to meet the stringent requirement

of network applications, the current practice is to increase system redundancy,

since online algorithm cannot achieve better performance without knowing future

inputs. Thus, besides studying the competitive ratio of online algorithms, we look

further to the following question: How much redundancy increasement is needed

to achieve certain required system performance? To answer this question, we de-

fine a new competitive ratio which quantifies the relationship between the system

redundancy and system performance. In different applications, we propose online
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algorithms and use this new competitive ratio to analyze them. We also com-

pare our online algorithms with other commonly used algorithms. And by using

this new competitive ratio, it is easy to compare how much system redundancy is

needed for each different algorithm to guarantee the same system performance.

In this thesis, we study three network applications including online schuedul-

ing for delayed mobile offloading, online job allocation with hard allocation ratio

requirement, and online routing in multi-hop netowrk with end-to-end deadline.

In Section 2, we study the application of delayed mobile offloading. The goal

is to offloading traffic through WiFi to reduce the mobile traffic. We consider the

downlink scenario where each mobile user needs to obtain some data from service

provider before a certain deadline. There are multiple WiFi access points (AP)

in the system, and each AP makes decision on which user to serve. Users are

moving around in the system with unknown pattern, which result in change of

WiFi service AP and service rate. We aim to use WiFi as much as possible, and

will only use cellular networks to obtain their needed data after their respective

deadlines. We design scheduling policies for WiFi APs that maximize the amount

of data offloaded to WiFi. In order to reduce cellular network traffic, the service

providers are willing to increase the capacity of WiFi to meet a hard requirement

on the amount of data offloaded by WiFi. We then study the amount of capacity

needed to provide such WiFi offload guarantees for online scheduling policies.

In section 3, we study the application of online job allocation. Such a prob-

lem exists in many emerging Internet services, such as YouTube, Netflix, etc. Each

server only serve certain types of jobs and has a limited capacity. When a job ar-

rives, it reveals the subset of servers which can serve this job and only one server

will serve the job. The system makes decision on which server should the job be

allocated to. A server can provide service to a new job as long as it has not reached
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its capacity. If no server can process this job, the job is dropped, which can signif-

icantly impact user satisfaction. The job arrival pattern is unknown and unable to

predict, thus we need online policy which makes decisions solely based on current

system state. Current online algorithms cannot provide satisfactory allocation ra-

tio. To meet the users’ demand, service provider is willing to add redundancy and

increase the capacity of data centers to accommodate unpredictable patterns of job

arrivals. We focus on the problem of how much capacity is needed to guarantee

the required job allocation ratios. We propose two simple online algorithms and

derive closed-form expressions for their performance. We prove that to achieve

same allocation ratio, no online policy can guarantee to use less capacity than our

proposed policies.

Next, we consider the problem with job arrival and departure. In this setting,

jobs arrive at arbitrary time in a slotted time system. Each job has a deadline

which is revealed upon arrival. Each server has a limited serving capacity and

buffer capacity. A job can be allocated to server when the server can serve this

type of job and server buffer is not full. Jobs that are allocated to buffers or not

served before deadlines are dropped from the system. We propose an online policy

and study its performance with augmentation of both serving capacity and buffer

capacity.

In section 4, we study the application of multi-hop network with end-to-end

deadline. In a multi-hop network, packets arrive the network from any node at

any time. Upon its arrival, it reveal the destination node and its deadline. When

packets arrival patterns are unknown in advance, it is very difficult to provide per-

formance guarantee within the constraint of end-to-end delay. A scheduling for an

arriving packet is a sequence of hops and the corresponding time to use the hops.

Each decision on hop-time pair has impact on the future decisions of hop-time
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pairs. Current studies cannot provide a good packt deliver rate, especially when the

network size is large. To maintain desirable performance using online algorithms,

current practice is to add redundancy into the system. We increase the capacity

of each hop and determine the amount of capacity redundancy needed to provide

the desirable performance guarantees. We propose an centralized low complexity

online algorithm which achieves desirable performance guarantees with a small

amount of redundancy. Also we propose a heuristic distributed implementation

of our centralized online algorithm. In the distributed algorithm, each node has

real-time link information of its connected links. The network information on all

links is broadcasted periodically. Source node suggests a scheduling decision based

on the previous received information. During the packet transmitting, the route

selected by the source node is fixed, but each node still has certain freedom to

choose transmit time based on the real-time link information.

The main issue we address in this thesis is: how much system resource we need

so that we can guarantee the system performance. We propose efficient online al-

gorithms and compare the performance with optimal online policies and commonly

used policies. We have shown that our policies can achieve the optimal bound and

also outperform commonly used policies.
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2. ONLINE SCHEDULING FOR DELAYED MOBILE OFFLOADING*

2.1 Problem Overview

With the increasing number of smart phone users subscribing to 3G/4G net-

works, the mobile data traffic grows rapidly in recent years. The global mobile

data traffic growth rate in 2013 exceeds 81%, and is expected to grow at a 61%

compound annual growth rate (CAGR) from 2013 to 2018 [1]. Cellular networks

face the challenge of serve this great increase in data consumption.

Since interference between links is the major obstacle to dramatically increasing

the capacity of wireless networks, many studies have been proposed to migrate

traffic from the high-power and high-interference macro base stations to networks

with smaller transmission power and interference, such as femtocells [2], WiFi [3],

and mobile-to-mobile opportunistic networks [4]. Offloading traffic through WiFi

has been shown to be an effective way to reduce the mobile traffic [5] [3]. WiFi is

faster and uses less energy to transmit data when there is a connection [5]. Thus

WiFi can significantly reduce the mobile traffic through macro base stations in the

next several years. For instance, 45% of the global mobile traffic is offloaded using

WiFi in 2013, and the rate is estimated to raise to 52% in 2018 [1].

In this section, we study the problem of using WiFi for delayed mobile offload-

ing [6–8].In delayed mobile offloading, a large amount of mobile users need to ob-

tain delay-tolerant data,such as Dropbox synchronization and App updates, from

service providers. Each mobile user sets a deadline for its data, and opportunis-

tically obtains these data through WiFi whenever it is connected to WiFi access

*Reprinted with permission from "Online scheduling for delayed mobile offloading" by Han 
Deng, I-Hong Hou, 2015, IEEE INFOCOM; from "On the capacity-performance trade-off of on-line 
policy in delayed mobile offloading" by Han Deng, I-Hong Hou, © 2017, IEEE Transactions on 
Wireless Communications. [9, 10]

5



points (APs), so as to reduce traffic on cellular networks. Due to its own mobility

patterns, a mobile user may only have intermittent WiFi connections. If a user fails

to obtain all its data by the deadline, it downloads the remaining data through

cellular networks [9,10].

When multiple users are connected to one WiFi AP, the AP makes decision

on which user to serve. We aim to design scheduling policies for WiFi APs that

maximize the amount of data offloaded to WiFi. We focus on WiFi offloading

because it has been extensively deployed. However, all our results can be directly

applied to other means of mobile offloading, such as offloading through femto cell

networks.

We show that the problem of maximizing the amount of offloaded data can be

formulated as a linear programming problem, and an offline policy can solve it with

standard linear programming techniques. However, such a formulation requires

the knowledge of mobility patterns of all mobile users in advance. Instead, we

study the performance of online scheduling polices that make scheduling decisions

only based on system history and the current locations of users. When all APs

use the same transmission rates for any connected users, we show that any work-

conserving scheduling policy is able to offload at least 50% as much data as the

optimal offline policy. On the other hand, when APs may use different transmission

rates for different users based on their individual channel qualities, we propose a

simple online algorithm that guarantees to deliver at least e−1
e

as much data as the

optimal offline policy when the requested data amount is large , where e is Euler’s

constance.

A fraction of e−1
e

of data offloaded to WiFi may not be sufficient to reduce the

congestion. Hence, we further investigate the case when wireless service providers

have a hard requirement on the amount of data offloaded to WiFi, so as to re-
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duce cellular network congestion, and they are willing to increase the capacity of

WiFi to meet this requirement. We then study the amount of capacity needed to

provide offload guarantees for online scheduling policies. We propose a simple

online scheduling policy and prove that, in order to offload at least 1
β

as much

data as the optimal offline policy, our policy needs to increase the capacity by ap-

proximated 1
2(β−1)

. The value of β is chosen by the service provider based on its

required offloading guarantees. On the other hand, even when APs only use a

fixed transmission rate, the other commonly-used round-robin, max-weight, and

proportional fair policies need to increase the capacity by at least 1
β−1

to provide

the same guarantee. In other words, our policy only needs half as much capacity

to provide the same performance guarantee. We further prove that no policy can

guarantee offloading 1
β

data with less than 1
2(β−1)

capacity, and therefore our policy

achieves the optimal trade-off between capacity and performance.

Theoretical analysis only shows that the worst-case performance of our policies

is better than that of the three commonly-used policies. We further conduct simula-

tions to evaluate the performance of scheduling policies for a randomly generated

system. Simulation results show that our policies still outperform the other three

on average. The fact that our policy is significantly better than these widely used

policies in WiFi scheduling, in terms of both theoretical bounds and simulation

results, further highlights that delayed WiFi offloading is fundamentally different

problem from traditional WiFi scheduling.

2.2 Related Work

Many experimental studies have shown that mobile offloading is promising.

Gass and Diot [11] compare WiFi and 3G network through experiments and show

that WiFi is able to download more data than 3G network even if though con-
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necting time is shorter. Balasubramanian et al. [12] study the availability of 3G

and WiFi network from moving cars in three cities, and find that WiFi suffers

greatly from limited connectivitly. They then propose a system called Wiffler to

significantly improve the amount of offloaded traffic. Lee et al. [3] study the WiFi

offload performance through an experiment with 100 iPhone users in Seoul, and

observe that WiFi can upload about 65% of the traffic. Mota et al. [13] study the

WiFi hotspots availability during bus routes in Paris, and show that current WiFi

in Paris can offload up to 30% of mobile traffic. Additional work such as [14, 15]

study the AP side. Dimatteo et al. [14] study how many APs are required to cover

a metropolitan area offloading. Trestian et al. [15] propose to upgrade the net-

work capacity in a selected number of locations, called Drop Zone. They design

infrastructure placement algorithm which tries to reduce the AP number. It shows

that by upgrading less than 1000 infrastructures across US will upload 50% of data.

However, there is still no research on upgrading the APs to guarantee the offload

data ratio.

Surveys in [16,17] provide some results on how much time users are willing to

wait for different applications. Lee et al. [18] analyze how much economy benefit

can be generate by delayed offloading and uses real traces for numerical analysis.

Mehmeti and Spyropoulos [6] use a queueing model for delayed mobile offloading

and analyze the mean delay as a function of number of users and AP availability.

Cai and etc. [7] propose an mechanism to encourage users to participate in delayed

WiFi offloading by reward. Thus the delayed mobile offloading problem is actually

worth considering.

An important challenge for mobile offloading is the unknown mobility patterns

of mobile users. There are several studies that focus on deriving models for mobil-

ity patterns [19–21]. Cheung and Huang [8] study the WiFi offloading problem by

8



formulating the problem as a finite-horizon Markov decision process by using the

prediction in [21]. Li et al. [22] study using a small set of mobile users to offload

data, and propose a policy based on submodular optimization. Whitbeck et al. [23]

consider using offloading to reduce the burden in broadcasting messages. Hou et

al. [24] propose a transport layer protocol to integrate 3G and WiFi networks for

vehicular network access. Barbieri et al. [25] propose a system design for mobile

offloading with pico base stations. Bennis et al. [26] and Singh et al. [27] con-

sider the problem of network self-organizing for offloading traffic. Bilgir Yetim and

Martonosi [28] propose offline scheduling policies for WiFi offloading. These stud-

ies assume that user mobility follows some well-defined random process. In real

life, user mobility may be non-ergodic, and these studies cannot be applied. In con-

trast, our work aims to maximize the total offloaded data without any assumptions

on user mobility.

2.3 System Model

We consider a system where mobile users move within the area of a cellular

network. In order to reduce the congestion of the cellular network, the cellular

operator deploys a number of WiFi hotspots within the region. We use I to denote

the set of mobile users andM to denote the set of WiFi APs. Mobile users may enter

the system at different times and at different locations. Upon entering the system,

a mobile user i specifies the amount of data, denoted by Ci, that it needs to obtain,

and a deadline Ti. The mobile user moves around the system and tries to obtain

data from WiFi APs whenever possible. At time Ti, the mobile user downloads all

the remaining data from the cellular network directly.

We assume that time is slotted and numbered as t = 1, 2, . . . . The location of

a mobile user may change from time to time and it determines the connectivity
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and channel capacity between APs and itself. Since APs do not have users’ location

information in advance, channel conditions are unpredictable. Each AP makes

scheduling decisions based on the past transmission history and current channel

conditions.

We use Kimt to denote the channel capacity between AP m and mobile user i

at time t. If i cannot be connected to m at time t, we have Kimt = 0. There have

been some advancements in multi-homing, where a mobile user can be connected

to multiple APs simultaneously. Our model can easily accommodate multi-homing

by allowing a user i to have Kimt > 0 for multiple APs. We assume each user can

be connected to at most H APs at any given time.

Also, since i cannot download any data prior to its entrance, and it will use the

cellular network to download data after its deadline, we set Kimt = 0 for all t prior

to i’s entrance or after its deadline. We normalize the system so that 0 ≤ Kimt ≤ 1
H

for all i,m, t. Therefore, at each time t, each client can at most obtain one unit of

data.

Once client i is connected to AP m at the beginning of time slot t, the time slot

is fully occupied by client i, regardless whether or not AP m is transmitting data

to client i. AP m employs some scheduling policy to determine the portion of time

it spends transmitting to mobile user i during time slot t, denoted by Ximt. The

amount of data that mobile user i obtains from AP m at time t is then KimtXimt.

Our goal is to design a scheduling policy that maximizes the total amount of data

that are delivered through WiFi, which, in turn, minimizes the amount of data

through the congested cellular network. Since each mobile user i needs to obtain

Ci data, we formulate the following linear programming problem:
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Offload:

Max
∑

imt

XimtKimt (2.1)

s.t.
∑

mt

XimtKimt ≤ Ci, ∀i ∈ I, (2.2)

∑

i

Ximt ≤ 1, ∀m ∈M, t, (2.3)

Ximt ≥ 0, ∀i ∈ I, m ∈M, t. (2.4)

We use Γopt to denote the optimal value of
∑

imt XimtKimt in the above problem.

While this problem can be solved by standard linear programming techniques, do-

ing so requires the knowledge of the entrance times and locations of all mobile

users at time 0, which is impractical. Instead, we aim to derive online policies that

choose the values of Ximt solely based on system history up to time t. We use η to

denote an online policy. We let Γη(1) be the value of
∑

imt XimtKimt under policy

η, given Kimt and Ci.

We assume that the cellular operator may be able to increase the capacity of

WiFi hotspots by, for example, upgrading APs or obtaining more spectrum. When

the capacity of WiFi hotspots is increased by R, the channel capacity between i and

m at time t becomes RKimt. Equivalently, we can also describe the system as one

with channel capacity Kimt, but the AP can spend an amount of R time transmitting

to clients in each slot, that is,
∑

i Ximt ≤ R. Therefore, we consider the following

linear programming problem when the capacity is increased by R:
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Offload(R):

Max
∑

imt

XimtKimt (2.5)

s.t.
∑

mt

XimtKimt ≤ Ci, ∀i ∈ I, (2.6)

∑

i

Ximt ≤ R, ∀m ∈ M, t, (2.7)

Ximt ≥ 0, ∀i ∈ I, m ∈M, t. (2.8)

Let Γη(R) be the value of
∑

imtXimtKimt for the Offload(R) problem under

policy η. We evaluate the performance of η by its competitive ratio, which is defined

slightly differently from most existing literature.

Definition 1. A policy η is said to be (R, θ)-competitive if Γopt/Γη(R) ≤ θ, as mini∈I Ci →

∞, for all systems.

We note that when R = 1, the corresponding β becomes the competitive ratio

commonly defined in existing literature. Our definition is richer in that it charac-

terizes the amount of capacity needed to provide performance guarantees. Since

the very reason of using WiFi offloading is that the cellular network is congested,

the operator may have a hard requirement on the amount of data being offloaded

through WiFi, and it is willing to purchase better equipments and more spectrum

to achieve this requirement. In this case, it needs to know how much capacity is

needed. Suppose the optimal offline policy can offload all data through WiFi, and

the operator requires a portion 1/θ of the data to be offloaded, our definition then

reveals that the capacity needs to be increased by R so that the employed policy is

(R, θ)-competitive.

We summarize the notations we used in the section in Table 2.1.
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Table 2.1: Notations
Reprint with permission from [10].

I Mobile user set

i Single user

M WiFi AP set

m Single AP

t Time slot

Kimt
Normalized channel capacity between
AP m and user i at time t

Ximt Portion of time AP m spends on user i at time slot t
H The maximum number of APs that a user can connect to

Ci Data amount that user i needs

Ti Time that user i switch from WiFi to cellular network

Ymt, Zi Dual variables

η Policy

R Capacity increasing rate

Γopt Optimal value of (2.1) in Offload

Γη(1) Value of (2.1) in Offload under policy η
Γη(R) Value of (2.5) in Offload(R) under policy η

θ Value of max(Γopt/Γη(R))

2.4 Preliminary

This section introduces some basic theorems that will be used.

A standard form of linear programming problem (LP) is:

(P ) : Max

n
∑

i=1

cixi,

s.t.
n

∑

i=1

aijxi ≤ bj , ∀1 ≤ i ≤ n,

xi ≥ 0,
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and its dual is

(D) : Min

m
∑

j=1

bjyj,

s.t.
m
∑

j=1

aijyj ≥ ci, ∀1 ≤ j ≤ m,

yj ≥ 0.

We have the following two fundamental theorems:

Theorem 1 (Weak Duality [29]). Let {xi} ∈ Rn and {yj} ∈ Rm satisfy the con-

straints of the primal (P ) and the dual (D) LPs, respectively, then:

n
∑

i=1

cixi ≤
m
∑

j=1

bjyj.

Theorem 2 (Complementary Slackness [29]). Let {xi} ∈ Rn and {yi} ∈ Rm satisfy

the constraints of the primal (P ) and dual (D) LPs, respectively. Further, {xi} and

{yi} have the following properties:

• If x > 0, then ci ≤
∑m

j=1 aijyi ≤ β · ci for some β > 1;

• If y > 0, then
∑n

i=1 aijxi = bj;

Then:
m
∑

j=1

bjyj ≤ β ·
n

∑

i=1

cixi.
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2.5 Competitive Ratio with Unit Capacity

In this section, we discuss the special case with R = 1. We first show that when

Kimt is either 0 or 1, any work-conserving policy is (1, 2)-competitive. We then

study the case when Kimt can be any real number in [0, 1]. We propose a simple

online scheduling policy and prove that it is (1, e
e−1

)-competitive.

2.5.1 Performance of Work-Conserving Policy

under On-Off Channels

We first consider the case where Kimt is either 0 or 1, which is usually referred

as On-Off channels, and we say that client i is connected to AP m at time t if Kimt =

1. We study the performance of work-conserving scheduling policy, under which

each AP m selects to serve one connected client that has yet to receive all the data,

as long as there is one, and only idles when all connected clients have already

received all their data.

Theorem 3. Any work-conserving policy is (1, 2)-competitive with ON-Off channels.

Proof. The offload problem is shown as (2.1) to (2.4), and its dual is

(D) : Min
∑

mt

Ymt +
∑

i

CiZi, (2.9)

s.t. Ymt +KimtZi ≥ Kimt, ∀i,m, t, (2.10)

Ymt ≥ 0, ∀m, t, (2.11)

Zi ≥ 0, ∀i, (2.12)

where Ymt is the dual variable for each constraint in (2.2), and Zi is the dual

variable for each constraint in (2.3).

We set Ximt = 1 if client i is served by AP m at time slot t, and Ximt = 0
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otherwise. We set Ymt = 1 if AP m schedules a client at time t, and Ymt = 0 if m

idles at t. We set Zi = 1 if client i have received all its data before its deadline, and

Zi = 0 otherwise.

We will use Theorem 2 to establish the theorem. First, we show that Ximt, Ymt,

and Zi satisfy the constraints (2.2) (2.3), and (4.10). (2.2) and (2.3) are satisfied

because each AP schedules at most one client at any time, and it never schedules

clients that have already received all their data.

Given i,m, t, if Kimt = 0, then (4.10) is satisfied since Ymt and Zi are non-

negative. (4.10) also holds if Kimt = 1 and Ymt = 1. Finally, if Kimt = 1 and

Ymt = 0, i.e., AP m does not schedule any client at time t, then all clients connected

to AP m at time t must have already received all their data. Hence, Zi = 1 and

(4.10) still holds.

Next, we verify the complementary slackness conditions. If Zi > 0, then client i

obtains all its data, and
∑

mtXimtKimt = Ci. If Ymt > 0, then AP m schedules some

client at time t, and
∑

iXimt = 1. In addition, if Ximt > 0, then Kimt = 1. Thus,

2Kimt = 2 ≥ Ymt +KimtZi ≥ Kimt. By Theorem 2, we know
∑

mt Ymt +
∑

i CiZi ≤

2 ·∑imtXimtKimt. Further, Γopt ≤
∑

mt Ymt +
∑

i CiZi, by Theorem 1, and hence

any work-conserving policy is (1, 2)-competitive.

2.5.2 Online Algorithm for General Channels

We now discuss the general case in which Kimt can be any real number between

0 and 1. We propose an online scheduling algorithm and prove that it is (1, e
e−1

)-

competitive.

In our algorithm, APs keep track of and update a variable Zi for each client

i. Zi is initially set to 0. If each time t, each AP m chooses to serve the client

i that maximizes Kimt(1 − Zi), and delivers Kimt data to the client. Each time
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client i obtains Kimt data from an AP m, Zi will be updated as Zi(1 +
Kimt

Ci
) +

Kimt

(d− 1)Ci
. At time t, if there are multiple APs that serve i at the same time t, which

is possible under multi-homing, Zi will be updated as Zi(1 +

∑

m:m serves i Kimt

Ci

) +

∑

m:m serves iKimt

(d− 1)Ci
. Here d is a value only used in calculation and it is set to be

(1 + 1/Cmin)
Cmin . We show the value chosen for d is reasonable in proof of Lemma

1. AP m broadcasts the updated Zi to all APs. Algorithm 1 formally describes the

algorithm. In Algorithm 1, we also introduce two other variables, Ximt and Ymt.

These two variables are only used to establish the competitive ratio, and are not

needed in actual implementations.

In Algorithm 1, each of Ymt and Ximt is only updated at time slot t, while Zi

may be updated in many different time slots. We note that the value of Zi is non-

decreasing in each update.

At time t, it is possible that i already obtains most of its data and only needs

less than
∑

m:m serves user iKimt data to complete its download. In this case, APs use

only a fraction of a time slot to deliver all remaining data that i needs. Step 14

addresses this case, and the total amount of offloaded data is
∑

imt XimtKimt.

Lemma 1. Let Zi
(t) be the value of Zi at the end of time slot t. Then,

Z
(t)
i ≥ (

1

d− 1
)(d

∑
m,s≤t

XimtKimt
Ci − 1). (2.13)

Proof. We prove (2.13) by induction on t.

When t = 0, Z
(t)
i = 0 = ( 1

d−1
)(d0 − 1), and (2.13) holds.

Suppose (2.13) holds for all time before s. Consider time t = s + 1. If i is not
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Algorithm 1 Policy for unit capacity

1: Initially, Ximt = 0, Ymt = 0, Zi = 0.

2: Cmin ← mini Ci, d← (1 + 1/Cmin)
Cmin .

3: for each time slot t do

4: for each AP m do
5: i∗m ← argmax

i
{
∑

m:m serves iKimt(1− Zi)}.
6: if Ki∗mmt(1− Zi∗m) > 0 then
7: Ymt ← Ki∗mmt(1− Zi∗m).
8: Xi∗mmt ← 1.
9: end if

10: end for
11: for each client i do

12: Zi ← Zi(1 +

∑

m:m serves i Kipt

Ci
) + 1

∑

m:m serves i Kipt

(d− 1)Ci
.

13: if
∑

p,s≤tXipsKips > Ci then

14: Ximt ←
Ci −

∑

p,s<tXipsKips
∑

p:p serves i Kipt
, ∀ m servers i

15: end if

16: end for
17: end for

scheduled at s + 1, Ximt = 0 for all m at t = s+ 1 and Z
(s+1)
i = Z

(s)
i . Hence (2.13)

holds.

On the other hand, if i is scheduled by AP p at time s+ 1,

Zi
(s+1)

=Zi
(s)(1 +

∑

p:p serves i Kip(s+1)

Ci
) +

∑

p:p serves i Kip(s+1)

(d− 1)Ci

≥ 1

(d− 1)
(d

∑
m,t≤s

XimtKimt
Ci − 1)(1 +

∑

p:p serves i Kip(s+1)

Ci
)

+

∑

p:p serves i Kip(s+1)

(d− 1)Ci

=
1

(d− 1)
[d

∑
m,t≤s

XimtKimt
Ci (1 +

∑

p:p serves i Kip(s+1)

Ci
)− 1]
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It is easy to verify that ln(1 + x)/x is decreasing when x ∈ [0, 1]. Thus (1 + y) ≥

(1 + x)(y/x) for x ≥ y. Let y =

∑

p:p serves i Kip(s+1)

Ci
and x =

1

Cmin
. We then have

Zi
((s+1)

≥
[(d

∑
m,t≤s

XimtKimt
Ci )(1 + 1

Cmin
)

∑
p:p serves i Kip(s+1)Cmin

Ci − 1]

(d− 1)

Recall that the value of d is (1 + 1/Cmin)
Cmin . Thus

Zi
(s+1) ≥ 1

(d− 1)
(d

∑
m,t≤s+1

XimtKimt
Ci − 1),

and (2.13) holds. By induction, (2.13) holds for all t.

Theorem 4. Algorithm 1 is (1, e
e−1

)-competitive.

Proof. The offload problem and and its dual are stated as (2.1) to (2.4), and (4.9)

to (4.12), respectively. We prove Algorithm 1 is (1, e
e−1

)-competitive by the follow-

ing steps:

First, we show that the dual solutions {Ymt} and {Zi} satisfy constraints (4.10)

to (4.12).

Since i∗m ← argmax
i
{Kimt(1− Zi)}, we have:

Ki∗mmt(1− Zi∗m) ≥ Kimt(1− Zi), ∀i,m, t.
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Further, by step 7 in Algorithm 1, we have:

Ymt +KimtZi −Kimt

≥Ki∗mmt(1− Zi∗m) +KimtZi −Kimt

≥Kimt(1− Zi) +KimtZi −Kimt = 0.

Thus (4.10) is satisfied. It is easy to check that Ymt and Zi are non-negative, and

(4.11) and (4.12) hold.

Second, we show that Ximt satisfy constraints (2.2) to (2.4). Step 14 ensures

that (2.2) holds. By Lemma 1, Z
(t)
i < 1 only when i does not receive all its data at

time t. Hence, Ximt is updated only if the total received data of client i is less than

its Ci, which is
∑

p,s<tXipsKips < Ci , which makes (2.3) and (2.4) hold.

Third, we show that every time steps 7, 8, and 12 are invoked, the ratio between

the change of the dual objective function (4.9) and change of the primal objective

function (2.1) is d
d−1

. We note that we ignore the change of (2.1) by step 14 now,

which will be taken into account later.

When AP m schedules i at time t, Ximt is increased from 0 to 1, and (2.1) is

increased by
∑

m:m serves i Kimt. Meanwhile, (4.9) is increased by

∑

m:m serves i

Kimt(1− Z
(t−1)
i ) + Ci(Z

(t−1)
i

∑

m:m serves iKimt

Ci

+

∑

m:m serves i Kimt

(d− 1)Ci
)

=(1 +
1

d− 1
)

∑

m:m serves i

Kimjt.

Thus the ratio between change of (4.9) and (2.1) is 1 + 1
d−1

= d
d−1

.
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Let Γopt be the optimal value of (2.1), Γdual,η be the value of (4.9) under Algo-

rithm 1, and Γ∗
prim,η be the value of (2.1) under Algorithm 1 without step 14. We

have established that Γopt ≤ Γdual,η = d
d−1

Γ∗
prim,η, where Γopt ≤ Γdual,η because of

Theorem 1.

Finally, we address the influence of step 14. Step 14 is only invoked when i∗m

obtains all its data, i.e.,
∑

p,sXi∗mpsKi∗mps = Ci∗m . By Lemma 1, step 14 is invoked at

most for one time slot for each client. Further, when step 14 is invoked, (2.1) de-

creases by no more than
∑

m:m serves i Kimt ≤ 1. Let Γprim,η be the value of (2.1) un-

der Algorithm 1 with step 14. We now have Γprim,η ≥ Γ∗
prim,η(1− 1

Cmin
) ≥ Γopt

d−1
d
(1−

1
Cmin

). Since d→ e, as Cmin →∞, Algorithm 1 is (1, e
e−1

)-competitive.

2.6 Competitive Ratio for Variable Capacity

In the previous section, we obtain a (1, e
e−1

)-competitive online algorithm. Thus,

Algorithm 1 guarantees to offload 63% as much data as an optimal offline algorithm

does. However, this also indicates that, when the optimal offline algorithm offloads

all data, our algorithm may miss almost 37% of the data. Then, how much capacity

is needed to guarantee offloading, say, 95% of the data? We will focus on this

problem in this section.

It is first of interests to study whether it is feasible to increase the capacity by

R times so as to guarantee an onine algorithm can always offload as much data

as an optimal offline algorithm with unit capacity does. Or, with our terminology,

to study whether there exists a (R, 1)-competitive policy. The following example

shows that (R, 1)-competitive policy does not exist, for any R.

Example 1. Fix R. Consider a system consisting of N = R + 1 clients and one AP

with On-Off channels. Each client has a file size of C. One of the clients, say, client

1, enters the AP coverage area at time 1 and leaves at time C, while all other clients

21



enter the AP coverage area at time 1 and stay forever. We have Ti =∞ for all clients.

The optimal offline policy schedules client 1 in times 1 ≤ t ≤ C, and then schedules

other clients after t = C. Hence, the optimal offline policy offloads all data. On the

other hand, since online policies do not know which client is connected to the AP only

in times 1 ≤ t ≤ C, and they can at most offload RC < NC data in times 1 ≤ t ≤ C,

they cannot guarantee to offload all data. ✷

When the capacity is increased by R, the corresponding offload problem is de-

scribed in (2.5)–(2.8). In this section, we first propose two online policies and

study their competitive ratios. We then derive a theoretical lower-bound for the

competitive ratio of all online policies. Finally, we study the competitive ratio of

the round robin policy.

2.6.1 Primal-Dual Scheduling Policy

The primal-dual (PD) scheduling policy is very similar to Algorithm 1. It is

described as Algorithm 2. The only differences are that we choose d = (1 +

1/Cmin)
Cmin/R, and we assign Ximt = R if i is scheduled by m at time t.

We now study the competitive ratio of PD.

Lemma 2. Let Zi
(t) be the value of Zi at time slot t. We have

Z
(t)
i ≥ (

1

d− 1
)(d

∑
m,s≤t

XimtKimt
Ci − 1). (2.14)

Proof. We prove (2.14) by induction on t. The proof is similar to that of Lemma 1.

Theorem 5. PD is (R,
e1/R

R[e1/R − 1]
)-competitive. It is approximately (R, 1 + 1

2R
)-

competitive.
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Algorithm 2 Primal-Dual Algorithm

1: Initially, Ximt = 0, Ymt = 0, Zi = 0.

2: Cmin ← mini Ci, d← (1 + 1/Cmin)
Cmin/R.

3: for each time slot t do

4: for each AP m do
5: i∗m ← argmax

i
{Kimt(1− Zi)}.

6: if Ki∗mmt(1− Zi∗m) > 0 then
7: Ymt ← Ki∗mmt(1− Zi∗m).
8: Xi∗mmt ← R.
9: end if

10: end for
11: for each client i do

12: Zi ← Zi(1 +

∑

m:m serves i Kimt

Ci
) +

∑

m:m serves i Kimt

(d− 1)Ci
.

13: if
∑

p,s≤tXipsKips > Ci then

14: Ximt ←
Ci −

∑

p,s<tXipsKips
∑

p:p serves i Kimt
. ∀m : m serves i

15: end if

16: end for
17: end for

Proof. We prove PD is (R,
e1/R

R[e1/R − 1]
)-competitive by the following steps:

First, {Ymt} and {Zi} satisfy constraints (4.10)–(4.12). The proof is the same

as the proof for Theorem 4.

Second, we show that Ximt satisfy constraints (2.6)–(2.8). Step 14 ensures

(2.6). Further, by Lemma 2, Z
(t)
i < 1 only if

∑

m,s≤tXimtKimt < Ci. Therefore, a

client is only scheduled when it is yet to receive all its data, which ensures (2.7)

and (2.8).

Third, we show that whenever steps 7, 8, and 12 are invoked, the ratio between

the change of (2.5) and the change of (4.9) is d
(d−1)R

. We ignore the change of (2.5)

due to step 14 now.

Suppose client i is scheduled by AP m at time t. We have
∑

m:m serves i Ximt = R,
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and (2.5) is increased by R
∑

m:m serves iKimt. On the other hand, (4.9) is increased

by

∑

m:m serves i

Kimt(1− Z
(t−1)
i ) + Ci(Z

(t−1)
i

∑

m:m serves iKimt

Ci

+

∑

m:m serves i Kimt

(d− 1)Ci
)

=(1 +
1

d− 1
)

∑

m:m serves i

Kimt.

Thus the ratio between the change of objective functions (2.5) and (4.9) is

(1 + 1
d−1

)/R = d
R(d−1)

.

Finally, we consider the influence of step 14. Step 14 is only invoked when i∗m

obtains all its data, i.e.,
∑

p,sXi∗mpsKi∗mps = Ci∗m . By Lemma 2, step 14 is invoked at

most once for each client. Further, when step 14 is invoked, (2.5) decreases by no

more than R
∑

m:m serves i∗m
Ki∗mmt ≤ R, since we normalized our system such that

Kimt ≤ 1
H

. Therefore, throughout the system lifetime, the ratio of decrease caused

by step 14 is no more than R
Cmin

.

As Cmin →∞, d→ e1/R. By Theorem 1 and the above arguments, we establish

that PD is (R,
e1/R

R[e1/R − 1]
)-competitive.

We can approximate
e1/R

R[e1/R − 1]
by Taylor series as follows:

e
1
R

R[e
1
R − 1]

=
1 + 1

R
+ 1

2!R2 + ...

R( 1
R
+ 1

2!R2 + ...)

=
1 + 1

R
+ 1

2!R2 + ...

1 + 1
2!R

+ ...

≈ 1 + 1
R

1 + 1
2R

= 1 +
1
2R

1 + 1
2R

≈ 1 +
1

2R
,
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when R≫ 1.

Thus, the competitive ratio is approximately (R, 1+ 1
2R
). Fig. 2.1 plots

e1/R

R[e1/R − 1]

and 1 + 1
2R

. As can be seen in the figure, 1 + 1
2R

is a very accurate approximation

even for small R.
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Figure 2.1: Illustration of the approximation.

Reprint with permission from [10].

2.6.2 Least Progress First Scheduling Policy

When implementing PD, APs need to keep track of an artificial variable Zi and

update the value of Zi with each other. Further, PD needs to know the value of

Cmin to set d. Below, we describe an approximation of PD that is simpler and does

not require any information exchange.

Using an argument similar to the proof of Lemma 2, we approximate Z
(t)
i by

( 1
d−1

)(d
∑

m,s≤t
XimtKimt

Ci − 1). We further approximate d by e1/R, and ex by 1 + x, for
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all 0 < x < 1.

With these approximations, we have

Kimt(1− Zi) ≈Kimt[1− (
1

d− 1
)(d

∑
m,s<t

XimsKims
Ci − 1)]

≈Kimt

d− 1
(e1/R − e

∑
m,s<t

XimsKims
RCi )

≈ 1

(d− 1)R
Kimt(1−

∑

m,s<tXimsKims

Ci
).

Since PD makes AP m schedule the client with the largest Kimt(1 − Zi), we

can approximate PD by making each AP m schedule the client with the largest

Kimt(1 −
∑

m,s<t XimsKims

Ci
). Further, we note that (1 −

∑
m,s<t XimsKims

Ci
) is the portion

of data that i is yet to obtain. Therefore, this policy simply schedules the client

with the largest product of channel capacity and portion of undelivered data, both

values are readily available at APs. The policy is summarized in Algorithm 3 and is

called Least Progress First (LPF). It can be easily implemented in a fully distributed

fashion. Finally, we note that when all clients need to obtain the same amount

of data, i.e. Ci ≡ C, then LPF becomes the same as the well-known Max-Weight

scheduling policy. However, as we will show in Section 2.7.2, Max-Weight policy

can be much worse than LPF when different clients have different Ci.

Algorithm 3 Least Progress First

1: for each time slot t and each AP m do
2: i∗m ← argmax

i
{Kimt

Amount of undelivered data
Ci

}.
3: AP m transmits to client i∗m at time t.
4: end for
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2.6.3 A Lower Bound on Competitive Ratio

In the previous section, we show that the competitive ratio of our online schedul-

ing policy is approximately (R, 1+ 1
2R
). In this section, we are interested in the best

competitive ratio that online policies can achieve.

Theorem 6. For any given ǫ > 0, there exists a positive number R0, such that, when

R > R0, no policy has better competitive ratio than (R, 1 + 1
2R
− ǫ

R
).

Proof. Consider a system consisting of N clients with same file size C and one AP

with On-Off channels. Assume there are k clients that will move around the area

and N − k clients stay in the same place. For client i, if i ≤ k, Ki1t = 1 in time

1 ≤ t ≤ i× C, in other words, client 1 is connected to AP in time [1, C]; client 2 is

connected to AP in time [1, 2C]; client 3 is connected to AP in time [1, 3C]; etc. If

i > k, client i is connected to the AP forever. Ti =∞ for all clients.

If the connection of all clients are known in advance, the optimal offline policy

with unit capacity is to schedule the clients in the order of 1, 2, 3, ..., N . The optimal

offline policy is then able to transmit NC amount of data.

On the other hand, online policies cannot know Kimt in advance. Also, all

clients have the same file size. Therefore, when the system capacity is increased by

R times, the best that the AP can do is to evenly distribute its capacity R among all

connected clients. The AP delivers a total RC amount of data in the first C time

slots, and client 1 receives RC
N

amount of data. In the first 2C time slots, client 2

recieves RC
N

+ RC
N−1

amount of data.. . . In the first k×C time slots, client k recieves

RC
N

+ RC
N−1

+ ... + RC
N−k+1

amount of data. The other clients receive all their data.

Thus, the AP can at best deliver Γη(R) = {RC
N
} + {RC

N
+ RC

N−1
} + ... + {RC

N
+ RC

N−1
+

...+ RC
N−k+1

}+ (N − k)C amount of data.
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Let N = (k + 1)R. Since R
N

< R
N−1

< ... < R
N−k+1

, the competitive ratio is:

β =
NC

Γη(R)

>
N

R
N−k+1

· (1+k)k
2

+ (N − k)

=
(k + 1)R

R
(k+1)R−k+1

· (1+k)k
2

+ ((k + 1)R− k)

>
(k + 1)R

R
(k+1)R−(k+1)

· (1+k)k
2

+ ((k + 1)R− k)

= 1 +
kR − 2k

2(k + 1)R(R− 1)− 2k(R− 1) + kR

> 1 +
kR − 2k

2(k + 1)R2 − 2kR + kR

> 1 +
kR− 2k

2(k + 1)R2
= 1 +

k − 2k/R

2(k + 1)R

= 1 +
1

2R
− 1

R
(

1

2(k + 1)
+

k

(k + 1)R
)

For sufficiently large k and R, we have 1
2(k+1)

< ǫ/2, k
(k+1)R

< ǫ/2, and therefore

β > 1 + 1
2R
− ǫ

R
. This completes the proof.

Since PD is approximately (R, 1 + 1
2R
)-competitive, Theorem 6 demonstrates

that PD indeed achieves the optimal trade-off between capacity and the amount of

offloaded data.

2.7 Comptitive Ratios of Other Policies

In Section 2.5.1, we have shown that the competitive ratio of any work-conserving

policy is at least (1, 2) with On-Off channels. In comparison, the competitive ratio

of Algorithm 1 is (1, e
e−1

) ≈ (1, 1.58). It appears that the competitive ratio of any

work-conserving policy is close to that of Algorithm 1. We now study the competi-

tive ratio of work-conserving policies when the capacity is increased by R times. In
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C1=NC,

T1=[1, NC]

C2=RC,

T2=[1, inf]

C3=RC,

T3=[1, inf]

CN=RC,

TN=[1, inf]

...

Figure 2.2: System Construction for Round Robin.

Reprint with permission from [10].

particular, we establish a lower-bound on competitive ratio for the following three

policies.

2.7.1 Round Robin Scheduling Policy

With round robin policy (RR), each AP evenly distributes its capacity among all

connected clients.

Theorem 7. Round robin scheduling policy cannot have better competitive ratio than

(R, 1 + 1
R
).

Proof. Given R, we construct a system with one AP and N clients as follows: C1 =

NC, and Ci = RC, for all i 6= 1. K11t = 1 for 1 ≤ t ≤ C1, and K11t = 0 for

t > C1. For i 6= 1, Ki1t = 1 for all t. In other words, client 1 is connected to AP in

time [1, C1], while all other clients are connected to the AP forever. Ti = ∞ for all

clients. The system is shown is Fig. 2.2.

The optimal offline policy is first to serve client 1 from time 1 to NC. Then

client 2 to N will be served. Thus the optimal offline policy is able to deliver
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all C1 +
∑N

i=2Ci amount of data with unit capacity, while round robin transmits

RC1

N
+

∑N
i=2Ci amount of data with R capacity. The competitive ratio of round

robin is then at least:

β =
C1 +

∑N
i=2Ci

RC1

N
+
∑N

i=2Ci

=
N +R(N − 1)

R +R(N − 1)

=
N
R
+ (N − 1)

1 + (N − 1)

→ 1 +
1

R
,

as N →∞.

2.7.2 Max-Weight Policy

With max-weight (MW) policy, of all connected clients, each AP selects the one

with maximum value of the product of Kimt and the client’s remaining data.

Theorem 8. The max-weight policy cannot have better competitive ratio than (R, 1+

1
R
).

Proof. Given R, we construct a system with one AP and N + 1 clients as follows:

C1 = MC + C, and Ci = C, for all i 6= 1. K11t = 1 for all t, Ki1t = 1 for

1 ≤ t ≤ NC. In other words, client 1 is connected to AP forever, while all other

clients are connected to AP in time [1, NC]. Here we choose N = M/R, and Ti =∞

for all clients.

The optimal offline policy is first to offload data requested by client 2 to N + 1

in time [1, NC]. Then the policy will offload data requested by client1. In this case,

the policy is able to deliver all C1 +
∑N

i=2Ci = MC +C +NC amount of data with

unit capacity.

With R capacity, MW policy first transmits MC data to client 1 until it has
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remaining data request of C, which is the same as the other clients. It takes NC

amount of time to transmit MC amount of data. Since client i, i 6= 1, has a deadline

of NC, they will no longer get data through WiFi. Then WiFi will transmit the

remaining C data to client 1. Thus the total amount of data transmitted is MC+C.

The competitive ratio of MW policy cannot be better than:

β =
MC + C +NC

MC + C
= 1 +

N

M + 1

→ 1 +
1

R

as N →∞.

2.7.3 Proportional Fair Scheduling Policy

With proportional fair (PF) policy, of all connected clients, each AP selects the

one with the maximum value of Kimt

Throughput of client i
.

Theorem 9. The proportional fair policy cannot have better competitive ratio than

(R, 1 + 1
R
).

Proof. Given R, we construct a system with one AP and N + 1 clients as follows:

C1 = MC, and Ci = C, for all i 6= 1. K11t = 1 for 1 ≤ t ≤MC, Ki1t = 1 for all t. In

other words, client 1 is connected to AP in time [1,MC], while all other clients are

connected to AP forever. Here we choose N = MR, and Ti =∞ for all clients..

The optimal offline policy is first to serve client 1 in time 1 to MC. After time

NC, the other clients will be served. Thus the optimal offline policy is able to

deliver all C1 +
∑N

i=2Ci = MC +NC amount of data with unit capacity.
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With R capacity, from time [1,MC], PF policy delivers MCR
N+1

data for each client.

After time MC, all clients except client 1 are connected and PF policy will deliver

the remaining data of them. Thus PF policy delivers a total amount of MCR
N+1

+NC

data. The competitive ratio of PF policy cannot be better than:

β =
MC +NC
MCR
N+1

+NC
=

N
R
+N

N
N+1

+N

→ 1 +
1

R

as N →∞.

2.8 Performance Comparison

For a large R, e1/R

R(e1/R−1)
is very close to 1 + 1

R
, and it may seem that the compet-

itive ratio of RR, MW, and PF is close to that of PD. However, we should interpret

our results on competitive ratios as follows: Suppose it is required that online poli-

cies need to offload at least 1
β

as much data as the optimal offline policy with unit

capacity, for some given β > 1. With PD, the system needs to increase its capacity

by approximately 1
2(β−1)

times. On the other hand, even with the simple On-Off

channels, the RR, MW, and PF policies still need at least 1
β−1

capacity to achieve

the requirement. In other words,PD needs about half as much capacity to provide

the same guarantee as the other three policies. Thus, our policy is much more

preferable to provide stringent performance guarantees. Fig 2.3 illustrates the ca-

pacity requirements for different β. In order to guarantee to offload at least 95%

as much data as the optimal offline policy, PD needs to increase the capacity by 9.7

times, while the other policies needs to increase the capacity by at least 19 times.
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Figure 2.3: Capacity requirements of different policies.
Reprint with permission from [10].

2.9 Practical Implication

In this section, we will discuss the major practical implications of our work.

First, our work can be used for system planning. When a wireless operator is

to deploy public WiFi APs, it can use the macro-scale statistics of system history to

estimate the amount of resource needed for the offline policy to offload a certain

amount of data.

For example, suppose we have collected the mobility patterns of all clients in a

specific area and the clients’ demand of the past 30 days. We use Kimt as clients’

connection status to indicate the mobility pattern. We use Ci to represent the

demand. Suppose the wireless operator needs to offload a total of C0 amount of

data. Here C0 ≤
∑

i Ci. With the above information, the wireless operator can

then derive the minimum required resource R0 by simply solving the following

linear programming problem.
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MinR0

s.t.
∑

imt

XimtKimt ≥ C0, ∀i ∈ I, ∀m ∈M, t,

∑

mt

XimtKimt ≤ Ci, ∀i ∈ I,

∑

i

Ximt ≤ R0, ∀m ∈ M, t,

Ximt ≥ 0, ∀i ∈ I, m ∈M, t.

Assuming the statistics of user mobility and demand do not change too much,

the wireless operator is able to estimate the average total resource requirement

with the past information. However, these macro-scale statistics become much less

useful when it comes to online packet scheduling. For example, when two clients

enter a coffee shop with WiFi at the same time, it is very difficult to predict which

of them will leave the coffee shop first. In this case, it is not guaranteed to offload

C0 amount of data with the given R0 resource. Our derivation of performance

bound is indeed based on this difficulty. On the other hand, it is possible to for-

mulate the scheduling problem as a Markov decision process (MDP) problem using

past statistics [8]. However, this formulation typically requires each AP to solve a

high-dimensional optimization problem for every packet transmission, and incurs

preventively high computation complexity. Therefore, in many practical scenarios,

simple online policies that do not rely on past statistics are needed.

Now, let’s say that the wireless operator estimates that the offline policy needs

an amount of R0 resource to offload the desirable amount C0 of traffic. How much

resource does a simple online policy need to guarantee offloading 0.95C0 traffic?
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Theorem 5 reveals that the answer is 9.5R0.

The second important implication concerns the comparison against other poplar

policies including round robin, max-weight, and proportional fair policies. Our

study reveals that our proposed policy only needs 50% as much resource as the

other three to provide the same degree of performance guarantees. In other words,

in view of competitive ratio, implementing our policy is as effective as doubling ca-

pacity. It is well known that 2X2 MIMO has the potential of doubling transmission

rate. Therefore, our policy offers the same performance improvement as imple-

menting 2X2 MIMO.

2.10 Simulation

In this section, we evaluate the performance of the two algorithms we proposed

as well as that of the other three policies discussed in Secition 2.8.

We construct a system with 9 APs (3 by 3 grid). Each AP is 1000 meters away

from its nearest neighbor , and has a transmission range of 400 meters. There are

200 clients which are divided into two groups: The first group is 100 stationary

clients that are uniformly distributed within the coverage area of APs. The second

group is 100 mobile users whose locations are chosen uniformly at random at each

time t. In each group, the i-th client has Ci = 100, and Ti = 50 + 50i, if i ≤ 95,

and Ci = 10, 000, Ti = 5000(i− 95) if 95 < i ≤ 100. Fig. 4 shows a snapshot of the

locations of all clients, where the circles represent the coverage area of APs.

The channel gain is determined by both pathloss and Rayleigh fading. The

pathloss factor between an AP and a client is computed by min{1, 1/(distance/80)2}.

The Rayleigh fading factor is computed as
√
a2 + b2, where both a and b are Nor-

mal random variables with mean 0 and variance 1. Finally, the channel gain is the

product of these two factors.
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Figure 2.4: Location of APs and clients.
Reprint with permission from [10].

We consider both On-Off channels and general channels. With On-Off channels,

we consider the channel to be ON if the channel gain is larger than 1/25, in which

case we set Kimt = 1. The threshold of 1/25 is chosen as the pathloss factor when

the distance is 400. With general channels, we set Kimt to be the channel gain.

For each simulation run, we compute the portion of data that each policy is able to

offload through WiFi. All simulation results are the average of 5 simulation runs.

The simulation results for both channels are shown in Figure 2.5 and Figure 2.6,

respectively. The standard deviations of our algorithms are on the order of 10−4,

which shows that the deviation of our algorithm is very small. We notice that

PD and LPF have almost identical performance. Recall that LPF is designed to be

an approximation to PD with smaller overhead and easier implementation. These

simulation results confirm that it is indeed an accurate approximation.
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Figure 2.5: Performance comparison for On-Off channels.
Reprint with permission from [10].
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Figure 2.6: Performance comparison for general channels.

Reprint with permission from [10].
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Further, we note that our policies outperform the other three policies in both

scenarios. The theoretical analysis in Section 2.6 only proves that the worst-case

performance of our policies is better than that of the other policies. These simula-

tion results further suggest that our policies are still more preferable on average.

With On-Off channels, we notice that the data offload with our policies at R are

no less than that RR offload at 2R. For example, when R = 2, our policies are able

to offload more data than RR when R = 4. The difference between our policies

and the RR policy becomes even larger when general channels are considered.

This is because the round robin policy does not consider channel capacity, and will

use a large amount of time serving clients with poor channel qualities. For both

On-Off channels and general channels, our policies outperform Max-Weight policy.

Proportional fair policy does not have a good performance because it tries to even

out each client’s portion of received data. When clients have different data request

and mobility pattern, the policy does not optimize the whole system’s offload data

amount.

2.11 Conclusion

In this section, we study the delayed mobile offloading problem with unpre-

dictable user movement pattern. We aim to download as much data through

WiFi as possible. We present two online algorithms for the problem and study

their performance by comparing how much data they are able to offload to the

optimal offline policy. First, we propose PD policy and prove that it is approx-

imately (R, 1
2R
)-competitive and achieves the optimal trade-off between capacity

and amount of offloaded data. Second, we propose an alternative LPF policy that

is easier to implement and has almost identical performance as PD. We also pro-

vide that the tight bound of online policies is (R, 1
2R
). Our policies are compared
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with three commonly-used policies, including Round Robin, Max-Weight, and Pro-

portional Fair policy, and and we prove that our policies only need half as much

capacity to provide the same degree of performance guarantees under any mobility

patterns. We simulate our proposed policies as well as the three commonly used

policies to compare their performance in a randomly generated system. The results

show that the proposed two policies have higher offloading ratio than the others.
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3. ONLINE JOB ALLOCATION WITH HARD ALLOCATION RATIO

REQUIREMENT *

3.1 Problem Overview

In this section, we discuss the problem of online job allocation for cloud com-

putingwhere each job can only be served by a subset of servers [30]. Such a prob-

lem exists in many emerging Internet services, such as YouTube, Netflix, etc. For 

example, in the case of YouTube, each video is replicated only in a small number 

of servers, and each server can only serve a limited number of streams simultane-

ously. When a user accesses YouTube and makes a request to watch a video, this 

request needs to be allocated to one of the servers that not only stores the video 

but also has remaining capacity to process this request. If no server can process this 

request, the request is dropped, which can significantly impact user satisfaction.

There are many studies on obtaining statistics about user behaviors, video pop-

ularity, and access locality [31–35]. These studies provide important insights about 

system planning. However, they are not sufficient for job allocation. It is usually 

difficult to predict which video will go viral and generate most requests. Therefore, 

online job allocation policy that makes decisions solely based on current system 

state is needed.

The problem of online job allocation has attracted much attention. Most cur-

rent studies study the performance of online policies by comparing the number of 

allocated jobs under online policies against that of the an offline policy with full 

knowledge about all future arrivals. For example, Karp, Vazirani and Vazirani [36]

propose an online policy that is guaranteed 1 − 1
e
≈ 63% of jobs, given that the

*Reprinted with permission from "Online job allocation with hard allocation ratio requirement" 
by Han Deng, I-Hong Hou, © 2016, IEEE INFOCOM. [30]
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offline policy allocates all jobs. They also show that no online policy can guarantee

to allocate more jobs than their proposed policy.

These studies are still insufficient for many practical scenarios. In particular,

one can argue that most practical applications demand a much higher ratio of al-

located jobs than 63%. In order to meet this demand, current practice is to add re-

dundancy and increase the capacity of data centers to accommodate unpredictable

patterns of job arrivals. Motivated by this observation, we seek to address the fol-

lowing question: How much capacity is needed to guarantee the allocation of, say,

95% of jobs?

To answer this problem, we first formulate a linear programming problem for

job allocation. The uncertainty in future job arrivals corresponds to the uncertainty

in some of the parameters. Also, increasing the capacity of the servers corresponds

to relaxing some of the constraints in the linear programming problem.

Using this formulation, we propose two simple online scheduling policies and

derive closed-form expressions for their performance. Specifically, we prove that,

in order to allocate at least 1− 1
θ

of jobs, the two policies only need to increase the

capacity by ln θ times. We also prove that no online policy can guarantee to allocate

the same ratio of jobs with less capacity, and hence our policies are optimal.

We further evaluate two popular online job allocation policies. Surprisingly, we

prove that, to guarantee to allocate at least 1− 1
θ
, these two policies require at least

θ − 1 times capacity. Therefore, they are both an order worse than our policies.

The allocation ratio guarantees stated above need to hold for every sample path.

We also consider the scenario where jobs arrivals are generated by some unknown

random process, and one only needs guarantees on the expected value of allocation

ratio. By both theoretical analysis and numerical studies, we demonstrate that our

policies remain much better than the other two policies for this scenario.
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Next, we consider the setting where jobs arrive at arbitrary time in a slotted

time system. Each job has a deadline which is revealed upon arrival. We propose

an online policy and study its performance.

3.2 Related Work

There are many studies on YouTube videos about their statistical properties

[35,37,38]. Studies on online learning further investigate the possibility to predict

the future video requests. The problem of “learn from expert advise" was first

studied by Littlestone and Warmuth [39], DeSantis, Markowsky, and Wegman [40].

Later “learn from examples" was studied. The Winnow algorithm was proposed

and studied by Littlestone and Nicholas [41], [42]. The algorithm applies well

to practical tasks such as on World Wide Web [43]. Other sequence prediciton

research also include the studies by Nicolo and Gabor [44], Hutter [45].

The online job allocation problem is an online matching procedure which aim

to make the best decision on job-server pair to maximize the number of jobs get

matched. The problem of online bipartite matching was studied by Karp, Vazi-

rani, and Vazirani [36]. They use an adversary model and studied GREEDY which

achieves a matching ratio of 1/2 and RANKING which achieves 1 − 1/e. They

further showed that no algorithm can achieve a better ratio than 1 − 1/e. Other

models, which are based on further assumption on arrival pattern, have also been

studied. Random arrival model has been studied by Goel and Mehta [46], and

Karande, Mehta and Tripathi [47]. They show that GREEDY achieves a matching

ratio of 1 − 1/e and RANKING achieves greater than 1 − 1/e. Known distribution

model was introduced by Feldman, Mehta, Mirrokni, and Muthukrishnan [48].

They provide a two-suggested-matching algorithm which achieves a ratio of 67%.

Kalyanasundaram and Pruhs studied the online b-matching problem [49] which
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can be seen as the job allocation problem with server capacity b. They presented

BALANCE algorithm and proved that it approaches 1 − 1/e. Applications of on-

line matching to ad-words problem, which is an allocation of bidders to key words

within the budget limit of each bidder, have been studied in [46], [50].

3.3 System Model

We consider a system with multiple non-identical servers. Jobs arrive at the

system sequentially. Jobs are of different types, and each job can only be served

by a subset of the servers. For example, in the application of on-demand video

streaming, a job is a request for one video, and can therefore only be served by

servers that possess the video. We assume that when a job enters the system, it

needs to be allocated to a server immediately. Jobs that cannot be allocated upon

arrivals are discarded from the system. We also assume that jobs cannot be moved

once they are allocated to servers, as moving jobs between servers cause additional

costs on job migration. A similar model has been used in [51].

We use J to denote the set of servers, and I = {1, 2, . . . } to denote the arrival

sequence of jobs. Each job i can be served by a subset Ki ⊆ J of servers. Upon its

arrival, job i reveals its Ki, and the system either allocates it to a server or discards

it. Each job takes one unit of capacity in the server to which the job is allocated to.

A server j has a total amount of Cj units capacity, and can therefore at most serve

Cj jobs. We use Xij to denote the assignment of the jobs. If Xij = 1, then job i is

assigned to server j. If Xij = 0, job i is not assigned to server j.

We aim to maximize the number of jobs that can be served. There are two

constraints: first, the total job allocated to any server should be less or equal to its

capacity; second, each job can be allocated to at most one server. The problem of

maximizing the number of served jobs can be formulated as the following linear
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programming problem:

Allocation:

Max
∑

ij

Xij (3.1)

s.t.
∑

i:j∈Ki

Xij ≤ Cj, ∀j ∈ J , (3.2)

∑

j:j∈Ki

Xij ≤ 1, ∀i ∈ I, (3.3)

Xij ≥ 0, ∀i ∈ I, j ∈ J . (3.4)

Since Xij = 1 if job i is served by j, (3.1) is the total number of served jobs.

On the other hand, (3.2) states that each server j can at most serve Cj jobs, and

(3.3) states that each job can be served by at most one server. In this formulation,

we allow Xij to be any real number between 0 and 1, while Xij needs to be either

0 or 1 according to our model. Therefore, Allocation describes an upper-bound of

the number of jobs that can be allocated.

Solving Allocation is straightforward when one has knowledge of all its pa-

rameters {Ki} and {Cj}. However, as jobs arrive sequentially, the system needs

to make allocation decisions without knowledge of future jobs. We say that an

allocation policy is an online policy if it makes allocation decisions only based on

jobs that have already arrived. On the other hand, an allocation policy is an offline

policy if it has full knowledge about all future job arrivals, and can therefore find

the optimal solution to Allocation.

We consider that the service provider can increase server capacity to allocate

more jobs. When the system capacity is increased by R times, a server j with

Cj capacity will have RCj capacity after the increase. We can now formulate the
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following linear programming problem:

Allocation(R):

Max
∑

ij

Xij (3.5)

s.t.
∑

i:j∈Ki

Xij ≤ RCj , ∀j ∈ J , (3.6)

∑

j:j∈Ki

Xij ≤ 1, ∀i ∈ I, (3.7)

Xij ≥ 0, ∀i ∈ I, j ∈ J . (3.8)

We evaluate the performance of online policies by comparing the number of

allocated jobs under online policies with R times capacity against that under offline

policy with unit capacity. Specifically, given {Ki} and {Cj}, let Γopt be the optimal

value of
∑

ij Xij in Allocation, and Γη(R) be the value of
∑

ij Xij in Allocation(R)

under policy η. We define the competitive ratio per sample path as follows:

Definition 2. An online policy η is said to be (R, θ)-competitive-per-sample-path if

Γopt/Γη(R) ≤ θ, for all {Ki} and {Cj} with Cj ≥ Cmin, as Cmin →∞.

Definition 2 defines competitive ratio based on the worst-case sample path. This

definition may ignore effects of statistic multiplexing. In practice, jobs may arrive

according to some random process. Therefore, the arrivals of different types of jobs

are likely to be interwined.

We can expand our model to accommodate the random nature of job arrivals.

Given {Ki}, we can consider the case where the actual arrival sequence is a random

permutation of I = {1, 2, . . . }. Let E[Γη(R)] be the expected number of allocated

jobs under η with R times capacity when the arrival sequence is a random permu-

tation. We then define the expected competitive ratio as follows
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Definition 3. An online policy η is said to be (R, θ)-competitive-in-expectation if

Γopt/E[Γη(R)] ≤ θ, for all {Ki} and {Cj} with Cj ≥ Cmin, as Cmin → ∞.

It is obvious that the competitive ratio per sample path cannot be better than

the expected competitive ratio.

Lemma 3. A (R, θ)-competitive-per-sample-path policy is (R, θ)-competitive-in-

expectation.

3.4 Two Online Allocation Policies and Their Competitive Ratios

In this section, we propose online policies and analyze their competitive ratios. Our 

analysis is based on the Weak Duality Theorem of linear programming [52]. The dual 

problem of Allocation can be written as:

Dual:

Min
∑

j

Cjαj +
∑

i

βi, (3.9)

s.t. αj + βi ≥ 1, ∀i ∈ I, j ∈ Ki (3.10)

αj ≥ 0, ∀j, (3.11)

βi ≥ 0, ∀i, (3.12)

where each αj corresponds to a constraint in (3.2), and each βi corresponds to a

constraint in (3.3). The following lemma is then a direct result of the Weak Duality

Theorem.

Lemma 4. Given any vectors of {αj} and {βi} that satisfy the constraints (4.10)–

(4.12), we have
∑

j Cjαj +
∑

i βi ≥ Γopt.

We now introduce an online policy. This policy maintains a variable αj for each

server j. When the system starts, it sets αj ≡ 0 initially. When a job i arrives,
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the policy checks the values of αj for all j ∈ Ki, and selects j∗ as the one with

the minimum value of αj . If αj∗ < 1, job i is assigned to server j∗, and therefore

Xij∗ = 1. The value of αj∗ is updated to be αj∗(1 +
1

Cj∗
) +

1

(dj∗ − 1)Cj∗
, where we

set dj = (1 + 1/Cj)
RCj , for all j. The value of dj is chosen to achieve the optimal

competitive ratio, as will be shown in the proof of Lemma 5. On the other hand, if

αj∗ ≥ 1, job i is discarded. The complete policy is described in Algorithm 4.

Algorithm 4 PD Algorithm

1: Initially, αj = 0, βi = 0, Xij = 0.

2: dj ← (1 + 1/Cj)
RCj , ∀j.

3: for each arriving job i do
4: j∗ ← argminj∈Ki

αj.

5: if αj∗ < 1 then
6: βi ← 1− αj∗ .

7: αj∗ ← αj∗(1 +
1

Cj∗
) +

1

(dj∗ − 1)Cj∗
.

8: Xij∗ ← 1.
9: Job i is assigned to server j∗.

10: else
11: Discard job i.
12: end if
13: end for

We first need to show that the vector {Xij} produced by this policy satisfies all

constraints of Allocation(R), so that the policy never assigns a job to a server that

is already fully utilized.

Lemma 5. Let αj[n] be the value of αj after n jobs have been allocated to server j.
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Then,

αj[n] = (
1

dj − 1
)(d

n/RCj

j − 1). (3.13)

Proof. Here we prove (3.13) by induction.

Initially, when n = 0, αj [0] = 0 = ( 1
dj−1

)(d0j − 1) and (3.13) holds.

Suppose (3.13) holds when n = k. When the (k + 1)-th job is allocated server

j, we have

αj [k + 1] =αj[k](1 +
1

Cj
) +

1

(dj − 1)Cj

=
1

(dj − 1)
(d

k/RCj

j − 1)(1 +
1

Cj

) +
1

(dj − 1)Cj

=
1

(dj − 1)
[d

(k+1)/RCj

j − 1],

and (3.13) still holds for n = k + 1. By induction, (3.13) holds for all n.

With Lemma 5, αj = 1 when RCj jobs have been allocated to server j. Since

Algorithm 4 only allocates jobs to servers with αj < 1, our policy does not violate

any constraints in Allocation(R).

Next, we study the competitive ratio of Algorithm 4.

Theorem 10. Algorithm 4 is (R, eR

eR−1
)-competitive-per-sample-path.

Proof. We prove Theorem 10 by three steps:

First, we show that solutions {αj} and {βi} satisfy all constraints in Dual. Ini-

tially, αj and βi are set to be 0. By step 7 in Algorithm 4, αj is non-decreasing

throughout the execution of the policy, and hence (4.11) holds. Also, by Lemma 5,
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αj ≤ 1, for all j. When a job i arrives, our policy sets j∗ ← argmin
j∈Ki

{αj}. If αj∗ = 1,

we have αj = 1 for all j ∈ Ki and βi = 0. Hence, both constraints (4.10) and

(4.12) hold. On the other hand, if αj∗ < 1, βi = 1 − αj∗ ≥ 1 − αj, for all j ∈ Ki.

Both constraints (4.10) and (4.12) still hold.

Next, we derive the ratio between
∑

ij Xij and
∑

j Cjαj +
∑

i βi. Both formulas

are initially 0. We now consider the amounts of change of these two formulas when

a job i arrives. We use ∆P (R) to denote the change of
∑

ij Xij, and ∆D to denote

the change of
∑

j Cjαj +
∑

i βi.

If job i is discarded, then {Xij}, {αj} and {βi} remain unchanged, and therefore

∆P (R) = ∆D = 0.

On the other hand, consider the case when job i is assigned to server j. We

have Xij = 1 and ∆P (R) = 1. We also have

∆D

∆P (R)
= ∆D =Cj(

αj

Cj

+
1

(dj − 1)Cj

) + 1− αj

=1 +
1

dj − 1
=

dj
dj − 1

=
(1 + 1/Cj)

RCj

(1 + 1/Cj)RCj − 1
.

When we imposes a lower bound on Cj by requiring Cj ≥ Cmin, for all j, and let

Cmin → ∞, we have ∆D
∆P (R)

→ eR

eR−1
, whenever a job i is allocated to some server.

Therefore, we have, under Algorithm 4,

∑

j Cjαj +
∑

i βi
∑

ij Xij

=
eR

eR − 1
. (3.14)

Finally, by Lemma 10, we establish that Algorithm 4 is (R, eR

eR−1
)-competitive-

per-sample-path.
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Algorithm 4 relies on the usage of artificial variables {αj} and {dj}. Below,

we introduce a second online policy that not only is simpler, but also conveys

better intuition. The policy is called Join-Least-Utilization (JLU) policy. When a

job arrives, JLU simply allocates the job to the server with the smallest utilization

ratio, which is the number of allocated jobs at a server divided by its capacity.

Specifically, let nj be the number of jobs that have already been allocated to server

j. When job i arrives, it is allocated to argminj∈Ki

nj

RCj
.

The complete policy is described in Algorithm 5. While the algorithm still in-

volves {αj}, {dj}, and {βi}, these variables are introduced solely for the purpose

of the analysis of competitive ratio. They can be omitted in actual implementation.

Algorithm 5 JLU

1: Initially, αj = 0, βi = 0, Xij = 0, nj = 0.
2: dj ← (1 + 1/Cj)

RCj , ∀j.
3: for each arriving job i do
4: j∗ ← argminj∈Ki

{ nj

RCj
}.

5: if nj∗ < RCj∗ then
6: Xij∗ ← 1.

7: αj∗ ← αj∗(1 +
1

Cj∗
) +

1

(dj∗ − 1)Cj∗
.

8: nj∗ ← nj∗ + 1.
9: Job i is assigned to server j∗.

10: βi ← 1−minj∈Ki
αj.

11: else

12: Discard job i.
13: end if
14: end for

Lemma 6. For any δ > 0, there exists a finite Cmin such that, by requiring Cj > Cmin,
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for all j, we have

αj1 − αj2 > δ =⇒ nj1

RCj1

>
nj2

RCj2

, (3.15)

for all j1, j2 ∈ J , throughout the execution of JLU.

Proof. The equation for updating αj in JLU is the same as that in Algorithm 4. By

Lemma 5, at any point of time, we have

αj =(
1

dj − 1
)(d

nj/RCj

j − 1) (3.16)

=
1

(1 + 1/Cj)RCj − 1
[(1 + 1/Cj)

nj − 1], (3.17)

as dj = (1 + 1/Cj)
RCj .

Note that αj → enj/Cj−1
eR−1

for a fixed R and all
nj

Cj
≤ R, as Cj →∞. Thus, for any

δ > 0, there exist a finite Cmin such that, by requiring Cj > Cmin for all j, we have

|αj − enj/Cj−1
eR−1

| < δ/2 for all j. Therefore, for any two servers j1 and j2, we have

|(αj1 − αj2)− (
enj1

/Cj1 − 1

eR − 1
− enj2

/Cj2 − 1

eR − 1
)| (3.18)

<|αj1 −
enj1

/Cj1 − 1

eR − 1
|+ |αj2 −

enj2
/Cj2 − 1

eR − 1
| < δ. (3.19)

This implies that

αj1 − αj2 > δ =⇒enj1
/Cj1 − 1

eR − 1
>

enj2
/Cj2 − 1

eR − 1
(3.20)

=⇒ nj1

RCj1

>
nj2

RCj2

, (3.21)

and the proof is complete.

Theorem 11. JLU is (R, eR

eR−1
)-competitive-per-sample-path.
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Proof. The proof is very similar to that of Theorem 10.

By Lemma 5,
nj

RCj
< 1 ⇔ αj < 1. Therefore, under JLU, an arriving job i is

allocated if and only if minj∈Ki
αj < 1. For any δ > 0, we pick a sufficiently large

Cmin so that (3.15) holds.

We can establish that the solutions {Xij}, {αj}, and {βi} produced by JLU sat-

isfy all constraints in Allocation(R) and Dual using an argument that is virtually

the same as that in the proof of Theorem 10.

Next, we derive the ratio between
∑

ij Xij and
∑

j Cjαj +
∑

i βi. Both formulas

are initially 0. We now consider the amounts of change of these two formulas when

a job i arrives. We use ∆P (R) to denote the change of
∑

ij Xij, and ∆D to denote

the change of
∑

j Cjαj +
∑

i βi.

If job i is discarded, then ∆P (R) = ∆D = 0.

On the other hand, consider the case when job i is assigned to server j∗ =

argminj∈Ki

nj

RCj
. By Lemma 6, αj ≥ αj∗ − δ, for all j ∈ Ki.

We now have

∆D

∆P (R)
= ∆D

=Cj∗(
αj∗

Cj∗
+

1

(dj∗ − 1)Cj∗
) + 1−min

j∈Ki

αj

≤Cj∗(
αj∗

Cj∗
+

1

(dj∗ − 1)Cj∗
) + 1− αj∗ + δ

=
(1 + 1/Cj∗)

RCj∗

(1 + 1/Cj∗)
RCj∗ − 1

+ δ.

Let Cmin →∞, and we have under JLU,

∑

j Cjαj +
∑

i βi
∑

ij Xij

≤ eR

eR − 1
+ δ, (3.22)
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for any δ > 0

Finally, by Lemma 10, we establish that JLU is (R, eR

eR−1
)-competitive-per-sample-

path.

By Lemma 3, we also have the following theorem.

Theorem 12. Both Algorithm 4 and JLU are (R, eR

eR−1
)-competitive-in-expectation.

3.5 Lower Bounds of Competitive Ratios

In Section 3.4, we show that our online policies are both (R,
eR

eR − 1
)-competitive-

per-sample-path. In this section, we will study the lower bound for the competitive

ratio per sample path. We focus on a special class of systems described below:

A system in this class has N servers with capacity C each, where C is chosen to

be a multiple of N !. A total number of NC jobs arrive in sequence, and they are

separated into N groups, where the k-th group contains jobs {(k−1)C+1, (k−1)C+

2, . . . , kC}. Jobs in the same group can be served by the same subset of servers.

The subset of servers that can serve a job i, i.e., Ki is constructed as follows: Jobs

in the first group {1, 2, . . . , C} can be served by all servers, i.e., Ki = J . For each

job in the (k + 1)-th group, its Ki is obtained by removing one element from that

for jobs in the k-th group. More specifically, for a job i1 in the k-th group and a job

i2 in the (k + 1)-th group, we have Ki2 ( Ki1 and |Ki2| = |Ki1| − 1. It is easy to

verify that an offline policy can allocate all NC jobs for all systems in this class.

We consider a policy, namely, EVEN, that evenly distributes jobs in the same

group among all available servers. We first establish the number of jobs that can be

allocated by EVEN, and then show that no policy can guarantee to allocate more

jobs than EVEN within this class of systems.
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Lemma 7. When the capacity is increased by R times, EVEN serves at most (N −
N+1
eR

+ 2)C jobs.

Proof. Since EVEN allocates jobs evenly on all available servers, each server gets C
N

jobs in the first group of C jobs. Similarly, as jobs in the k-th group can be served

by N − k + 1 servers, each server that can serve this group gets C
N−k+1

jobs in this

group, unless the server is already fully utilized.

Consider the case when each server has RC capacity. Suppose the system can

only serve up to the (k+1)-th group, that is, servers are still not fully utilized after

serving the k-th group. We then have

C(
1

N
+

1

N − 1
+

1

N − 2
+ . . .+

1

N − k + 1
) < RC

⇒
∫ N+1

N−k+1

1

x
dx < (

1

N
+

1

N − 1
+ . . .+

1

N − k + 1
) < R

⇒ log(N + 1)− log(N − k + 1) = log
N + 1

N − k + 1
< R

⇒k < N + 1− N + 1

eR

Since servers can serve up to the (k+1)-th group and become fully utilized after

the arrival of this group, the number of jobs served in the system is then at most

(k + 1)C < (N − N+1
eR

+ 2)C

Lemma 8. When the parameters R, N , and C are fixed, no online policy can guar-

antee to allocate more jobs than EVEN.

Proof. We consider an alternative policy ALT and show that it cannot allocate more

jobs than EVEN. Given R, N , and C, we construct Ki iteratively as follows: The

first group can be served by all servers. Let j1 be the server with the least jobs.

We then choose Ki = J \{j1} for the second group. Similarly, let jk be the server
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with the least jobs among severs that can serve the k-th group. We choose Ki =

J \{j1, j2 . . . , jk} for the (k + 1)-th group. Under this arrival sequence, the total

amount of unused capacity in all servers is at least (RC− C
N
)+(RC− C

N
− C

N−1
)+. . . ,

which is the total amount of unused capacity by EVEN. Therefore, ALT cannot

allocate more jobs than EVEN.

Theorem 13. Any online policy cannot be better than (R,
eR

eR − 1
)-competitive-per-

sample-path.

Proof. This is a direct result of Lemmas 7 and 8.

3.6 Competitive Ratios of Other Widely Policies

In this section, we study the competitive ratios of two widely used polices.

3.6.1 Join the Shortest Queue

The first policy is the join the shortest queue (JSQ) policy, which allocates jobs

to servers with the smallest number of jobs. Specifically, let nj be the number of

jobs that have already been allocated to server j. When a new job i arrives, it is

allocated to argminj∈Ki
{nj|nj < RCj}, if there exists a server j ∈ Ki with nj < RCj.

Theorem 14. JSQ cannot be better than (R, 1 + 1
R
)-competitive-per-sample-path.

Proof. Given R, we construct a system with two types of servers, J1 and J2, and

two types of jobs, I1 and I2. Type I1 jobs can be served by all servers, while type

I2 jobs can only be served by type J2 severs.

The system is described as Fig 3.1. It has one type J1 server with capacity MC

and K type J2 servers with capacity C. The job arrival sequence is as follows: first

MC jobs of type I1 arrive; then KC jobs of type I2 arrive. The values of M and

K are chosen such that R = M/(K + 1). The jobs (or servers) of same type are in
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Figure 3.1: System illustration for the analysis of JSQ.
Reprint with permission from [30].

the same square box. An arrow line indicates that the job can be allocated to the

server.

The optimal offline policy is to allocate all type I1 jobs to the server of type

J1, and allocate all type I2 jobs to type J2 servers. This allocation can allocate all

MC +KC jobs, and Γopt = MC +KC.

Now, consider the performance of JSQ when the server capacity is increased by

R times. After the increase, the type J1 server has RMC capacity, and all other

servers have RC capacity. The first MC arrivals are all type I1 jobs, who can be

served by all servers. Therefore, JSQ evenly distribute these jobs to all servers, and

each server gets MC/(K + 1) = RC jobs. Next, type I2 jobs arrive, and they can

only be served by type J2 servers. However, at this point, all type J2 servers are

fully utilized, and no type I2 job can be served. The total number of served jobs

under JSQ is ΓJSQ(R) = MC.
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We then have

Γopt

ΓJSQ(R)
=

MC +KC

MC
(3.23)

=
M +K

M
→ 1 +

1

R
, (3.24)

as K →∞, and M = R(K + 1).

Theorem 15. JSQ cannot be better than (R, 1 + 1
R2+2R

)-competitive-in-expectation.

Proof. Given R, we use the same system as that in the proof of Theorem 14, but

consider that the actual arrival sequence is a random permutation of all jobs. We

still have Γopt = MC +KC. In this proof, we choose M and K such that R = M
K

.

Now, consider the performance of JSQ when the server capacity is increased by

R times. Type J2 servers can serve all jobs, while the type J1 server can only serve

jobs of type I1. Under JSQ, whenever a type J2 server has the least jobs among all

servers, the next job will be allocated to this server, regardless of the type of the job.

Therefore, under JSQ, all type J2 servers will have at least one less job than the

number of jobs at the J1 server before all type J2 servers are fully utilized. Hence,

after (K + 1)RC arrivals, all type J2 servers are fully utilized. From then on, only

type I1 jobs can be served. Further, there are MC type I1 jobs and KC type I2 jobs.

Under a random permutation, the average number of type I1 jobs that arrive after

the first (K+1)RC arrivals is MC
MC+KC

[MC+KC− (K +1)RC] = MC− M(K+1)RC
M+K

.

The expected number of jobs served by JSQ is then

E[ΓJSQ(R)] ≤(K + 1)RC +MC − M(K + 1)RC

M +K
(3.25)

=MC + (K + 1)RC
K

M +K
, (3.26)
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and hence

Γopt

E[ΓJSQ(R)]
≥ MC +KC

MC + (K + 1)RC K
M+K

=
RK +K

RK + (K + 1)RK/(RK +K)

→ (R + 1)2

R(R + 1) +R

= 1 +
1

R2 + 2R
,

as K →∞ and M = KR.

3.6.2 Join the Most Residue Queue

Join the most residue queue (JMQ) allocates jobs to servers with most re-

maining space, which is the server capacity minus the number of allocated jobs

in this server. Let RCj be the capacity of server j, nj be the number of jobs

that have already been allocated to j. The arriving job i is allocated to server

argmaxj∈Ki
{RCj − nj |nj < RCj}, if there exists a server j ∈ Ki with nj < RCj .

Theorem 16. Join the most residue queue policy cannot be better than (R, 1 + 1
R
)-

competitive-per-sample-path.

Proof. Given R, we construct a system with two types of servers, J1 and J2, and

two types of jobs, I1 and I2. Type I1 jobs can only be served by type J1 servers,

while type I2 jobs can be served by all servers.

The system is described as Fig 3.2. The system has one type J1 server with

capacity (M+1)C, and K type J2 servers with capacity C. The job arrival sequence

is as follows: first KC jobs of type I2 arrive; then (M + 1)C jobs of type I1 arrive.

The value of M and K are chose such that R = K/M .
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Figure 3.2: System illustration for the analysis of JMQ.

Reprint with permission from [30].

The optimal offline policy is to allocate all type I2 jobs to servers of type J2 and

all type I1 jobs to the type J1 server. The total number of jobs allocated by this

policy is (M + 1)C +KC, and Γopt = (M + 1)C +KC.

When the server capacity is increased by R times, type J1 server has R(M+1)C

capacity, and type J2 servers have RC capacity. The first arriving KC = MRC jobs

are of type I2. They can be served by both type J1 and J2 servers. JMQ allocates

all these jobs to type J1 server. Type J1 server can therefore serve only RC jobs of

type I1. The total number of jobs served is R(M + 1)C.

We then have

Γopt

ΓJMQ(R)
=

(M + 1)C +KC

R(M + 1)C
(3.27)

=
M

M + 1
+

1

R
→ 1 +

1

R
, (3.28)
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as M →∞, and K = MR.

Theorem 17. JMQ cannot be better than (R, 1 + 1
R2+2R

)-competitive-in-expectation.

Proof. We use the system in the proof of Theorem 16 but consider that the actual

arrival sequence is a random permutation of all jobs. First, we have Γopt = (M +

1)C + KC. Now we study E[ΓJMQ(R)]. In this proof, we choose M and K such

that K = MR − 1.

The type J1 server can serve all jobs and has MRC more capacity than others.

Thus, the first MRC jobs will be allocated to the type J1 server, regardless of job

types. After the first MRC arrivals, the type J1 server has RC capacity left and

hence at most RC more type I1 jobs can be served. Since there are (M + 1)C type

I1 jobs and KC type I2 jobs, the average number of type I1 jobs among the first

MRC arrivals is MRC · M+1
M+1+K

. The expected number of allocated jobs is then no

more than RC +MRC M+1
M+1+K

+KC. Therefore we have:

Γopt

E[ΓJMQ(R)]
(3.29)

≥ MC + C +KC

RC +MRC M+1
M+1+K

+KC
(3.30)

=
M +MR

MR − 1 + R +MR M+1
M+MR

(3.31)

=
M2(R + 1)2

(M + 1)RM(R + 1)−M(R + 1) +MR(M + 1)
(3.32)

→ (R + 1)2

R(R + 1) +R
(3.33)

= 1 +
1

R2 + 2R
(3.34)

as M →∞ and K = MR − 1.
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Figure 3.3: Capacity requirements of different policies.
Reprint with permission from [30].

3.6.3 Discussions

We have shown that our policies are (R, eR

eR−1
)-competitive-per-sample-path,

while JSQ and JMR are no better than (R, 1+ 1
R
)-competitive-per-sample-path, and

no better than (R, 1 + 1
R2+2R

)-competitive-in-expectation. Suppose we are given a

system where the offline policy can allocate all jobs. In order to guarantee that at

least 1− 1
θ

of the jobs are allocated, our policy only needs to increase the capacity

by R times so that eR

eR−1
≤ 1/(1 − 1

θ
). Therefore, choosing R = ln θ is sufficient. In

contrast, the two commonly used policies, JSQ and JMQ, require to increase the

server capacity by at least (θ − 1) times. Even when we consider that the arrival

sequence is a random permutation of all jobs, and only require JSQ and JMQ to

allocate 1 − 1
θ

of the jobs on average, they still need to increase the capacity by at

least
√
θ − 1 times.

Fig. 3.3 plots the capacity requirement for different allocation ratios. From

the figure we can observe that as the allocation ratio approaches 1, the capacity
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requirement using JSQ or JMQ increases much faster than that using PD or JLU.

For example, if we need to allocate at least 95% of the jobs, i.e., θ = 20, our policies

only require R = 3, while JSQ and JMQ both require R ≥ 19. Even when the arrival

sequence is a random permutation of all jobs, JSQ and JMQ still need R ≥ 3.5.

Further, one may notice that JSQ and JMQ seem to outperform our policies when

the arrival sequence is a random permutation, and when the allocation ratio is

low. However, the comparison is not fair. When the arrival sequence is a random

permutation, our policies are likely to achieve better performance. In the next

section, we will demonstrate this by simulations.

3.7 Revised Model With Buffer

In this section, we consider a more complicated model which uses a slotted time

system. Similar to the previous one, the system has multiple non-identical servers

and jobs arrive at the system sequentially. Jobs are of different types, and each job

can only be served by a subset of the servers. Instead of serving the jobs or discard

them instantly, we add buffer to each server. Job arrivals occur over time, and we

assume that each job has a certain delay tolerance such that the job can be put into

the buffer and wait for service. Their deadlines are arbitrary and bounded.

A server j has service capacity of Cj per time slot and buffer capacity of Bj.

Each job takes unit service capacity to be processed and unit buffer capacity to

wait for service. We use a(i) to denote the arrival time of job i. When job i arrives,

it reveals its server subset Ki and maximum waiting time T (i). And waiting time

is bounded by T , i.e. T = maxiT (i). We use Xijt to denote the service for job i. If

Xijt = 1, then job i is served by server j at time t. We use kijt = 1 to denote that

job i can be served by server j and time t is within the delay tolerance, that is, if

kijt = 1, then j ∈ Ki and a(i) ≤ t ≤ a(i) + T (i).
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We aim to maximize the total number of jobs that can be served under the

constraints of server capacity and buffer capacity. We formulate the problem as the

following linear programming problem:

Revised Allocation:

Max
∑

ijt

kijtXijt (3.35)

s.t.
∑

i

kijtXijt ≤ Cj, ∀t, j ∈ J , (3.36)

∑

i,
t:τ∈[a(i),t]

kijtXijt ≤ Bj , ∀τ, j ∈ J , (3.37)

∑

jt

Xijt ≤ 1, ∀i ∈ I, (3.38)

Xijt ≥ 0, ∀i ∈ I, j ∈ J , t. (3.39)

In the above problem, (3.35) is the total number of served jobs. (3.36) states

that each server j can serve at most Cj jobs for each time slot. (3.37) states that at

any time, the total number of jobs accepted and yet to be served by server j is at

most Bj. (3.38) states that each job can be served at most once.

Similar to the previous case, we consider that the service provider can increase

both capacities to allocate more jobs. When the capacities are increased by R times,

the service capacity becomes RCj and the buffer capacity becomes RBj. We have

our linear programming as follows:
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Revised Allocation(R):

Max
∑

ijt

kijtXijt (3.40)

s.t.
∑

i

kijtXijt ≤ RCj, ∀t, j ∈ J , (3.41)

∑

i,
t:τ∈[a(i),t]

kijtXijt ≤ RBj , ∀τ, j ∈ J , (3.42)

∑

jt

Xijt ≤ 1, ∀i ∈ I, (3.43)

Xijt ≥ 0, ∀i ∈ I, j ∈ J , t. (3.44)

To solve the Revised Allocation(R) problem, we first find the dual problem as:

Revised Dual:

Min
∑

jt

Cjαjt +
∑

jτ

Bjγτj +
∑

i

βi, (3.45)

s.t. kijtαjt +
∑

τ∈[a(i),t]

kijtγτj + βi ≥ kijt, ∀i ∈ I, j ∈ J , t (3.46)

αjt ≥ 0, ∀j ∈ J , t, (3.47)

γjτ ≥ 0, ∀j ∈ J , τ, (3.48)

βi ≥ 0, ∀i ∈ I, (3.49)

Here each αjt corresponds to a constraint in (3.41), each γjτ corresponds to a

constraint in (3.42), and each βi corresponds to a constraint in (3.43).

Now we introduce our online scheduling policy. There are two variables αjt and

γjτ that the policy maintains. They can be seen as the monitors for the usage of

service capacity and buffer capacity. Initially, they are both set to be 0.
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When a job i arrives, the policy checks the values of kijt(1− αjt−
∑

τ∈[a(i),t] γτj)

for all (j, t) pairs, and selects the pair (j∗, t∗) which maximizes the value of kijt(1−

αjt −
∑

τ∈[a(i),t] γτj). If kij∗t∗(1 − αj∗t∗ −
∑

τ∈[a(i),t∗] γτj∗) > 0, job i is assigned to

server j∗, waiting to be served at time t∗. Therefore Xij∗t∗ = 1. The value of αj∗t∗

is updated to be αj∗t∗(1 +
1

Cj∗
) +

1

(dj∗ − 1)Cj∗
, where we set dj = (1 + 1/Cj)

RCj ,

for all j. Each γτj∗, for τ ∈ [a(i), t∗], is updated to be γτj∗ ← γτj∗(1 +
1

Bj∗
) +

1

(fj∗ − 1)Bj∗
, where we set fj = (1 + 1/Bj)

RBj , for all j. On the other hand, if

kij∗t∗(1 − αj∗t∗ −
∑

τ∈[a(i),t∗] γτj∗) ≤ 0, job i is discarded. The complete policy is

described in Algorithm 6.

Algorithm 6 PD Algorithm for Revised Model

1: Initially, αjt = 0, γjτ = 0, Xijt = 0.
2: dj ← (1 + 1/Cj)

RCj , ∀j.
3: fj ← (1 + 1/Bj)

RBj , ∀j.
4: for each arriving job i do
5: (j∗, t∗)← argmax(j,t) kijt(1− αjt −

∑

τ∈[a(i),t] γτj).

6: if kij∗t∗(1− αj∗t∗ −
∑

τ∈[a(i),t∗] γτj∗) > 0 then

7: βi ← 1− kij∗t∗(1− αj∗t∗ −
∑

τ∈[a(i),t∗] γτj∗)

8: αj∗t∗ ← αj∗t∗(1 +
1

Cj∗
) +

1

(dj∗ − 1)Cj∗
.

9: γτj∗ ← γτj∗(1 +
1

Bj∗
) +

1

(fj∗ − 1)Bj∗
, ∀τ ∈ [a(i), t∗]

10: Xij∗t∗ ← 1.
11: Job i is assigned to server j∗, to be served at t∗.
12: else
13: Discard job i.
14: end if
15: end for
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We first need to show that the vector {Xijt} produced by this policy satisfies all

constraints of Revised Allocation(R), so that the policy never assigns a job to a

server that is already fully utilized.

Lemma 9. Let αjt[n] be the value of αjt after n jobs are scheduled to be served by j

at t. Let γτj[n] be the value of γτj when n jobs are waiting in server j at τ and to be

served at a later time t. Then,

αjt[n] = (
1

dj − 1
)(d

n/RCj

j − 1). (3.50)

γτj[n] = (
1

fj − 1
)(f

n/RBj

j − 1). (3.51)

Proof. Here we prove (3.50) and (3.51) by induction.

Initially, when n = 0, αjt[0] = 0 = ( 1
dj−1

)(d0j − 1) and (3.50) holds.

Suppose (3.50) holds when n = k. When the (k + 1)-th job is scheduled to be

served by j at t, we have

αjt[k + 1] =αjt[k](1 +
1

Cj
) +

1

(dj − 1)Cj

=
1

(dj − 1)
(d

k/RCj

j − 1)(1 +
1

Cj
) +

1

(dj − 1)Cj

=
1

(dj − 1)
[d

(k+1)/RCj

j − 1],

and (3.50) still holds for n = k + 1. By induction, (3.50) holds for all n.

Similarly, when n = 0, γτj [0] = 0 = ( 1
fj−1

)(f 0
j − 1) and (3.51) holds.

Suppose (3.51) holds when n = k, i.e., there are k jobs waiting for service in

server j. When the (k + 1)-th job is scheduled to be served by j at time t, where

t > τ , we have
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γτj[k + 1] =γτj[k](1 +
1

Bj
) +

1

(fj − 1)Bj

=
1

(fj − 1)
(f

k/RBj

j − 1)(1 +
1

Bj

) +
1

(fj − 1)Bj

=
1

(fj − 1)
[f

(k+1)/RBj

j − 1],

and (3.51) still holds for n = k + 1. By induction, (3.51) holds for all n.

With Lemma 9, αjt = 1 when RCj jobs have been scheduled to be served by

j at t, and γτj = 1 when RBj jobs are waiting in the buffer of server j at τ . In

Algorithm 6, jobs are only allocates to servers with kijt(1−αjt−
∑

τ∈[a(i),t] γτj) > 0,

which guarantees αjt ≤ 1 and γτj ≤ 1. Thus our policy does not violate any

constraints in Revised Allocation(R).

Next, we study the competitive ratio of Algorithm 6.

Theorem 18. Algorithm 6 is (R, e
R+T
eR−1

)-competitive-per-sample-path and is (R, eR+T
eR−1

)-

competitive-in-expectation.

Proof. We prove Theorem 18 by three steps:

First, we show that solutions {αjt}, {γτj} and {βi} satisfy all constraints in

Revised Dual. Initially, αjt and γτj are set to be 0. By step 8 in Algorithm 6, αjt

and γτj are non-decreasing. Hence (3.47) and (3.48)holds. Also, by Lemma 9,

αjt ≤ 1, γτj ≤ 1, for all j. When a job i arrives, our policy selects (j∗, t∗) ←

argmax(j,t) kijt(1− αjt −
∑

τ∈[a(i),t] γτj) according to step 5. When (
∑

τ∈[a(i),t∗] γτj∗ +

αj∗t∗+) < 1, we have kijt(αjt +
∑

τ∈[a(i),t] γτj) ≥ kij∗t∗(αj∗t∗ +
∑

τ∈[a(i),t∗] γτj∗) =

1 − βi, then (3.46) and (3.49) hold. When (αj∗t∗ +
∑

τ∈[a(i),t∗] γτj∗) = 1, we have

(αjt +
∑

τ∈[a(i),t] γτj) ≥ 1 and βi = 0, (3.46) and (3.49) hold.
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Next, we derive the ratio between (3.45) and (3.40). Both formulas are initially

0. When a job i arrives, we use ∆P (R) to denote the change of
∑

ijt kijtXijt, and

∆D to denote the change of
∑

jtCjαjt ++
∑

jτ Bjγτj +
∑

i βi. If job i is discarded,

both formulas remain unchanged, therefore ∆P (R) = ∆D = 0. If job i is scheduled

to be serverd by j at t, then we have Xijt = 1 and ∆P (R) = 1. Also we have

∆D

∆P (R)
= ∆D

=Cj(
αjt

Cj
+

1

(dj − 1)Cj
) +

∑

τ∈[a(i),t]

Bj(
γτj
Bj

+
1

(fj − 1)Bj
)

+ 1− αjt −
∑

τ∈[a(i),t]

γτj

=1 +
1

dj − 1
+

∑

τ∈[a(i),t]

1

fj − 1

≤1 + 1

dj − 1
+

T

fj − 1

When we imposes a lower bound on Cj and Bj by requiring Cj ≥ Cmin and Bj ≥

Bmin, for all j, and let Cmin → ∞, Bmin → ∞, we have dj → (eR − 1) and fj →

(eR−1), and ∆D
∆P (R)

→ eR+T
eR−1

, whenever a job i is allocated to some server. Therefore,

we have, under Algorithm 6,

∑

jtCjαjt ++
∑

jτ Bjγτj +
∑

i βi
∑

ijt kijtXijt
≤ eR + T

eR − 1
.

Finally, by weak duality theorem, we establish that Algorithm 6 is (R, eR+T
eR−1

)-

competitive-per-sample-path. By Lemma 3, Algorithm 6 is also (R, eR+T
eR−1

)-competitive-

in-expectation.

In order to guarantee that at least 1 − 1
θ

of the jobs are allocated, Algorithm

6 needs to increase the capacity by R times so that eR+T
eR−1

≤ 1/(1 − 1
θ
). Therefore
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R = ln(θT+θ−T ). If buffer is not bottleneck, then the competitive ratio is (R, eR

eR−1
).

To guarantee that at least 1− 1
θ

of the jobs are allocated, we need R = ln θ. Specially,

when R = 1, this competitive ratio achieve the optimal ratio in [53].

3.8 Simulation

In this section, we evaluate the performance of the four policies, including PD,

JLU, JSQ, and JMQ by simulations. We consider three different scenarios:

First, we compare our polices with JSQ. We construct a system with two types

of servers J1, J2; and two types of jobs I1, I2. Type I1 job can be served by

type J2 server, type I2 job can be served by both J1 and J2 server. The number

of jobs and capacities of servers are shown in Table 3.1. The arrival sequence is

a random permutation of all jobs. Simulation results are the average of 10 runs.

Under different R, we computer the allocation ratio by the number of jobs allocated

with online policy dividing that with optimal offline policy. The simulation result

is shown in Fig. 3.4. We can observe that PD and JLU policies outperform JSQ.

Table 3.1: System setting for the first scenario.

Reprint with permission from [30].

Server

Type

Number
of

Servers

Capacity
Job

Type
Number
of Jobs

Ki

J1 1 25000 I1 2500 J2
J2 50 50 I2 25000 J1, J2

Next, we compare our polices with JMQ. We construct a system with two types

of servers: J1, J2; and two types of jobs: I1, I2. The setting for jobs and servers

are shown in Table 3.2. The result is shown in Fig. 3.5. We can observe that PD
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Figure 3.4: Simulation results for the first scenario.

Reprint with permission from [30].

Table 3.2: System setting for the second scenario.

Reprint with permission from [30].

Server
Type

Number
of

Servers

Capacity
Job
Type

Number

of Jobs
Ki

J1 1 2550 I1 2550 J1
J2 500 50 I2 25000 J1, J2

and JLU policies outperform JMQ.

Last, we construct a system with four types of servers: J1, J2, J3, and J4; and

four types of jobs: I1, I2, I3, I4. The detailed setting for servers and jobs are

listed in Table 3.3, which is a combination of the two previous settings. Simulation

results are shown in Fig. 3.6. We can observe that PD and JLU outperform both

JSQ and JMQ.

From Fig. 3.4 to 3.6, we notice that our proposed PD and JLU policies almost

have identical performance. Also, we notice that the allocation ratios of all four
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Figure 3.5: Simulation results for the second scenario.
Reprint with permission from [30].

Table 3.3: System setting for the third scenario.

Server

Type

Number
of

Servers

Capacity
Job

Type
Number
of Jobs

Ki

J1 1 10000 I1 2500 J2
J2 50 50 I2 10000 J1,J2
J3 1 2550 I3 2550 J3
J4 200 50 I4 10000 J3,J4
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Figure 3.6: Simulation results for the third scenario.

Reprint with permission from [30].
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policies converge to 1 as R increasing. However, JSQ and JMQ converges much

slower than PD and JLU.

In Section 3.4 we prove that PD and JLU are (R, eR

eR−1
)-competitive-in-expectation.

In Secion 3.6 we prove that both JSQ and JMQ are no better than (R, 1 + 1
R2+2R

)-

competitive-in-expectation. Although it looks like that the competitive ratio in

expectation of our policies is not as good as that of the other two policies when R

is small, the simulation results show that our policies have better allocation ratio

even with small R. Thus with random permutation of the jobs arrival sequence,

the performance of our policies are better than of JSQ and JMR policies.

3.9 Conclusion

In this section, we have studied the job allocation problem with unknown job

arriving pattern under hard allocation ratio requirement. Given the capacity of

current data center which serves all jobs offline, we aim to find how much capacity

we need to expand to meet the allocation ratio requirement for any unknown job

arrival sequence.

We propose two online policies PD and JLU which are both (R, eR

eR−1
)-competitive-

per-sample-path. We also prove that our policies can achieve any allocation ra-

tio requirement with the least capacity. Next we study the performance of two

widely used policies, JSQ and JMQ. We prove that both policies are no better

than (R, 1+ 1
R
)-competitive-per-sample-path. Therefore, they need an order higher

capacity to achieve the same allocation ratio requirement than our policies. We

further prove that JSQ nd JMQ are no better than (R, 1 + 1
R2+2R

)-competitive-in-

expectation by taking random permutation of the jobs in the arrival sequence. The

simulation results show that our policies are still better than JSQ and JMQ. Thus

our policies are much preferable than the two widely used JSQ and JMQ policies.
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4. ONLINE ROUTING IN MULTI-HOP NETWORK WITH END-TO-END

DEADLINE*

4.1 Problem Overview

Many emerging safety-critical applications, such as Internet of Things (IoT) 

and Cyber-Physical Systems (CPS), require communication protocols that support 

strict end-to-end delay and reliability guarantees for all packets. In a typical sce-

nario, when sensors detect unusual events that can cause system instability, they 

send out this information to actuators or control centers. This information needs to 

be delivered within a strict deadline for actuators or control centers to resolve the 

unusual events. The system can suffer from a critical fault when a small portion of 

packets fail to be delivered on time.

Despite the huge literature on quality of service (QoS), there is little work that 

can provide end-to-end delay and reliability guarantees simultaneously, especially 

when packet arrivals are time-varying and unpredictable. The lack of progress is 

mainly caused by two fundamental challenges. On one hand, it is obvious that one 

cannot design the optimal network policies without obtaining complete knowledge 

of future packet arrivals and incurring high computation complexity. Therefore, 

practical solutions need to rely on online suboptimal policies. On the other hand, 

in a multi-hop network, the scheduling decision of one communication link will 

impact the decisions of subsequent links. The negative effects of suboptimal de-

cisions by online policies therefore get accumulated along the path of multi-hop 

transmissions. In fact, a recent work by Mao, Koksal, and Shroff [54] has proved

*Reprinted with permission from "On the capacity requirement for arbitrary end-to-end deadline 
and reliability guarantees in multi-hop networks" by Han Deng, I-Hong Hou, 2017, ACM Sigmetrics.

[55]
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that the performance of any online policies deteriorates as the length of the longest

path in the network increases. As a result, no online policy can provide meaningful

performance guarantees when the size of the network is large.

In order to maintain desirable performance using online suboptimal policies,

current practice is to add redundancy into the system. During system deployment,

the capacities of communication links are chosen to be larger than necessary. Such

redundancy alleviates the negative impacts of suboptimal decisions by online poli-

cies. Using this approach, a critical question is to determine the amount of redun-

dancy needed to provide the desirable performance guarantees. This section aims

to answer this question [55].

We first show that the problem of maximizing the number of timely packet de-

liveries can be formulated as a linear programming problem when one knows the

complete knowledge of all future packet arrivals. In the setting of online policies,

some of the parameters of this linear programming problem will only be revealed

when the corresponding packets arrive. Therefore, online policies need to make

routing and scheduling decisions for packets without knowing all parameters. On

the other hand, we also observe that adding redundancy by increasing link capac-

ities is equivalent to relaxing a subset of constraints in the linear programming

problem. Based on these observations, we define a competitive ratio that, given

the amount of redundancy, quantifies the relative performance of online policies in

comparison to the optimal offline solution.

Using the primal-dual method, we propose an online policy that achieves good

performance in terms of competitive ratio. This policy has several important fea-

tures: First, when there is no redundancy added to the system, the performance of

our online policy is asymptotically better than that of the recent work [54] when

the size of the network increases. Second, we also show that only a small amount
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of redundancy is needed to achieve strict performance guarantees. Specifically, in

order to guarantee the timely delivery of at least 1− 1
θ

as many packets as the opti-

mal solution in a network whose longest path has length L, our policy only needs

to increase link capacities by lnL+ ln θ times. Finally, we also show that our policy

can be implemented with very low complexity.

Next, we establish a theoretical lower bound of competitive ratio for all online

policies. We show that, in order to guarantee a certain degree of performance, the

redundancy needed by our policy is only a small amount away from the theoretical

limit. In particular, when both L and θ, as defined in the previous paragraph, go

to infinity, the redundancy needed by our policy is at most twice as large as the

theoretical limit.

We also study online policies when one cannot increase network capacity by

adding redundancy. We propose another online policy and prove that it is or-

der optimal with fixed link capacity. Specifically, we show that this online policy

guarantees to deliver at least 1
O(logL)

as many packets before their deadlines as the

optimal offline solution, where L is the maximum route length. As the previous

study [54] has proved no online policy can deliver more than 1
O(logL)

packets with-

out redundancy, our policy is order-optimal.

While neither of our online policies need any information about future packet

arrivals to make routing and scheduling decisions, they are centralized algorithms

that require tight coordination. For large networks without a centralized coordi-

nator, we also propose a fully distributed protocol that is inspired by the design

principles of our centralized online policies. This distributed protocol only re-

quires each node to broadcast its local congestion information very infrequently,

and therefore it only incurs a small amount of communication overhead. When a

packet arrives at a source node, the source node determines a suggested route for
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the packet using its received congestion information, and each link on the route

makes scheduling decisions solely based on its local information.

All three of our policies are evaluated by simulations. We compare our policies

with the widely used earliest deadline first policy (EDF) and recent policy stud-

ied in [54]. Simulation results show that all our policies perform better than the

other two policies. This result is in particular surprising because our distributed

protocol even achieves better performance than the online policy in [54], which is

a centralized one.

4.2 Related Work

Online scheduling problem in real-time environment has been studied in many

previous works. Studies show that earliest deadline first algorithm (EDF) [56, 57]

and least laxity first algorithm (LLF) [57] achieve the same performance as the

optimal offline algorithm when the system is under-loaded, that is, the optimal

offline algorithm can serve all jobs in the system. In under-loaded system, all

jobs enter the system can be served by EDF and we do not need to drop any job

when it arrives at the system. However, in over-loaded system, even with optimal

offline algorithm, there are still some jobs that cannot be served. EDF and LLF

achieve the same performance as the optimal online policy when the system is

over-loaded. Also [57] proved that no online algorithm can guarantee to serve

more than 1/4 of the jobs that can be served by optimal offline algorithm and

provided an algorithm in a uniprocessor system which achieves 1/4 service bound.

[58, 59] consider admission control in online scheduling. In [58], when all jobs

have equal length, the competitive ratio of deterministic algorithm is bounded by

2. [60] considers the similar model as [58]. It introduces a parameter k to indicate

the willingness of a job to have a delay before being served. It shows that when
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all jobs have equal length, the competitive ratio of deterministic algorithm is (1 +

1/(⌊k⌋+ 1))-competitive instead.

In addition, online scheduling with multiple-server case has also been studied.

[61] studies the scheduling of equal length jobs on two identical machines. [62–64]

studies the case with parallel machines. The scheduler need to decide whether to

accept or reject a packet and which machines is chosen to serve the job. [63] has

proposed an algorithm with immediate decision which approaches e
e−1

-competitive

when the number of machines is greater or equal to 3. It also provide another

lower bound that deterministic online algorithm with immediate decision is no

better than 1.8-competitive when there are 2 machines. Later [64] has shown that

online algorithm which makes immediate decision upon job releasing is bounded

by e
e−1

-competitive for multiple machine case.

There are also many works studying the scheduling problem in multihop net-

work. An early study [65] focuses on the problem of packet scheduling with arbi-

trary end-to-end delay, fix route, and known packet injection rate. It propose a dis-

tributed algorithm which achieve a certain delay bound. [66] studies the schedul-

ing problem on a tree network. Packets arrive at an arbitrary node and they need

to be transmitted to root node before the deadlines. Any packet that cannot arrive

root node within deadline is considered lost. Thus this is also a fix route prob-

lem. The goal is to minimize the total lost packets. Shortest time to extinction

(STE) algorithm is proposed and it is shown to achieve the performance of optimal

offline policy. Also there are many works studying the end-to-end delay in multio-

hop network. Rodoplu et al. [67] have studied the problem of dynamic estimating

end-to-end delay over multi-hop mobile wireless networks. Sanada Komuro and

Sekiya [68] have used Markov-chain model to study the string-topology multi-hop

network and analyse the end-to-end throughput and delay. Jiao et al. [69] have
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studied the problem of estimating the end-to-end delay distribution for general

traffic arrival model and Nakagami-m channel model by analyzing packet delay at

each hop. Li et al. [70] ] have proposed using expected end-to-end delay for se-

lecting path in wireless mesh networks. The expected end-to-end delay takes both

queuing delay and delay caused by unsuccessful wireless transmissions. However,

their work only aims at minimizing the average end-to-end delays, and cannot

provide guarantees on per-packet delays.

Li and Eryilmaz [71] has studied the end-to-end deadline constrained traffic

scheduling in multihop network. They develop algorithms to meet the deadline

and throughput requirement in a wired network. However, they only consider

the fix route model and they do not provide any performance guarantee. Wang

et al. [72] have studied the problem of routing and scheduling on multi-hop wire-

less sensor network in order to optimize the system with the constraint of end-to-

end delay and proposed a sub-optimal algorithm. Hou [73] proposed a through-

put optimal policy for up-link tree networks with end-to-end delay constraints and

delivery ratio requierement. The packets deadlines are the end of the frames in

which they are generated. Singh and Kumar [74] have proposed a scheduling pol-

icy which maximize the throughput for multi-hop wireless networks. However, the

paper uses a fix-route model and does not consider end-to-end delay. Mao, Kok-

sal and Shroff [54] also considers a fix route problem. The network has arbitrary

packet arrival and packet weight. The paper aims to maximize the total cumula-

tive weight of packets that reach destination before their deadline. The paper has

proved that the competitive ratio of any online policy is no better than O(logL),

where L is the length of the maximum route. It has also proposed an admission

control and packet scheduling policy and shown that it is O(L logL)-competitive.

Liu and Yang [75] have studied the multi-hop routing problem with hard end-to-
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end delay and the throughput region. They also assume that packets are required

to be delivered to destination within one frame and the performance is evaluated

by simulation. Our work will focus on online routing and scheduling on multi-

hop network with end-to-end delay constraint and aim to guarantee both packet

deadline and network delivery ratio.

4.3 System Model

We consider a network with multihop transmissions. The network is repre-

sented by a directed graph where each node represents a router and an edge from

one node to another represents a link between the corresponding routers. Packets

arrive at their respective source nodes following some unknown sequence. We use

M to denote the set of all packets and L the set of all links. When a packet m ∈M

arrives at its source node, it specifies its destination and a deadline. The packet

requests to be delivered to its destination before its specified deadline. Packets

that are not delivered on time do not have any value, and can be dropped from the

network. We aim to deliver as many packets on time as possible.

We assume that time is slotted and numbered by t = {1, 2, 3, . . .}. Different

links in the network may have different link capacities, and we denote by Cl the

number of packets that link l can transmit in a time slot. At the beginning of each

time slot, each node decides which packets to transmit over its links, subject to

capacity constraints of the links. Packets transmitted toward a node in time slot

t will be received by that node at the end of the time slot, so that the node can

transmit these packets to subsequent nodes starting from time slot t+ 1.

Delivering a packet to its destination before its deadline require determining

two things: the route used to forward the packet from its source to its destination,

and the times at which the packet is transmitted along its route. We define a valid
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Figure 4.1: Network topology.

schedule for each packet m as the collection of links of a route, as well as the

times of transmissions for each of these links, so that packet m can be delivered

to its destination on time. For example, consider the network shown in Fig. 4.1.

Suppose a packet arrives at node A at time slot 1, and needs to be delivered to

node F before the end of time slot 3. One valid schedule for this packet is to

transmit it over link d in time slot 1, and then over link g in time slot 2. We

use {(d, 1), (g, 2)} to represent this valid schedule. Other valid schedules include

{(d, 1), (g, 3)}, {(e, 1), (f, 2), (g, 3)}, etc. On the other hand, {(d, 1), (g, 4)} is not a

valid schedule because the packet is delivered to its destination after its deadline at

time slot 4. The schedule {(d, 3), (g, 2)} is not valid because it would require node

D to transmit the packet over link g at time slot 2 before it receives the packet at

time slot 3. For each packet m, we let V (m) denote the set of valid schedules for

m. The problem of deciding how to deliver packets on time then becomes one of

choosing valid schedules for packets.
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We use Xmk to denote the schedule selection for packet m. If Xmk = 1, packet

m is transmitted using valid schedule k, and Xmk = 0, otherwise. Given the infor-

mation of all packets, the problem of maximizing the total number of successful

deliveries can be formulated as the following linear programming problem:

Schedule:

Max
∑

m,k:k∈V (m)

Xmk (4.1)

s.t.
∑

k:k∈V (m)

Xmk ≤ 1, ∀m ∈M, (4.2)

∑

m,k:(l,t)∈k

Xmk ≤ Cl, ∀l ∈ L, t ∈ {1, 2, . . . }, (4.3)

Xmk ≥ 0, ∀m ∈M, k ∈ V (m). (4.4)

Since Xmk = 1 if packet m is transmitted using valid schedule k, Eq. (4.1) is

the total number of packets that are delivered on time. Eq. (4.2) states that at

most one valid schedule can be chosen for each packet. Eq. (4.3) states that each

link can transmit at most Cl packets in any time slot. In practice, Xmk can only

be either 0 or 1, but our problem formulation allows Xmk to be any real number

in [0, 1]. Thus, the optimal solution to Schedule describes an upper bound on the

total number of successful deliveries.

If information of all packets is available when the system starts, the optimal

solution to Schedule can be found by standard linear programming methods. In

practice, however, packets arrive sequentially, and we need to rely on online poli-

cies that determines the values of Xmk for each arriving packet m without knowing

future packet arrivals. Without the knowledge of future arrivals, it is obvious that

online policies cannot always achieve the optimal solution to Schedule. In fact, a
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recent work [54] has shown that, when the longest path between a source node

and a destination node is L, no online policy can guarantee to deliver more than

1
log2 L

as many packets as the optimal solution. To put this number in perspective,

consider a medium-sized network with L = 8. Even when the optimal solution can

deliver all packets on time, the bound in the recent work states that no online pol-

icy can guarantee to deliver more than 1
log2 8

= 1
3

of all packets. Such performance

of online policies is unacceptable for virtually any applications.

In order to achieve good performance for online policies in the presence of

unknown future arrivals, we consider the scenario where service providers can

increase link capacities by, for example, upgrading network infrastructures. When

the link capacities are increased by R times, link l can transmit RCl packets in each

time slot. With the increase in capacities, our problem can be rewritten as follows:

Schedule(R):

Max
∑

m,k:k∈V (m)

Xmk (4.5)

s.t.
∑

k:k∈V (m)

Xmk ≤ 1, ∀m ∈M, (4.6)

∑

m,k:(l,t)∈k

Xmk ≤ RCl, ∀l ∈ L, t ∈ {1, 2, . . . }, (4.7)

Xmk ≥ 0, ∀m ∈M, k ∈ V (m). (4.8)

To evaluate the performance of online policies, we define a competitive ratio

that incorporates the increase in capacities:

Definition 4. Given a sequence of packet arrivals, let Γopt be the optimal value of

∑

mk:k∈V (m) Xmk in Schedule, and Γη(R) be the number of packets that are delivered

under an online policy η when the link capacities are increased by R times. The online
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policy η is said to be (R, ρ)-competitive if Γopt/Γη(R) ≤ ρ, for any sequence of packet

arrivals.

4.4 An Online Algorithm and Its Competitive Ratio

4.4.1 Algorithm Description

In this section, we propose an online policy based on primal-dual method and

analyze the competitive ratio. We first note that the dual problem of Schedule is:

Dual:

Min
∑

m

αm +
∑

l,t

Clβlt, (4.9)

s.t. αm +
∑

l,t:(l,t)∈k

βlt ≥ 1, ∀m ∈M, k ∈ V (m) (4.10)

αm ≥ 0, ∀m, (4.11)

βlt ≥ 0, ∀l, t, (4.12)

where αm is the Lagrange multiplier corresponding to constraint (4.2), and βlt is

the Lagrange multiplier corresponding to constraint (4.3).

By the Weak Duality Theorem, we have the following lemma:

Lemma 10. Given any vectors of {αm} and {βlt} that satisfy the constraints (4.10)–

(4.12), we have
∑

m αm +
∑

(l,t) Clβlt ≥ Γopt.

We now introduce our online algorithm. Our algorithm constructs three vari-

ables {Xmk}, {αm}, {βlt} simultaneously while ensuring they satisfy all constraints

in Schedule(R) and Dual. Initially, it sets βlt ≡ 0. When a packet m arrives, the

algorithm finds the valid schedule k∗ that has the largest value of (1−
∑

l,t:(l,t)∈k βlt)

among all k ∈ V (m). If 1 −
∑

l,t:(l,t)∈k∗ βlt ≤ 0, then the algorithm drops packet
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m and sets αm = 0 and Xmk = 0, for all k ∈ V (m). On the other hand, if

1 −
∑

l,t:(l,t)∈k∗ βlt > 0, packet m is transmitted using the valid schedule k∗. Our

algorithm sets Xmk∗ = 1, αm = 1 −
∑

l,t:(l,t)∈k∗ βlt, and updates βlt as βlt = βlt(1 +

1
Cl
)+ 1

(dl−1)Cl
for all (l, t) ∈ k∗, where dl is chosen to be (1+1/Cl)

RCl . The complete

policy is shown in Algorithm 7.

Algorithm 7 Online Algorithm with Variable R

1: Initially, αm ← 0, βlt ← 0, Xmk ← 0.
2: dl ← (1 + 1/Cl)

RCl , ∀l.
3: for each arriving packet m do
4: k∗ ← argmaxk (1−

∑

(l,t)∈k βlt)

5: if (1−
∑

(l,t)∈k∗ βlt) > 0 then

6: αm ← (1−
∑

(l,t)∈k∗ βlt)

7: βlt ← βlt(1 +
1

Cl
) +

1

(dl − 1)Cl
, (l, t) ∈ k∗

8: Xmk∗ ← 1.
9: Transmit packet m using valid schedule k∗.

10: else

11: Drop packet m.
12: end if

13: end for

4.4.2 Complexity of the Algorithm

In step 4, the algorithm finds the valid schedule k∗ that maximizes (1−
∑

l,t:(l,t)∈k βlt).

We now show that this step can be completed in polynomial time by dynamic pro-

gramming. Before presenting the algorithm, some new notations are given as fol-

lows. We say that packet m joins the network at the beginning of time slot am, and

specifies its deadline as fm. Its source node and destination node are sm and dm,

respectively. Therefore, a valid schedule for m is one that can deliver a packet from

node sm to node dm between time slots am and fm.
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Let Θ(n, τ) be the smallest value of
∑

l,t:(l,t)∈k βlt among all schedules that can

deliver a packet from node sm to node n between time slots am and τ . Θ(n, τ) =∞

if there is no schedule that delivers a pacekt from sm to dm between time slots

am and τm. Step 4 of Alg. 7 is then equivalent to finding the valid schedule that

achieves
∑

l,t:(l,t)∈k βlt = 1 − Θ(dm, fm). Since packet m arrives at the beginning of

time slot am, or, equivalently, at the end of time slot am−1, we set Θ(sm, am−1) = 0

and Θ(n, am − 1) =∞ for ∀n 6= sm.

There are only two different ways to deliver a packet to node n by the end of

time slot τ : The first is to deliver the packet to n by time slot τ − 1, in which

case
∑

l,t:(l,t)∈k βlt = Θ(n, τ − 1). The second is to deliver the packet to one of n’s

neighbors, say, node q, by time slot τ − 1, and then forward the packet along the

link lqn from q to n at time slot τ . In this case,
∑

l,t:(l,t)∈k βlt = Θ(q, τ − 1) + βlqnτ .

Therefore, we have

Θ(n, τ) = min











Θ(n, τ − 1),

Θ(q, τ − 1) + βlqnτ , q is a neighbor of n.

Based on the above recursive equation, we design an algorithm for comput-

ing Θ(n, τ). The detailed algorithm is shown in Algorithm 8, where we also use

Sch(n, τ) to denote the schedule that achieves Θ(n, τ).

In Alg. 8, the inequality Θ(q, τ − 1) + βlqnτ < Θ(n, τ) is only evaluated once for

any link and time slot. Let E be the number of links in the system. Suppose the

number of links is larger than the number of nodes, and fm − am + 1 ≤ T , for all

m, then the complexity of Alg. 8 is O(ET ).
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Algorithm 8 Dynamic Programming

1: for each arriving packet m do

2: Θ(sm, am − 1)← 0
3: Θ(n, am − 1)←∞, ∀n 6= sm
4: Sch(n, am − 1)← φ, ∀n
5: for τ = am to fm do
6: for node n do

7: Θ(n, τ)← Θ(n, τ − 1)
8: Sch(n, τ)← Sch(n, τ − 1)
9: for node n’s neighbor q do

10: if Θ(q, τ − 1) + βlqnτ < Θ(n, τ) then
11: Θ(n, τ)← Θ(q, τ − 1) + βlqnτ}
12: Sch(n, τ)← Sch(q, τ − 1) ∪ {(lqn, τ)}
13: end if
14: end for

15: end for
16: end for

17: end for

4.4.3 Competitive Ratio Analysis

Before analyzing the performance of Algorithm 7, we first establish a basic

property of the values of βlt.

Lemma 11. Let βlt[n] be the value of βlt after n packets are scheduled to use link l at

time t. Then,

βlt[n] = (
1

dl − 1
)(d

n/RCj

l − 1). (4.13)

Proof. First, note that the value of βlt is only changed when Algorithm 7 uses link

l at time t to transmit a packet. Therefore, the value of βlt only depends on the

number of packets that are scheduled to use link l at time t.

We then prove (4.13) by induction. Initially, when n = 0, βlt[0] = 0 = ( 1
dl−1

)(d0l−

1) and (4.13) holds.
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Suppose (4.13) holds for the first n packets. When the (n + 1)-th packet is

scheduled for link l at time t, we have

βlt[n+ 1] =βlt[n](1 +
1

Cl

) +
1

(dl − 1)Cl

=
1

(dl − 1)
(d

n/RCl

l − 1)(1 +
1

Cl
) +

1

(dl − 1)Cl

=
1

dl − 1
[d

n/RCl

l (1 +
1

Cl
)− 1]

We select dl = (1 + 1
Cl
)RCl , and therefore

βlt[n+ 1] =
1

(dl − 1)
[d

(n+1)/RCl

l − 1],

and (4.13) still holds for n+ 1. Thus, by induction, (4.13) holds for all n.

We now establish the competitive ratio of Algorithm 7.

Theorem 19. Let Cmin := minCl, dmin := (1 + 1/Cmin)
RCmin , and L be the longest

path between a source node and a destination node, that is, all valid schedules have

|k| ≤ L, for all m ∈ M, k ∈ V (m). Algorithm 7 produces solutions that satisfy

all constraints in Schedule(R) and Dual. Moreover, Algorithm 7 is (R, 1 + L
dmin−1

)-

competitive, which converges to (R, 1 + L
eR−1

)-competitive, as Cmin →∞.

Proof. First, we show that the dual solutions {αm} and {βlt} satisfy constraints

(4.10) to (4.12). Initially, we have βlt = 0. By Lemma 11, βlt ≥ 0 holds. Since

step 6 is only used when (1 −
∑

(l,t)∈k∗ βlt) > 0, αm ≥ 0 holds. From step 4 and 6,

we know that αm +
∑

(l,t)∈k βlt ≥ (1 −
∑

(l,t)∈k βlt) +
∑

(l,t)∈k βlt = 1. Thus (4.10) to

(4.12) hold.
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Next, we show {Xmk} satisfies constraints (4.6) to (4.8). By step 4, the algo-

rithm picks at most one schedule k∗ for packet m, constraint (4.6) holds. With

Lemma 11, βlt = 1 when RCl packets use link l at time t. Since a valid schedule

including (l, t) will be chosen for packet m only when (1 −∑

(l,t)∈k∗ βlt) > 0, all

(l, t) in the chosen valid schedule must have βlt < 1, and therefore the number of

packets transmitted over link l at time t must be less than RCl. Thus, at any time t,

there are at most RCl packets using link l. Constraint (4.7) holds. By initialization

and step (8), constraint (4.8) holds.

We derive the ratio between
∑

m αm +
∑

(l,t)Clβlt and
∑

mk Xmk. Initially, both

are equal to 0. We consider the increasing amount for both when a new packet m

arrives at the network. We use ∆P (R) to denote the change of
∑

mk Xmk, and ∆D

to denote the change of
∑

m αm +
∑

(l,t) Clβlt.

If packet m is dropped, both ∆P (R) and ∆D are 0. If packet m is accepted and

transmitted using valid schedule k∗, we have Xmk∗ = 1. Thus, ∆P (R) = 1. On the

other hand, ∆D is increased as:

∆D =αm +
∑

(l,t)∈k∗

Cl∆βlt

=(1−
∑

(l,t)∈k∗

βlt) +
∑

(l,t)∈k∗

(βlt +
1

(dl − 1)Cl
)

=1 +
∑

(l,t)∈k∗

1

(dl − 1)
≤ 1 +

L

dmin − 1

Therefore, for each packet arrival, the ratio between ∆D and ∆P (R)is no

larger than 1 + L
dmin−1

if ∆D > 0. When the algorithm terminates, we have
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∑
m αm+

∑
(l,t) Clβlt

∑
mk Xmk

≤ 1 + L
dmin−1

. By Lemma 10,
Γopt∑
mk Xmk

≤ 1 + L
dmin−1

, and the

competitive ratio of Algorithm 7 is (R, 1 + L
dmin−1

). When Cmin → ∞, dmin =

(1 + 1
Cmin

)RCmin → eR, and the competitive ratio of Algorithm 7 converges to

(R, 1 + L
eR−1

).

There are several important implications of Theorem 19. First, without increas-

ing capacity, that is, when R = 1, the competitive ratio of our policy is (1, O(L)).

In comparison, the online algorithm proposed in the recent work [54] focuses on

the special case of R = 1 and has a competitive ratio of (1, O(L logL)). Therefore,

our algorithm is asymptotically better than the online algorithm in [54]. Second,

this theorem allows us to quantify the amount of capacity needed to a certain per-

formance guarantee. Suppose the optimal solution to Schedule indeed delivers all

packets. In order to guarantee that 1− 1
θ

of the packets are transmitted to their des-

tinations before their deadlines, Theorem 19 states that we only need to increase

all link capacities by Rθ times so that 1 + L
eRθ−1

≤ 1/(1 − 1
θ
) = 1 + 1

θ−1
. Therefore,

we have Rθ = ln (L(θ − 1) + 1) ≤ lnL + ln θ. For example, if we are required to

deliver 99% of the packets and the longest path consists of 10 hops, then we need

to increase capacity by 6.9 times.

4.5 A Theoretical Lower Bound for Competitive Ratio

In Section 4.4, we showed that our policy is (R, 1 + L
eR−1

)-competitive. In this

section, we will establish a lower bound for the competitive ratio of online policies.

Theorem 20. Any online algorithm cannot be better than (R, 1+ L−2eR

(L+1)eR−L
)-competitive.

Proof. We design a network as shown in Fig 4.2. We start to construct the network

from an up-link tree, which is shown as the white nodes in Fig 4.2. Root is marked

as node D and it is the destination of all packets. There are N levels of non-root
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Figure 4.2: Network topology for lower bound analysis

nodes with N nodes in each level. Each node is connected to one node in the next

level. Nodes do not share parent except the N -th level nodes share the same root

node. At the j-th level, where 1 ≤ j ≤ N , there are
(

N
N+1−j

)

extra nodes, which is

shown as the black nodes in Fig 4.2, with each node connecting to an unique set

of N + 1− j nodes in this level. For example, there is one black node connected to

all white nodes in level 1, and there are N black nodes connected to white nodes

in level 2, where each of these black nodes is connected all but one white nodes in

level 2. Likewise, there are
(

N
N−2

)

black nodes connected to white nodes in level 3,

with each black node connected to N − 2 white nodes in level 3, and no two black

nodes are connected to the same subset of white nodes.

Next, we describe packet arrivals. Packets only arrive at black nodes. Of all

black nodes connected to the same level of white nodes, only one black node has

packet arrival. LetWj be the set of white nodes in j-th level which connects to the

black node with packet arrivals. The black nodes with packet arrivals are chosen

such that all nodes in Wj+1 are connected to those in Wj . Fig 4.3 is a simplified

network of Fig 4.2, where we omit the black nodes with no packet arrival and
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Figure 4.3: Simplified network topology for lower bound analysis

marked each black node with a number from 1 to N .

Packets arrive at nodes 1, 2, ..., N . Their destination is node D. Each link in

the network has capacity C. At the beginning of time slot 1, there are C packets

arriving at node 1. Node 1 is connected to N links: l11, l12, · · · , l1N . At the beginning

of time slot 2, there are C packets arriving at node 2. Node 2 is connected to N − 1

links: l21, l22, · · · , l2(N−1). Similarly for nodes 3, 4, · · · . At the beginning of time N ,

there are C packets arriving at node N . The deadline of all packets is N + 1. Node

N is connected only to link lN1.

When one knows which black nodes have packet arrivals, the offline optimal

algorithm is to transmit the first C packets through link l11 and the following links,

the second C packets through link l21 and the following links, . . . , and the N -th

C packets through link lN1 and the following link. The total number of delivered

packets is NC.

Next we consider the online algorithm when all links’ capacity is increased by

R times. Since online policies do not know which black nodes will have packet ar-

rivals, the optimal online policy is to distribute packets evenly among all connected
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links. That is, at time 1, each of links l1i, i = 1, 2, · · · , N , transmit C/N packets.

At time 2, each of link l2i, i = 1, 2, · · · , (N − 1), transmits C/(N − 1) packets. At

time K, link lKi, i = 1, 2, · · · , (N −K + 1), transmits C/(N −K + 1) packets. For

simplicity, we call the routes from node 1 to node D through l1i route ri. If all

packets arrive at node K are accepted, routes ri, i = K,K + 1, · · · , N have the

same load on each link. When any link on a single route reaches its capacity, the

route cannot be used for future arrival packets. Suppose the route gets over-loaded

at time K + 1, that is, packets arrive at node K are accepted and packets arrive at

node K + 1 are not fully accepted. The maximum load of a single link on route rN

is at most C
N
+ C

N−1
+ · · ·+ C

N−K+1
and at least C

N
+ C

N−1
+ · · ·+ C

N−K
. We then have:

C(
1

N
+

1

N − 1
+

1

N − 2
+ . . .+

1

N −K + 1
) ≤ RC,

and

C(
1

N
+

1

N − 1
+

1

N − 2
+ . . .+

1

N −K
) ≥ RC.

Since

∫ N+1

N−K+1

1

x
dx < (

1

N
+

1

N − 1
+

1

N − 2
+ . . .+

1

N −K + 1
),

and
∫ N

N−K−1

1

x
dx > (

1

N
+

1

N − 1
+

1

N − 2
+ . . .+

1

N −K
).

We have:

log(N + 1)− log(N −K + 1) = log
N + 1

N −K + 1
< R,
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and

log(N)− log(N −K − 1) = log
N

N −K − 1
> R.

Then we can derive the value of K as: N − N
eR
− 1 ≤ K ≤ N + 1 − N+1

eR
. The

total number of accepted packets is in the range ((N − N
eR
− 1)C, (N + 2− N+1

eR
)C).

Thus the competitive ratio of an online policy is at best (R, N
N+2−N+1

eR

). In Fig.

4.2, the longest path in the network is between the leftmost black node and the

sink, which has length L = N + 1. The competitive ratio can then be rewritten as

(R, 1 + L−2eR

(L+1)eR−L
).

Let us once again consider the scenario where online policies need to guarantee

to deliver at least 1− 1
θ

as many packets as the optimal solution. Theorem 20 states

that any online policy needs to increase its link capacities by at least Rθ times

so that 1 + L−2eRθ

(L+1)eRθ−L
≤ 1 + 1

θ−1
. Solving this equation, and we have Rθ needs

to be at least lnL + ln θ − ln(L + 2θ − 1). In comparison, our policy only needs

to increase link capacities by (lnL + ln θ) times to ensure the delivery of 1 − 1
θ

as many packets as the optimal solution. Therefore, the capacity requirement of

our policy is at most ln(L + 2θ − 1) away from the lower bound. Suppose we

fix the ratio between L and θ, and let them both go to infinity, then we have

(lnL + ln θ)/(lnL + ln θ − ln(L + 2θ − 1)) → 2. Therefore, when both L and θ are

large, our policy at most requires twice as much capacity as the theoretical lower

bound.

4.6 An Order-Optimal Online Policy with Fixed R = 1

We have shown that Alg. 7 is (R, 1 + L
dmin−1

)-competitive. Without increasing

link capacity, i.e, R = 1, the algorithm is (1, 1 + L
e−1

)-competitive, as Cmin → ∞.

While the competitive ratio of Alg. 7 is an order better than that of the online
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policy in the previous work [54], it still fails to achieve the theoretical bound of

(1, O(logL))-competitive. In this section, we propose another online algorithm and

prove that it achieves the theoretical bound when R = 1.

4.6.1 Algorithm Description

Similar to the design of Alg. 7, we aim to design an algorithm that con-

structs {Xmk}, {αm}, {βlt} while ensuring they satisfy all constraints in Schedule

and Dual. The algorithm is described in Alg. 9. One can see that Alg. 9 is very

similar to Alg. 7, and their only difference lie in the update rules for βlt. Specifi-

cally, let βlt[n] be the value of βlt when link l serves a total number of n packets at

time t. Then Alg. 9 chooses the value of βlt[n] as:

βlt[n] =



















1

L(e
1

lnL+1 − 1)
(e

n
Cl − 1), if n ≤ Cl

lnL+1
;

e
( n
Cl

−1)(lnL+1)
, if n ≥ Cl

lnL+1
.

(4.14)

To illustrate the difference in βlt, we plot the values of βlt[n] for a link with

Cl = 1000 under the two policies in Fig. 4.4, where we consider the two cases

L = 8 and L = 64 for Alg. 9. As can be shown in the figure, when n is small, Alg. 9

increases the value of βlt much slower than Alg. 7 does. Moreover, Alg. 9 increases

βlt slower when L is larger. Recall that both Alg. 7 and Alg. 9 only schedule a

packet when maxk (1−
∑

(l,t)∈k βlt) > 0, or, equivalently, mink

∑

(l,t)∈k βlt < 1. By

increasing βlt slower when n is small, Alg. 9 ensures that more packets with long

routes can be accepted, especially when the network is lightly loaded.

4.6.2 Competitive Ratio Analysis

We now prove that Alg. 9 achieves the theoretical bound in [54] by being

(1, O(logL))-competitive.

94



0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Number of packets scheduled

β

 

 

Variable R
Fixed R with L=8
Fixed R with L=64

Figure 4.4: Values of βlt under different policies.

Algorithm 9 Online Algorithm with Fixed R = 1

1: Initially, αm ← 0, βlt ← 0, Xmk ← 0.

2: for each arriving packet m do
3: k∗ ← argmaxk (1−

∑

(l,t)∈k βlt)

4: if (1−
∑

(l,t)∈k∗ βlt) > 0 then

5: αm ← (1−
∑

(l,t)∈k∗ βlt)

6: for each (l, t) ∈ k∗ do

7: if total number of packets n at time t on link l: n ≤ Cl

lnL+1
then

8: βlt ←
1

L(e
1

lnL+1 − 1)
(e

n
Cl − 1),

9: else
10: βlt ← e

( n
Cl

−1)(lnL+1)

11: end if

12: end for
13: Xmk∗ ← 1.
14: Transmit packet m using valid schedule k∗.
15: else
16: Drop packet m.

17: end if
18: end for
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Lemma 12. Let Cmin := minCl. In Algorithm 9, each time a new packet is scheduled,

the ratio between the change of Schedule and Dual is bounded by 2(lnL+ 1)+ B
Cmin

,

where the value of B is independent of Cmin.

Proof. If a new packet is admitted to the network, the increasing amount of Dual

is

∆D =αm +
∑

(l,t)∈k∗

Cl∆βlt

=1 +
∑

(l,t)∈k∗

(Cl∆βlt − βlt)

We define β(x) as

β(x) =



















1

L(e
1

lnL+1 − 1)
(ex − 1), if x ≤ 1

lnL+1
;

e(x−1)(lnL+1), if x ≥ 1
lnL+1

.

(4.15)

Note that βlt[n] = β( n
Cl
). By using Taylor Sequence, we then have

∆βlt[n] := βlt[n + 1]− βlt[n] = β(
n+ 1

Cl

)− β(
n

Cl

)

≤ 1

Cl

β ′(
n

Cl

) + ǫ
1

C2
l

β ′′(
n

Cl

),

for some bounded constant ǫ <∞, where β ′ and β ′′ are the first and second deriva-

tive of β, respectively. We note that the function β(x) is continuous for all x, and

infinitely differentiable for all x except at the point x0 :=
1

lnL+1
. At the point x0, we

define β ′(x0) = limx→x+
0
β ′(x) and ǫβ ′′(x0) = limx→x+

0
ǫβ ′′(x). This ensures that the

96



above inequality still holds.

By (4.14) we know that n ≤ Cl

lnL+1
if and only if βlt[n] ≤ 1

L
.

If x = n
Cl
≤ 1

lnL+1
, then β ′(x) = β ′′(x) = ex

L(e
1

lnL+1−1)
. We have:

Cl∆βlt[n]− βlt[n]

≤
Cl(

1
Cl
e

n
Cl ) + ǫ( 1

Cl
)2e

n
Cl )− (e

n
Cl − 1)

L(e
1

lnL+1 − 1)

≤
1 + ǫ 1

Cl
e

n
Cl

L(1 + 1
lnL+1

− 1)

≤ lnL+ 1

L
(1 + ǫ

1

Cl
e)

Let B1 = ǫe lnL+1
L

, then

Cl∆βlt[n]− βlt[n] ≤
lnL+ 1

L
+B1

1

Cmin

, (4.16)

when n
Cl
≤ 1

lnL+1
.

On the other hand, If x = n
Cl
≥ 1

lnL+1
, then β ′(x) = (lnL + 1)β(x) and β ′′(x) =

(lnL+ 1)2β(x). We have:

Cl∆βlt[n]− βlt[n]

≤Cl[
lnL+ 1

Cl

βlt[n] + ǫ(
lnL+ 1

Cl

)2βlt[n]]− βlt[n]

≤ lnL · βlt[n] +
1

Cl

ǫ(lnL+ 1)2βlt[n]
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Let B2 = ǫ(lnL+ 1)2, then

Cl∆βlt[n]− βlt[n] ≤ (lnL+B2
1

Cmin
)βlt[n], (4.17)

when n
Cl
≥ 1

lnL+1
.

If packet m is transmitted using valid schedule k∗, we have Xmk∗ = 1. Thus,

∆P = 1. On the other hand, ∆D is increased as:

∆D =1 +
∑

(l,t):(l,t)∈k∗

Cl∆βlt − βlt

≤1 +
∑

(l,t):(l,t)∈k∗,βlt≤
1
L

Cl∆βlt − βlt

+
∑

(l,t):(l,t)∈k∗,βlt≥
1
L

Cl∆βlt − βlt

From (4.16) and (4.17) we have:

∆D ≤1 +
∑

(l,t):(l,t)∈k∗,βlt≤
1
L

(
lnL+ 1

L
+B1

1

Cmin

)

+
∑

(l,t):(l,t)∈k∗,βlt≥
1
L

((lnL+B2
1

Cmin
)βlt)

From Algorithm 9 step 4 we know that
∑

βlt ≤ 1, thus we have

∆D ≤1 + (lnL+ 1 +B1
L

Cmin

) + (lnL+B2
1

Cmin

)

=2 + 2 lnL+
B1 +B2

Cmin

,

and the proof is complete.
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Theorem 21. Algorithm 9 produces solutions that satisfy all constraints in Schedule

and Dual. Moreover, it is (1, 2(1 + lnL))-competitive, as Cmin →∞.

Proof. First, we show that the dual solutions {αm} and {βlt} satisfy constraints

(4.10) to (4.12). Initially, we have βlt = 0. By (4.14), βlt ≥ 0 holds. Since step 5 is

only used when (1 −
∑

(l,t)∈k∗ βlt) > 0, αm ≥ 0 holds. From step 3 and 5, we know

that αm +
∑

(l,t)∈k βlt ≥ (1 −
∑

(l,t)∈k βlt) +
∑

(l,t)∈k βlt = 1. Thus (4.10) to (4.12)

hold.

Next, we show {Xmk} satisfies constraints (4.2) to (4.4). By step 3, the algo-

rithm picks at most one schedule k∗ for packet m, constraint (4.2) holds. With

(4.14), when the number of packets on link l at t is Cl, we have βlt = 1. Also, since

a packet is scheduled if (1 −
∑

(l,t)∈k∗ βlt) > 0, we have βlt < 1 for all (l, t) ∈ k∗.

Therefore, the number of packets transmitted on link l at any time t is at most Cl.

Constraint (4.3) holds. By initialization and step (13), constraint (4.4) holds.

When a new packet m arrives, it will either be dropped or scheduled. If it is

dropped, both ∆P and ∆D are 0. If it is scheduled, both (4.9) and (4.1) increase.

With Lemma 12,the ratio between ∆P and ∆D is bounded by 2(1 + lnL) + B
Cmin

.

Therefore the competitive ratio of Algorithm 9 is (1, 2(1 + lnL) + B
Cmin

)→ (1, 2(1 +

lnL)), as Cmin →∞.

Thus, comparing with the result in [54], Algorithm 9 achieves the optimal com-

petitive ratio when R = 1.

4.7 A Fully Distributed Protocol for Implementation

The two algorithms that we have proposed so far are both centralized algo-

rithms. Specifically, when a packet arrives at a node, the node needs to have

complete knowledge of all βlt of all links to find a valid schedule. Such information
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is usually infeasible to obtain. In this section, we propose a distributed protocol

based on the design of Algorithm 7.

In our distributed protocol, the task of transmitting a packet to its destination

is decomposed into two parts: First, when a packet arrives at a node, the node

determines a suggested schedule based on statistics of past system history. This

suggested schedule consists of the route for forwarding the packet, as well as a

local deadline for each link. After determining the suggested schedule, the node

simply forwards it to the first link of the route. On the other hand, when a link

receives a packet along with a suggested schedule, the link tries to forward the

packet to the next link in the suggested schedule before its local deadline. The link

drops the packet when it cannot forward the packet on time.

To facilitate this protocol, each link keeps track of its own βlt, which reflects the

number of packets that are scheduled to be transmitted over link l at time t. The

value of βlt changes over time, as link l schedules more and more packets to be

transmitted at time t. Therefore, we define βlt,t̂ as the value of βlt when the current

time is t̂. Each link then measures γl,τ as the average of βlt,t−τ . In other words,

when the current time is t0, the expected value of βlt is γl,t−t0. Link l broadcasts its

γl,τ periodically so that all nodes can estimate the values of βlt.

We now describe how a node determines a suggested schedule upon the arrival

of a packet. Suppose a packet arrives at time t0. Following the Alg. 8, the node

would like to find a valid schedule that maximizes (1 −∑

l,t:(l,t)∈k βlt). In practice,

the node does not know the exact value of βlt. However, it knows that the expected

value of βlt is γl,t−t0 . In our protocol, the node assumes that βlt = γl,t−t0, and then

finds a valid schedule k∗ that maximizes (1−
∑

(l,t)∈k γl,t−t0). Similar to Alg. 8, the

node drops the packet if (1−
∑

(l,t)∈k∗ γl,t−t0) ≤ 0. If (1 −
∑

(l,t)∈k∗ γl,t−t0) > 0, then

the node puts information of k∗ into the header of the packet, and forwards the
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packet to the first link in k∗.

Algorithm 10 Distributed Implementation: Schedule Suggestion for Each Node

1: for each arriving packet m do

2: t0 ← current time
3: k∗ ← argmaxk (1−

∑

(l,t)∈k γl,t−t0)

4: if (1−
∑

(l,t)∈k γl,t−t0) > 0 then
5: Put information of the suggested schedule k∗ in the header of packet m.

6: Forward the packet to the first link in k∗.
7: else
8: Drop packet m.

9: end if
10: end for

Since the actual value of βlt can be different from γl,t−t0 , there is no guaran-

tee that a packet can be delivered on time using the valid schedule k∗ even if

(1 −
∑

(l,t)∈k∗ γl,t−t0) > 0. Therefore, when a node determines a valid schedule k∗

for a packet, the valid schedule k∗ is treated only as a suggestion for links in k∗.

Specifically, if k∗ contains an entry (l∗, t∗), then the link l∗ interprets k∗ as a re-

quirement that l∗ needs to forward the packet to the next link before t∗, or drops

the packet. When l∗ obtains the packet, it still has the freedom to choose when to

forward the packet, as long as the packet is forwarded before time t∗.

Next, we discuss how each link determines the actual time to transmit each

packet. Obviously, each link l∗ knows its own βl∗t. From the design of Alg. 8, we

can see that Alg. 8 prefers to transmit packets when βlt is small. Our proposed

policy is based on this principle. When a link l∗ receives a packet, it finds the entry

(l∗, t∗) from the valid schedule k∗ specified in the header of the packet. Link l∗

then finds a time ttx between the current time and t∗ that has the smallest βl∗t,

and transmits the packet at time ttx. Alg. 11 describes the details of the policy for
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packet transmission.

Algorithm 11 Distributed Implementation: Packet Transmission for Each Link

1: for each packet m do
2: Upon m’s arrival at a link l∗, the link reads schedule information k∗ from the

header of the packet. Let t∗ be the local deadline such that (l∗, t∗) ∈ k∗.
3: t∗tx ← argminttx:ttx≤t∗ βl∗,ttx

4: if βl∗,t∗tx < 1 then

5: βl∗t∗tx ← βl∗,t∗tx(1 +
1

Cl∗
) +

1

(dl∗ − 1)Cl∗

6: Transmit packet m on link l∗ at time t∗tx.
7: else
8: Drop packet m.

9: end if
10: end for

4.8 Simulation

In this section, we evaluate the performance of our policies by simulation. We

compare our algorithms with EDF policy and the policy, which we call Mao-Koksal-

Shroff (MKS) online algorithm, proposed in [54]. Both EDF policy and MKS online

algorithm focus on packet scheduling, and are applicable only when the route of

the packet is given. For these two policies, we assume that each packet is routed

through the shortest path.

We first consider a small network as shown in Fig 4.5. The network has 9

nodes from node 1 to node 9. There are directed arrows showing the directed links

between nodes. All links have the same capacity C = 1. We assume that there are

1000 packets arriving at the system. For each packet, the source node is chosen

uniformly at random between node 1 to node 6, and the destination is chosen

uniformly at random between node 7 to node 9. The inter-arrival time between
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Figure 4.5: Network topology for a small network

packets are chosen to be 0 with probability 0.7 and 1 with probability 0.3. The

deadline of each packet equals its arrival time plus a slack time. The slack time is

chosen uniformly from integers between 2 and 6.

Simulation results for different values of R are shown in Fig. 4.6. From the

result, we can see that all our three policies outperform two other current policies.

From the figure, we can see that all our policies are able to deliver all packets when

R is 2. On the other hand, EDF is able to deliver all packets when R = 3, and MKS

can deliver all packets only when R is as large as 6. We also note that both EDF

and MKS are centralized policies. The fact that our distributed algorithm performs

better than these two centralized policies further highlights the superiority of our

algorithms.

Next, we consider that different links can have different capacities. Since MKS

requires all links to have the same capacity, we only compare our policies against

EDF. The network topology is also shown in Fig 4.5. We assume that, when R = 1,

the link capacity are integers uniformly chosen from 5 to 10. There are 10000 i.i.d
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Figure 4.6: Deliver ratio comparison when all links have the same capacity.

packets to be delivered. At the beginning of each time slot, there are a certain

number of packets arriving the system. The source node and destination node are

both chosen from node 1 to node 9 with equal probability and destination node is

not allowed to be the same with source node. The number of packets is randomly

chosen between 100 and 500. Each packet has a slack time between arrival and

deadline, which is uniformly chosen from [2, 6]. The result is shown in Fig 4.7.

Once again, we see that our policies, including the distributed algorithm, perform

much better than EDF in most cases.

Finally, we simulate and compare the policies in a 7 × 7 grid network as shown

in Fig. 4.8. The link capacity are integers uniformly chosen from 1 to 10. At the

beginning of each time slot, packets arrive at node 1, 4, and 7. Each node receive

49 packets and the packet are evenly delivered to node 43 to node 49 with relative

deadlines from 15 to 21, respectively. The system is tested for a running time of

300 time slots. In this large grid network, we also compare our policies with EDF.

104



1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

R

D
el

iv
er

 r
at

io

 

 

Online Algorithm with Variable R
Online Algorithm with Fix R=1
EDF Algorithm
Distributed Algorithm

Figure 4.7: Deliver ratio comparison when links have different capacities.

The result is shown in Fig 4.9.

From the result, we can see that as the origin and destination node increase, the

routing gets more complicated, and number of packets increases, the congestion

on the network increases. In this setting, both our policies outperform EDF policy.

Also, the distributed policy provide a satisfied delivery ratio. With smaller link

capacity, the distributed algorithm even outperform all three other policies.

4.9 Conclusion

In this section, we study the multi-hop network scheduling problem with end-

to-end deadline and hard transmission rate requirement. Given the capacity of

each link in the network, we aim to find out how much capacity we need to increase

to guarantee the required ratio of packets can be successfully transmitted to its

destination before its deadline without knowing the packet arrival sequences in

advance.

We have proposed an online algorithm which works for both fix route and non-
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Figure 4.8: Network topology for a 7 by 7 network
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Figure 4.9: Deliver ratio in grid network
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fix route network. The algorithm is proved to be (R, 1 + L
eR−1

)-competitive, where

L is the length of the longest path. We have also showed that the complexity of

our algorithm is O(ET ), where E is the total number of links and T is the largest

slack time. Next, we have showed that any online algorithm cannot be better than

(R, 1+ L−2eR

(L+1)eR−L
)-competitive. When both L and required deliver rate are large, our

policy requires at most twice as much capacity as the lower bound. In addition, We

have proposed an online algorithm for fixed capacity network. When the capacity

cannot be increased, our algorithm is proved to be (1, O(logL))-competitive, which

is also an order-optimal policy. For practical implementation of our centralized

algorithm, we have proposed a heristic for distributed algorithm so that each node

can make decisions without requiring real-time information from all other nodes.

In addition to the theoretical results, we compare our policies with two other online

policies, including the widely-used EDF policy and a recent proposed policy, by

simulation. The results show that the performance of our policies are better than

the other two policies. Also the result shows that the distributed algorithm still

provide a good delivery ratio.
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5. CONCLUSION

In the dissertation, we aim to explore the trade-off between system redundancy

and system performance in online scheduling. We define a new competitive ratio

to quantify the system performance with the increased system redundancy, instead

of simply considering the performance ratio of an online policy and the offline

optimal policy.

We have studied three network applications and explored the new defined com-

petitive ratio for each application.

The first application is delayed mobile offloading, in which case WiFi is used

to reduce mobile traffic when users have unpredictable movement pattern. We

propose two online algorithms and study their competitive ratio. We show that

they achieve optimal performance and have better performance than other three

commonly used algorithms. To achieve same offload ratio, our policies only need

half as much capacity as the three commonly used policies.

Second, we study online job allocation problem. Jobs arrive the system in se-

quence and each job reveals its service constraint upon arrival. The constraint

include server subset and deadline. We design two online policies to maximize the

total jobs served by the system. With the two policies, we study how much server

capacity is needed to guarantee a certain allocation ratio of all arriving jobs. Then

we study the performance of optimal online policy and prove that the proposed

policies are optimal. We also compare our proposed policies with two other com-

monly used policies. We consider both worst-case arrival sequence and random job

arrival sequences. We show that our policies need much less capacity to achieve

the same performance of the other two policies in the two cases.
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Last, we study the online routing in multi-hop end-to-end network. Packets

arrive the network in sequence and reveal destination node and deadline upon ar-

rival. We propose online policies which work for both fix route and non-fix route

network. We show that our policies have better performance than the policy of a

recent study. Also, based on the centralized policy, we propose an heuristic dis-

tributed algorithm for practical implementation. In the distributed algorithm, each

node receive the information of the whole network periodically and make routing

decision based on the received information. One future problem is to consider if

there is an optimal policy which jointly considers the delivery rate and capacity

increasing.
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