10,485 research outputs found

    Decentralized Release of Self-emerging Data using Smart Contracts

    Get PDF
    In the age of Big Data, releasing protected sensitive data at a future point in time is critical for various applications. Such self-emerging data release requires the data to be protected until a prescribed data release time and be automatically released to the recipient at the release time, even if the data sender goes offline. While straight-forward centralized approaches provide a basic solution to the problem, unfortunately they are limited to a single point of trust and involve a single point of control. This paper presents decentralized techniques for supporting self-emerging data using smart contracts in Ethereum blockchain networks. We design a credible and enforceable smart contract for supporting self-emerging data release. The smart contract employs a set of Ethereum peers to jointly follow the proposed timed-release service protocol allowing the participating peers to earn the remuneration paid by the service users.We model the problem as an extensive-form game with imperfect information to protect against possible adversarial attacks including some peers destroying the private data (drop attack) or secretly releasing the private data before the release time (release-ahead attack). We demonstrate the efficacy and attack-resilience of the proposed techniques through rigorous analysis and experimental evaluation. Our implementation and experimental evaluation on the Ethereum official test network demonstrate the low monetary cost and the low time overhead associated with the proposed approach and validate its guaranteed security properties

    Protecting data privacy with decentralized self-emerging data release systems

    Get PDF
    In the age of Big Data, releasing private data at a future point in time is critical for various applications. Such self-emerging data release requires the data to be protected until a prescribed data release time and be automatically released to the target recipient at the release time. While straight-forward centralized approaches such as cloud storage services may provide a simple way to implement self-emerging data release, unfortunately, they are limited to a single point of trust and involves a single point of control. This dissertation proposes new decentralized designs of self-emerging data release systems using large-scale peer-to-peer (P2P) networks as the underlying infrastructure to eliminate a single point of trust or control. The first part of the dissertation presents the design of decentralized self-emerging data release systems using two different P2P network infrastructures, namely Distributed Hash Table (DHT) and blockchain. The second part of this dissertation proposes new mechanisms for supporting two key functionalities of self-emerging data release, namely (i) enabling the release of self-emerging data to blockchain-based smart contracts for facilitating a wide range of decentralized applications and (ii) supporting a cost-effective gradual release of self-emerging data in the decentralized infrastructure. We believe that the outcome of this dissertation would contribute to the development of decentralized security primitives and protocols in the context of timed release of private data

    On Using Blockchains for Safety-Critical Systems

    Full text link
    Innovation in the world of today is mainly driven by software. Companies need to continuously rejuvenate their product portfolios with new features to stay ahead of their competitors. For example, recent trends explore the application of blockchains to domains other than finance. This paper analyzes the state-of-the-art for safety-critical systems as found in modern vehicles like self-driving cars, smart energy systems, and home automation focusing on specific challenges where key ideas behind blockchains might be applicable. Next, potential benefits unlocked by applying such ideas are presented and discussed for the respective usage scenario. Finally, a research agenda is outlined to summarize remaining challenges for successfully applying blockchains to safety-critical cyber-physical systems

    Beyond Bitcoin: Issues in Regulating Blockchain Transactions

    Get PDF
    The buzz surrounding Bitcoin has reached a fever pitch. Yet in academic legal discussions, disproportionate emphasis is placed on bitcoins (that is, virtual currency), and little mention is made of blockchain technology—the true innovation behind the Bitcoin protocol. Simply, blockchain technology solves an elusive networking problem by enabling “trustless” transactions: value exchanges over computer networks that can be verified, monitored, and enforced without central institutions (for example, banks). This has broad implications for how we transact over electronic networks. This Note integrates current research from leading computer scientists and cryptographers to elevate the legal community’s understanding of blockchain technology and, ultimately, to inform policymakers and practitioners as they consider different regulatory schemes. An examination of the economic properties of a blockchain-based currency suggests the technology’s true value lies in its potential to facilitate more efficient digital-asset transfers. For example, applications of special interest to the legal community include more efficient document and authorship verification, title transfers, and contract enforcement. Though a regulatory patchwork around virtual currencies has begun to form, its careful analysis reveals much uncertainty with respect to these alternative applications

    The Paradoxical Effects of Blockchain Technology on Social Networking Practices

    Get PDF
    Blockchain technology is a promising, yet not well understood, enabler of large-scale societal and economic change. For instance, blockchain makes it possible for users to securely and profitably share content on social media platforms. In this study, w
    • …
    corecore