
PROTECTING DATA PRIVACY WITH

DECENTRALIZED SELF-EMERGING DATA

RELEASE SYSTEMS

by

Chao Li

B.S., Dalian University of Technology, China, 2012

B.S., University of Edinburgh, UK, 2012

M.S., Imperial College London, UK, 2013

Submitted to the Graduate Faculty of

the School of Computing and Information in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2019

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Chao Li

It was defended on

April 10, 2019

and approved by

Dr. Balaji Palanisamy, School of Computing and Information, University of Pittsburgh

Dr. James Joshi, School of Computing and Information, University of Pittsburgh

Dr. Prashant Krishnamurthy, School of Computing and Information, University of

Pittsburgh

Dr. Wei Gao, Department of Electrical and Computer Engineering, University of

Pittsburgh

Dissertation Director: Dr. Balaji Palanisamy, School of Computing and Information,

University of Pittsburgh

ii

PROTECTING DATA PRIVACY WITH DECENTRALIZED

SELF-EMERGING DATA RELEASE SYSTEMS

Chao Li, PhD

University of Pittsburgh, 2019

In the age of Big Data, releasing private data at a future point in time is critical for var-

ious applications. Such self-emerging data release requires the data to be protected until

a prescribed data release time and be automatically released to the target recipient at the

release time. While straight-forward centralized approaches such as cloud storage services

may provide a simple way to implement self-emerging data release, unfortunately, they are

limited to a single point of trust and involves a single point of control.

This dissertation proposes new decentralized designs of self-emerging data release systems

using large-scale peer-to-peer (P2P) networks as the underlying infrastructure to eliminate a

single point of trust or control. The first part of the dissertation presents the design of decen-

tralized self-emerging data release systems using two different P2P network infrastructures,

namely Distributed Hash Table (DHT) and blockchain. The second part of this dissertation

proposes new mechanisms for supporting two key functionalities of self-emerging data release,

namely (i) enabling the release of self-emerging data to blockchain-based smart contracts for

facilitating a wide range of decentralized applications and (ii) supporting a cost-effective

gradual release of self-emerging data in the decentralized infrastructure. We believe that the

outcome of this dissertation would contribute to the development of decentralized security

primitives and protocols in the context of timed release of private data.

Keywords: data privacy, decentralization, timed release, blockchain, DHT, smart contract.

iii

TABLE OF CONTENTS

PREFACE . xi

1.0 INTRODUCTION . 1

1.1 Overview of research tasks . 5

1.2 Chapters overview . 10

2.0 LITERATURE REVIEW . 11

2.1 Timed-release of private data . 11

2.2 Cryptocurrency-driven enforcement . 13

2.3 Privacy-preserving data perturbation . 16

3.0 SELF-EMERGING DATA RELEASE USING DISTRIBUTED HASH

TABLES . 18

3.1 System overview . 20

3.1.1 DHT-based decentralized self-emerging data release system 20

3.1.2 Adversary models . 21

3.1.3 Churn impact . 22

3.2 Self-emerging data release protocols . 23

3.2.1 One-hop scheme . 24

3.2.2 Adjusted one-hop scheme . 26

3.2.3 Multi-hop scheme . 29

3.3 Experimental evaluation . 31

3.3.1 Experimental setup . 31

3.3.2 Experimental results . 32

3.4 Summary and discussion . 36

iv

4.0 SELF-EMERGING DATA RELEASE USING ETHEREUM

BLOCKCHAIN NETWORK . 37

4.1 System overview . 39

4.1.1 Self-emerging data release system using Ethereum blockchain infras-

tructure . 40

4.1.2 Self-emerging data release service protocol 40

4.1.3 Attack models . 42

4.1.4 Assumptions . 44

4.2 Self-emerging data release service protocol 45

4.2.1 Peer registration . 45

4.2.2 Service setup . 46

4.2.3 Service enforcement . 50

4.2.4 Reporting mechanism . 54

4.3 Implementation . 56

4.3.1 Implementation . 56

4.3.2 Experimental evaluation . 59

4.4 Summary and discussion . 63

5.0 PRIVACY-PRESERVING TIMED EXECUTION OF

SMART CONTRACTS . 64

5.1 Overview of timed execution in Ethereum 67

5.1.1 Problem statement . 67

5.1.2 Privacy-preserving timed execution 68

5.1.3 Protocol overview . 69

5.1.4 Security challenges and attack models 70

5.2 Protocol description . 72

5.2.1 Trustee application . 72

5.2.2 User schedule . 74

5.2.3 Function Execution . 78

5.2.4 Misbehavior report . 78

5.3 Security analysis . 80

v

5.3.1 Rational adversary . 81

5.3.2 Malicious adversary . 83

5.4 Implementation . 85

5.4.1 Implementation of protocol . 85

5.4.2 Experimental evaluation . 88

5.5 Summary and discussion . 90

6.0 GRADUAL RELEASE OF PRIVATE DATA OVER TIME 92

6.1 Cost-effective gradual release of private data 93

6.2 Gradual release of association data . 96

6.2.1 Overview of Concepts and Models 96

6.2.2 Reversible association data perturbation 99

6.2.3 Experimental Evaluation . 102

6.3 Gradual release of location data . 105

6.3.1 Overview of Concepts and Models 105

6.3.2 Reversible Location Cloaking . 108

6.3.3 Experimental Evaluation . 110

6.4 Summary and discussion . 113

7.0 CONCLUSION AND FUTURE DIRECTIONS 114

7.1 Conclusion . 114

7.2 Future directions . 115

APPENDIX A. DISTRIBUTED HASH TABLE 117

APPENDIX B. BLOCKCHAIN AND SMART CONTRACT 120

APPENDIX C. REVERSIBLE ASSOCIATION DATA PERTURBATION 124

C.1 Reversible edge perturbation . 124

C.2 Reversible node permutation . 125

C.3 Reversible edge permutation . 126

APPENDIX D. REVERSIBLE LOCATION DATA PERTURBATION . . 128

D.1 Reversible global expansion . 128

D.2 Reversible pre-assignment-based local expansion 129

APPENDIX E. PUBLICATION LIST . 132

vi

BIBLIOGRAPHY . 134

vii

LIST OF TABLES

1 Peer registration . 46

2 Service setup . 47

3 Service enforcement . 51

4 Reporting . 55

5 Summary of functions in the smart contract 57

6 Security evaluation . 61

7 Trustee application . 73

8 User schedule . 75

9 Function execution . 77

10 Misbehavior report . 79

11 Key off-chain functions in node.js, share() and combine() are in secrets.js [113],

ecsign() is in ethereumjs-util [53], encrypt() and decrypt() are in eth-ecies [51],

soliditySha3() is in web3-utils [127] . 86

12 Key on-chain functions in solidity, the three colored functions are in proxy

contract Cp, the rest of the functions are in scheduler contract Cs 87

13 Test instances . 88

14 Call count of functions in a single schedule 89

viii

LIST OF FIGURES

1 An overview of research tasks . 6

2 Commitment-based secure computation using Ethereum 15

3 DHT-based decentralized self-emerging data release system 20

4 One-hop scheme . 26

5 Adjusted one-hop scheme . 26

6 Multi-hop scheme . 28

7 Varying emerging time period T . 32

8 Varying path construction resource N . 34

9 l upper bound selection . 35

10 Blockchain-based decentralized self-emerging data release system 39

11 Peer selection . 49

12 Game tree induced by service enforcement protocol 53

13 Peer selection . 59

14 Performance evaluation . 61

15 At time t1, Bob wants to schedule function reveal(amount,nonce) in contract Sealed-

BidAuction [129] to be executed during a future time window we 68

16 Protocol overview . 71

17 User schedule example . 77

18 Schedule success rate when 5% of trustees perform misbehaviors inadvertently 81

19 Schedule success rate when 50% of trustees are malicious 82

20 Gas cost . 89

21 Time overhead . 90

ix

22 All-or-nothing release and gradual release . 92

23 Using encryption keys for gradual release of private data 94

24 Cost-effective gradual release of private data by using perturbation keys . . . 95

25 Multilevel reversible association data privacy 98

26 Encoding . 101

27 Decoding . 101

28 Algorithm performance . 103

29 Multi-level performance . 104

30 Multilevel reversible location anonymization 107

31 Reversible global expansion . 108

32 Reversible pre-assignment-based local expansion 108

33 Performance with Varying Anonymity Level 110

34 Consistent hashing . 118

35 Routing protocol in Chord . 118

36 Blockchain structure in Bitcoin . 121

x

PREFACE

I would like to express my gratitude to many people who have been playing indispensable

roles during the entire journey of my PhD study.

Firstly and foremost, I am deeply grateful to my advisor Prof. Balaji Palanisamy. During

the past five years, he has been patiently mentoring, directing and supporting my research

work. He has set an example of excellence as a researcher, mentor and instructor.

I would also like to appreciate the help from my committee members, Prof. James Joshi,

Prof. Prashant Krishnamurthy and Prof. Wei Gao, for their insightful suggestions and

valuable guidance through my dissertation study.

Great thanks also goes to my fellow colleagues and my friends in Pittsburgh, for all the

happy times in and out of the lab during the past five years.

Finally, I would like to give my endless gratitude to my parents and my fiancee, whose love

and support have always been the greatest inspiration for me in my pursuit for betterment.

xi

1.0 INTRODUCTION

In the age of Big Data, releasing private data at a future point in time is critical for various

applications. Such private data release requires the data to be protected until a prescribed

data release time and be automatically released to the target recipient at the release time.

The hidden private data appears to emerge by itself to the data recipient at the release time

without any assistance from the data sender, and thus has been referred to as self-emerging

data [81, 82, 83, 84].

Such self-emerging data is widely found in practice. Examples include secure auction

systems (bidding information needs protection until all bids arrive), copyrights-aware data

publishing (data is automatically released when the copyright expires), secure voting mech-

anisms (votes are not allowed to be accessed until the end of the polling process), and

post/tweet scheduler (schedule content to automatically post at optimal times). In the

above examples, self-emerging data is released in an all-or-nothing manner, indicating that

the complete information carried by the hidden data is revealed at a single release time. Self-

emerging data may also get gradually released through multiple release times, allowing the

carried information to be gradually revealed over time. Examples include data of individuals

with privacy requirements that relax over time [77]. For instance, personal data of individ-

uals (e.g., location trajectory patterns, shopping patterns, travel history) collected during

their lifetime may be sensitive during the childhood and youth life of an individual, however,

the sensitivity of such data may decrease as the individual ages and may drop significantly

after the end of the individuals life and a few decades after the end of the individuals life.

Centralized storage systems such as cloud storage services [1, 7, 8] may provide a simple

and straight-forward approach for implementing self-emerging data release. The storage

service provider may simply keep the sensitive data until the prescribed release time and

1

make it available at the release time. However, such a centralized approach significantly

limits the data protection to a single point of trust and a single point of control. Even in

cases when the service providers are trustworthy, such centralized models lead to channels of

attacks beyond the control of service providers for an adversary to breach the security and

privacy of the data. It includes insider attacks [34, 98], external attacks on the centralized

data infrastructure, malware and large-scale denial-of-service attacks [3, 10]. In 2014, 28% of

the respondents of the US State of Cybercrime Survey [34] reported being victims of insider

attacks and 32% reported that insider attacks were more damaging than attacks performed

by outsiders.

One possible method for reducing risks encountered by the use of a single centralized

service provider is to replace the single service provider with multiple service providers and

apply techniques such as secret sharing scheme [114] to make the multiple service providers

jointly implement self-emerging data release. However, as long as the identities of the service

providers are public, adversaries may still easily locate the service providers and try to

compromise them through various types of attacks. As a result, the attack resilience of

using multiple service providers highly depends on the number of involved service providers,

while an increased number of service providers usually also make the cost of running the

service get higher.

Motivated by the aforementioned discussion, this dissertation proposes new decentralized

designs of self-emerging data release systems. Inspired by BitTorrent [25] and Tor [123],

we observe that the properties of large-scale peer-to-peer (P2P) networks help resolve the

challenges encountered by the previous methods. In a P2P network, each peer is able to

work as a service provider of releasing self-emerging data. Then, the service providers of a

specific service request could be a small group of randomly selected peers, whose identities

are hard to be disclosed due to the pseudonymity and anonymity of P2P networks. Thus,

attacks targeting the service providers of a specific service request, as launched in the previous

methods where the identities of service providers are public, can hardly be successfully carried

out in the context of P2P networks because locating these service providers is extremely

difficult considering the size of large-scale P2P networks.

In this dissertation, we study the use of two well-known types of P2P networks, namely

2

Distributed Hash Table (DHT) [91, 119] and blockchain [100, 128], as the underlying infras-

tructure of designing self-emerging data release systems.

The dissertation starts from investigating approaches to implement self-emerging data

release using P2P networks running DHT protocols. The classical DHT protocols such as

Chord [119] and Kademlia [91] have been widely used to enable efficient lookup among peers

of a P2P network. The protocols require each peer to maintain links to a few neighbors

(maximum O(log n) neighbors in a network of size n), so a message corresponding to a

given key can be routed within O(log n) hops from any peer in the network to a peer closest

to the key. With such protocols, self-emerging data can get secretly routed from the sender

to the recipient along a pre-determined pseudo-random routing path so that the data can be

recovered exactly at the release time by the recipient. However, we observe that the use of a

DHT infrastructure may lead to new challenges that are specific to P2P networks, including

churn (i.e. nodes join and leave the P2P network) and new attacks relevant to the Sybil

attack [48]. To resolve these challenges under the assumption that DHT peers may behave

either honestly or maliciously, we propose to split self-emerging data into multiple fragments

using erasure coding [126] and leverage the increased redundancy to make the data resist

against the aforementioned threats.

After studying the use of a DHT infrastructure, the dissertation employs a blockchain

infrastructure [128] that offers more robust and attractive features including decentralized

democratized trust and native cryptocurrencies with monetary value. A blockchain is a

distributed ledger, which publicly records data as a chain of blocks with each block containing

the hash of its previous block. To falsify data in a blockchain, adversaries must hold enormous

resources (e.g., computation power in Proof-of-Work consensus protocol [100], amount of

stake in Proof-of-Stake consensus protocol [74]) that can compete with the sum of resources

owned by the rest peers in the network. The great difficulty in successfully launching such

attacks solidifies peers’ confidence that the data recorded in a blockchain is verifiable and

permanent, thus creating a decentralized trust among the mutually distrusting peers. This

decentralized trust, fueled by the monetary value of native cryptocurrencies, provides new

possibilities of resolving the challenges of churn and attacks in the new context of blockchain

infrastructure. Instead of requiring the majority of peers to perform honestly as assumed

3

in the context of DHT infrastructure, the blockchain infrastructure allows us to assume

that all the peers are adversaries with rationality [47, 61, 62, 103], which is more in line

with practical market rules. The protocols of implementing self-emerging data release in the

blockchain infrastructure can then be programmed as an enforceable smart contract [128]

through which each peer serving for a specific service request needs to pay a certain amount

of cryptocurrency as the security deposit. In this way, we are able to make rational peers

always choose to honestly comply with the protocols, instead of tending to perform any

misbehavior violating the protocols, as such misbehaviors will make their security deposit

get confiscated.

Having demonstrated feasibility of releasing self-emerging data in the blockchain infras-

tructure, our further research about the blockchain infrastructure shows that it is possible

to release self-emerging data not only to the accounts belonging to peers, but also to the

accounts belonging to smart contracts. The rapid development of blockchain techniques has

made smart contracts get widely adopted as the back-end logic for running the emerging

decentralized applications (DAPP) such as decentralized voting and bidding systems [2, 92].

A mechanism that supports releasing self-emerging data to smart contracts can thus facili-

tate a wide range of decentralized applications, allowing users to schedule their target smart

contracts to be automatically executed at future points of time, without revealing their

private input data (i.e., self-emerging data) before the expected execution time. However,

unlike accounts belonging to peers, the smart contract accounts are passive and transpar-

ent, making the previous solutions not applicable. To overcome this difficulty, we design

a new mechanism that makes self-emerging data get released to a proxy contract deployed

by the user, which then automatically calls the target smart contract on behalf of the user.

The mechanism jointly applies techniques of data redundancy and cryptocurrency-driven

enforcement and can handle rational adversaries and malicious adversaries altogether.

Finally, having explored the system design using different types of P2P network infras-

tructures and the release of self-emerging data to different types of recipients, the dissertation

investigates the possible options of inputting the self-emerging data to the designed system

under different circumstances. Specifically, we find that in the circumstance of gradually re-

leasing self-merging data through multiple release times, for the purpose of reducing the cost

4

of maintaining multiple snapshots of large-size private data, it would be more desirable to per-

turb the data in a reversible way using perturbation keys so that a single maintained snapshot

is capable of revealing multiple levels of information at multiple prescribed release times. Un-

fortunately, existing privacy-preserving data perturbation mechanisms [38, 49, 54, 71, 73, 85]

do not meet our requirements because the randomness involved in these mechanisms makes

the perturbed data hard to be recovered. Therefore, we propose a new set of mechanisms that

applies perturbation keys as the seeds of a generator of pseudo-randomness and replaces any

randomness involved in the conventional data perturbation mechanisms with such pseudo-

randomness so that the same keys, upon being released by the designed system, could be

used by the recipients to reverse the perturbation process and reduce the perturbation level.

We demonstrate the effectiveness of the proposed mechanisms in two representative scenar-

ios of gradually releasing self-emerging data, namely association data disclosure and location

data disclosure.

In the rest of this chapter, we first outline the key research tasks of this dissertation and

then briefly present the organization of the rest chapters.

1.1 OVERVIEW OF RESEARCH TASKS

This dissertation includes three research components and has four research tasks. The three

research components are shown in Figure 1 as Infrastructure, Output and Input.

Infrastructure: The Infrastructure research component refers to the study of using different

types of large-scale P2P networks as the underlying infrastructure of designing decentralized

self-emerging data release systems. Depending on the features of the underlying P2P network

infrastructure, the system design may encounter different challenges and require different so-

lutions. Both DHT and blockchain have been widely used for establishing P2P networks with

scale, geographic distribution, and decentralization. For example, the Vuze DHT network

contains over 1 million nodes [56] and the Ethereum blockchain network consists of more

than 10,000 nodes distributed all over the world [4]. However, DHT and blockchain involve

several key similarities and differences:

5

Figure 1: An overview of research tasks

• Design objectives : In short, DHT is a lookup service designed for enabling efficient com-

munication among nodes in a P2P network while blockchain is a distributed ledger man-

aged by the entire P2P network to create a distributed trust. For more technical details

about DHT and blockchain, please refer to Appendix A and Appendix B, respectively.

• Storage: Both DHT nodes and blockchain nodes can store data locally. However, data

stored in the distributed ledger of blockchain is publicly revealed to all blockchain nodes.

Therefore, special attention needs to be taken to avoid storing private data publicly on

a blockchain.

• Communication: Both DHT nodes and blockchain nodes can build private channels with

other nodes. However, any data associated with the blockchain is publicly revealed to

all blockchain nodes. Examples include inputs and outputs of calling a function within

a smart contract. Therefore, to leverage the decentralized trust offered by blockchain,

we need to pay attention to any direct or indirect interaction with the blockchain, even

if we don’t intend to store data on it.

6

• Cryptocurrency : Unlike DHT networks, blockchain networks such as Bitcoin [100] and

Ethereum [128] offer native cryptocurrencies (i.e., Bitcoin and Ether) that can be lever-

aged as monetary incentives and security deposits in protocol design. Because of this,

protocols designed for the DHT-based decentralized self-emerging data release system

mainly rely on increased data redundancy to prevent the hidden data from being stolen

by adversaries before the prescribed release time, whereas in the blockchain networks, we

can additionally leverage the enforcement driven by the monetary incentive and penalty

to assist the protocol design and system development.

After analyzing the Infrastructure research component, we have figured out that both

the DHT infrastructure and the blockchain infrastructure are qualified P2P network infras-

tructure of designing decentralized self-emerging data release systems, so we set the research

task T-1 and T-2 to investigate the two options, respectively.

Output : The Output research component refers to the study of releasing self-emerging data

to different types of recipients. Protocols designed for releasing self-emerging data to a

certain type of recipients may not be applicable to other types of recipients. The DHT

infrastructure only involves a single type of recipients while the blockchain infrastructure

involves two types of recipients. In the DHT infrastructure, recipients simply refer to the

peers of the DHT network, who need to control DHT nodes to actively collect the self-

emerging data at the release time. However, in the blockchain infrastructure supporting

smart contracts (e.g., Ethereum), it is possible to release self-emerging data to two types of

recipients that run External Owned Account (EOA) or Contract Account (CA), respectively.

To be brief, an EOA account is controlled by a peer of the blockchain network through a pair

of public/private keys while a CA account is controlled by a smart contract. Recently, smart

contracts have been widely used for running the back-end logic for the emerging decentralized

applications (DAPP). Supporting the release of self-emerging data to smart contracts can

thus facilitate a wide range of decentralized applications. There are two main differences

between EOA and CA accounts that are relevant to the design of decentralized self-emerging

data release system:

• Transparency : A peer controlling an EOA account in a blockchain network has similar

7

abilities of a peer controlling a DHT node in a DHT network, meaning that the peer

can keep the received self-emerging data in secret by obtaining it from private channels

and storing it locally. In contrast, a smart contract controlling a CA account is a piece

of transparent program code recorded in the blockchain, meaning that the received self-

emerging data must also be recorded in the blockchain and thus get publicly revealed to

the entire network.

• Passiveness : A peer controlling an EOA account can actively participate in the self-

emerging data release protocol (e.g., initiate a conversation with other accounts) while

a smart contract controlling a CA account can only passively wait for transactions sent

by other accounts to invoke its inside code (i.e., listen to incoming transactions).

After exploring the output research component, we have figured out the differences of releas-

ing self-emerging data to different types of recipients and the need of new approaches that

support releasing self-emerging data to the smart contract accounts. Therefore, we set the

research task T-3 to resolve this problem.

Input : The Input research component refers to the study of the possible options of inputting

the self-emerging data to the designed system. Under different circumstances, the self-

emerging data may be expected to be released in a single time (all-or-nothing release) or

multiple times (gradual release). Generally speaking, there are three options to input self-

emerging data to the designed system:

• Plaintext : As the basic option, the sender of private data can directly input the plaintext

of private data to the system. Since the data needs to be stored by the P2P nodes and

also routed among the nodes, such a straightforward solution may result in a high cost

of storing and transferring large-size private data (e.g., a healthcare dataset), which in

turn affects both the security and scalability of the self-emerging data release system.

• Encryption key : To eliminate the drawbacks of using plaintext, one option is to encrypt

the private data with a key and only input the encryption key to the system. Such

an encryption-based scheme can be adopted in both all-or-nothing release and gradual

release. Specifically, in the all-or-nothing release, private data only needs to be released

for once, so only a single snapshot of the encrypted data needs to be maintained by either

8

data sender or recipient to make the data available at the release time. However, in the

gradual release, to gradually increase the utility of the disclosed information over time,

multiple snapshots of the encrypted data needs to be maintained with each snapshot

corresponding to a different level of utility, which may result in a high cost of storing

and maintaining large-size private data.

• Perturbation key : The last option is to perturb the private data with privacy-preserving

data perturbation mechanisms [38, 49, 54, 71, 73, 85] to change the utility level of the

information carried by the perturbed data. Since the perturbation level can be gradually

decreased to increase the utility level over time, the perturbation-based solution seems

to be a proper way of overcoming the issues of high storage/maintenance cost in the

encryption-based solution. Unfortunately, existing privacy-preserving data perturbation

mechanisms do not meet the requirements of designing decentralized self-emerging data

release system for two reasons: (1) data perturbed through existing schemes cannot be

de-perturbed to recover data utility; (2) existing perturbation schemes are not designed

to be implemented through keys.

After analyzing the Input research component, we have seen the lack of proper solutions

for supporting the gradual release of self-emerging data with low cost, so we determine to

develop such solutions in the last research task T-4 .

In summary, we make the following contributions in this dissertation:

• First, we propose new designs of self-emerging data release using two different types of

large-scale P2P networks as the underlying infrastructure.

• Second, we propose and develop solutions for supporting the release of self-emerging data

to different types of recipients in P2P networks that facilitate both traditional centralized

applications and emerging decentralized applications.

• Finally, we propose and design cost-effective techniques for gradually releasing self-

emerging data by using perturbation keys as inputs. We develop a suite of techniques

for supporting cost-effective gradual release of two representative types of private data,

namely association data and location data.

9

1.2 CHAPTERS OVERVIEW

The rest of the dissertation is organized as follow: Chapter 2 provides literature review.

Then, in Chapter 3 and Chapter 4, the DHT infrastructure and blockchain infrastructure are

investigated, respectively. After that, in Chapter 5 and Chapter 6, we discuss the techniques

for supporting the release of self-emerging data to smart contracts and supporting cost-

effective gradual release of self-emerging data, respectively. Finally, we conclude and present

future directions in Chapter 7.

10

2.0 LITERATURE REVIEW

In this chapter, we provide the literature review. Specifically, in Section 2.1, we provide

a review of the literature about timed-release of private data to demonstrate the need for

decentralized solutions of releasing private data in future. Then, in Section 2.2, we review

recent work of enforcing behaviors performed by the participants of secure multi-party com-

putation protocols using cryptocurrencies, which inspires the use of cryptocurrency-driven

enforcement in our design of blockchain-based self-emerging data release system. Finally, in

Section 2.3, we review the representative privacy-preserving data perturbation mechanisms

to illustrate that the existing techniques fail to meet the requirements of gradually releasing

self-emerging data with low cost.

2.1 TIMED-RELEASE OF PRIVATE DATA

The problem of revealing private data only after a certain time in the future has been

researched for more than two decades. The problem was first described by May as timed-

release encryption (TRE) in 1992 [90] and has intrigued many researchers in the field of

cryptography since then. Existing work on this topic can be divided into three categories,

namely time-lock puzzle, time server and reference time clock.

Time-lock puzzle: The first category of existing solutions was designed to make data

recipients solve a mathematical puzzle, called time-lock puzzle, before reading the mes-

sages [24, 28, 109]. The time-lock puzzle can only be solved with sequential operations, thus

making multiple computers no better than a single computer. In addition, since the time-lock

puzzle scheme requires no third party, there is no single point of trust problem. However, the

11

time-lock puzzle scheme suffers from two key drawbacks. First, due to increasing advance-

ments in computing hardware and hardware performance, the time taken by such puzzle

computation is not determinate and hence these solutions cannot tackle the situations that

demand the data be released with a precise release time. Second, the puzzle computation is

associated with a significant computation cost. Incurring such high computation costs for a

large big data infrastructure does not lead to a scalable cost-effective solution.

Time server: The second category of existing solutions relies on a third party, also known

as a time server, to release the protected information at the release time in future. The

information, sometimes called time trapdoors, can be used by recipients to decrypt the

encrypted message [26, 35, 40, 72, 76, 97, 109]. Initially, the third party was designed to

actively interact with data sources and data recipients to complete the process [44, 90, 96,

109]. Although the interactive third party scheme can release data at an accurate release

time, the known identities of the data sources and recipients may cause security issues.

Because of this, researchers have focused on developing timed-release encryption (TRE)

based on non-interactive time server. In 2003, Mont et al.[97] proposed the non-interactive

TRE model based on quadratic residues (QR-TRE). However, the confidentiality of private

data sending through their system highly relied on the trustworthiness of the time server

because the time server can decrypt the data before the release time. In 2005, Chan and

Blake [26] proposed a scalable, server-passive, user-anonymous TRE scheme based on bilinear

pairing, which only asked the time server to be curious. Based on their work, the formal

model of TRE was proposed by Cathalo et al. [32]. In 2007, more efficient TRE schemes were

proposed [68, 35], which significantly reduced the operation cost and also allowed replacing

a single time server with multiple servers. In 2008, the non-interactive TRE was formally

defined in [40]. After that, researchers focused on developing variations of the standard

TRE model to extend its range of application. For example, the TRE model with pre-

open capability was proposed in [99, 76], which allowed the encrypted information to be

decrypted before the release time in some emergent situations. The TRE model supporting

one-to-many service was proposed in [50], which allowed the encrypted information to be

decrypted by multiple recipients at the release time. Besides, in standard TRE, the single

time trapdoor sent by the time server may be easily lost or missed by the recipient. To solve

12

this, time-specific encryption (TSE) [106, 72], as an extension of TRE, was proposed to split

time to slices so that any time trapdoor released during one time slice can be used to decrypt

the information. Although the efficiency and flexibility of time-server-based approaches have

been constantly improved, the time server in this model has to be trusted to not collude with

recipients so that encrypted messages cannot be entered before release time. This restriction

makes this set of solutions involve a single point of trust.

Reference time clock: The third category of existing solutions uses blockchain [100]. The

difficulty of PoW (proof-of-work) can be diversely adjusted to change the average generation

time of each block to the desired value, which makes blockchain to be a reference time

clock with correctness guaranteed by the distributed network. Therefore, by combining

witness encryption [55] with blockchain [69, 87], one can leverage the computation power of

PoW in blockchain to decrypt a message after a certain number of new blocks have been

generated. However, the current implementation of witness encryption is far from practical,

which requires an astronomical decryption time estimated to be 2100 seconds [87].

To sum up, there is a need for a scalable and cost-effective solution for releasing private

data to future, which should not involve a single point of trust. This dissertation aims at

filling this gap by designing decentralized self-emerging data release systems using the P2P

network infrastructure.

2.2 CRYPTOCURRENCY-DRIVEN ENFORCEMENT

The idea of using cryptocurrency to enforce participants of a protocol to perform desirable

behaviors was first proposed in 2014 by Andrychowicz et al. [16], who designed a timed

commitment protocol using Bitcoin [100] for the purpose of resolving the fair Secure Multi-

party Computation (SMC) problem more efficiently. After that, extensive follow-ups [15, 20,

94] have further improved the efficiency of resolving fair SMC problems with blockchain and

the effectiveness of the cryptocurrency-driven enforcement in protocol design has been widely

recognized. Since the blockchain-based systems designed in Chapter 4 and Chapter 5 of this

dissertation mainly rely on the cryptocurrency-driven enforcement inspired by the previous

13

research of the blockchain-based SMC to make the designed systems resist against possible

misbehaviors violating the protocols, in this subsection, we review the existing work relevant

to the blockchain-based SMC. Before going to the details, we first present the differences

between the blockchain-based SMC and the traditional SMC.

The traditional SMC, originally proposed by Yao [131] and Goldreich et al. [60], allows

multiple mutually distrusting parties to obtain the output of a function using their private

data as function input without needing a trusted third party. According to [104], the compu-

tation is performed in a way that 1) the output is correct and 2) cheating parties will not be

able to learn any information about the honest parties’ inputs. Unlike the traditional SMC,

the blockchain-based SMC allows the inputs to be revealed and focuses more on the fairness

among the parties [16, 20, 15, 94]. For example, in the coin tossing problem [27, 16] where

two parties (say Alice and Bob) want to jointly generate a value that has equal probability

to be 0 or 1 (i.e., a random bit), Alice and Bob can send a randomly selected bit (bA and bB)

to each other, so that the output of function b = bA ⊕ bB will become a shared random bit

when at least one of bA and bB is random. To make the above protocol fair, bA and bB should

be received simultaneously. Otherwise, in case that Bob receives bA first, he can select bB

based on the value of bA to get desired b. The solution for resolving such fairness problem is

called commitment-based SMC protocol [27], which usually consists of two phases, namely

Commit and Open. During the Commit phase, each participant should make the hash of a

secret h(s) public while keeping the secret s unknown to other participants. Then, during

the Open phase, each participant should disclose the secret s. One fundamental limitation of

the commitment-based SMC protocol is the lack of enforcement. In the coin tossing example,

Alice and Bob may make a bet. Alice agrees to pay Bob 1 USD when b = 0 and Bob agrees

to pay Alice 1 USD when b = 1. However, during the Open phase, when Bob sees bA and

computes b = 1, he may abort the protocol by rejecting disclosing bB. Even if Bob discloses

bB and loses the bet, he may still reject to pay 1 USD to Alice. In both these situations, the

protocol becomes unfair to Alice.

In 2014, Andrychowicz et al. [15] proposed to use Bitcoin [100] to design a timed com-

mitment protocol for the fair lottery, which is actually an implementation of the fair SMC.

In brief, during the Commit phase, the committer should create a Commit transaction with

14

Figure 2: Commitment-based secure computation using Ethereum

both a monetary deposit and the hash of his secret in it. The committer should also send

a PayDeposit transaction to the recipient, which contains both a timed lock and the sig-

nature of the committer. Then, before the end of Open phase, the committer can create

an Open transaction with the secret to get back the deposit, otherwise, after the deadline,

the recipient can use the PayDeposit transaction to get the deposit paid by the committer.

This bitcoin-based protocol forces the committer to disclose the secret for not losing the

deposit. It can also force the committer to respect the function result by automatically

operating the committer’s digital asset (i.e., Bitcoin) based on the function result. Recently,

Miller et al. [94] proved that commitment-based SMC protocols designed over Ethereum can

offer better performance because Ethereum begins with a ‘Turing-complete’ language for

general-purpose use. We show an example of the commitment-based secure computation us-

ing Ethereum in Figure 2. In the example, during the Commit phase [t1, t2], the three users

u1, u2, u3 should send hashed secrets and deposits to the smart contract. Then, during the

Open phase [t2, t3], the three users should send their secrets to the smart contract. Finally, at

the end of Open phase, namely t3, the smart contract will verify the secrets received during

the Open phase with the hashed secrets received during the Commit phase, compute the

function results and execute pre-determined operations based on the computation results. If

a secret fails to pass the verification, the corresponding deposit will be confiscated.

15

2.3 PRIVACY-PRESERVING DATA PERTURBATION

The problem of privacy-preserving data perturbation has been studied extensively in the

framework of statistical databases. Samarati and Sweeney [112],[121] introduced the k-

anonymity approach which has led to some new techniques and definitions such as l-diversity

[88] and t-closeness [85]. There had been some work on anonymizing graph datasets with the

goal of publishing statistical information without revealing information of individual records.

Backstrom et al. [18] show that in fully censored graphs where identifiers are removed, a

large enough known subgraph can be located in the overall graph with high probability.

Ghinita et al. present an anonymization scheme for anonymizing sparse high-dimensional

data using permutation-based methods [59] by considering that sensitive attributes are rare

and at most one sensitive attribute is present in each group. The safe grouping techniques

proposed in [22, 42] consider the scenario of retaining graph structure but aim at protecting

privacy when labeled graphs are released.

Based on the concept of differential privacy[49], there had been many work focused on

publishing sensitive datasets through differential privacy constraints [38, 54, 124]. Differential

privacy had also been applied to protecting sensitive information in graph datasets such

that the released information does not reveal the presence of a sensitive element [43, 71,

111]. Recent work had focused on publishing graph datasets through differential privacy

constraints so that the published graph maintains as many structural properties as possible

while providing the required privacy [111].

The problem has also been researched extensively in the area of location data disclo-

sure. The representative location data perturbation schemes includes dummies [75], spatial

location cloaking [19, 39, 58, 70, 95, 130] and landmark objects [67]. Also, recent work

has studied the location privacy problem by perturbing the location information based on

differential privacy constraints prior to disclosure [14, 31].

In the past, based on k-anonymity [122], there have been many work using spatial loca-

tion cloaking to protect location privacy. CliqueCloak algorithm proposed in 2004 considered

the individual user’s personalized privacy requirement for the first time [57]. A grid-based

cloaking framework, Casper further extended this model with a privacy-aware query proces-

16

sor [95]. Subsequently, a directed-graph based cloaking algorithm was proposed to improve

the success rate of anonymization [130] and the Hilbert Cloak algorithm uses a Hilbert curve

to fill the whole area and track users [58]. While these techniques were designed for mobile

users traveling on Euclidean space, recent work has considered the location cloaking problem

under a constrained road network model [125, 132].

We find that these existing techniques cannot effectively support the gradual release

of private data with low cost, so we propose to design a new set of mechanisms that can

make private data get gradually released through the decentralized self-emerging data release

system in a cost-effective approach. Details about this will be presented in Chapter 6.

17

3.0 SELF-EMERGING DATA RELEASE USING DISTRIBUTED HASH

TABLES

In this chapter, we explore the design of a self-emerging data release system using large-scale

Distributed Hash Table (DHT) [119] networks as the underlying infrastructure. The research

of this chapter corresponds to the research task T-1. Before going to the details, we briefly

answer the key research questions of accomplishing this research task.

Research goals: The goal of the system designed in this chapter is to ensure private data

to be protected until a release time set by a DHT node (i.e., sender) and also enable the

self-emergence of the private data to another DHT node (i.e., recipient) at the release time.

Properties of DHT nodes: In the system designed in this chapter, all participants of

the self-emerging data release, including data senders, data recipients and service providers,

are peers of a DHT network, who need to run DHT nodes to take any action. For short,

DHT allows nodes in a P2P network to efficiently communicate and transfer data with

other nodes. A DHT node has the ability to communicate with other nodes through private

channels established with basic cryptographic techniques and also the ability to locally store

data received from other nodes. Besides, a DHT node has the freedom to choose to join and

leave the network at any time.

Adversary models: We note that the design objectives can be significantly challenged by

adversaries controlling a sizable proportion of the DHT network. When a sufficient number

of DHT nodes has been compromised by an adversary, the adversary can either release the

hidden data before the prescribed release time (release-ahead attack) or destroy the hidden

data altogether (drop attack). These two specific attacks in combination with the traditional

churn issues [120] in DHTs constitute significant challenges to the design of the system.

Thus, ensuring high resilience to churn and to release-ahead attacks and drop attacks is

18

also a central objective of the system design. In this chapter, we divide DHT nodes into

two categories, namely honest nodes and malicious nodes. In short, we assume that honest

nodes may join and leave the network at any time but they will follow the designed protocols

as expected when they are in the network. In addition, data locally stored at honest nodes

is unavailable to the adversary. In contrast, malicious nodes are the ones controlled by the

adversary, so these nodes can arbitrarily violate the designed protocols and data locally

stored at these nodes is known by the adversary.

Technical approaches: The reliability of the self-emerging data release system established

over the DHT infrastructure primarily replies on the increased redundancy of the private

data. DHT nodes can freely join and leave the P2P network and there is no general and

effective approach to enforce behaviours performed by DHT nodes. As a result, requesting

a single DHT node to store the private data is not a robust way of hiding private data in

the DHT network because the data will get lost once that DHT node leaves the network.

Therefore, to make data survive in the highly dynamic DHT network, data needs to be

replicated to make the replicas stored at different nodes so that the recipient can still receive

the self-emerging data at the release time even if a fraction of the nodes storing the replicas

have left the network or have been compromised by adversaries. By jointly considering

challenges of churn and attacks, the protocols designed in this chapter leverage erasure

coding [126] to split private data into a group of fragments and make the fragments keep

moving among DHT nodes without sticking to fixed positions.

Evaluation: We conduct extensive experimental evaluation of the proposed protocol using

Overlay Weaver DHT toolkit [115] and the results demonstrate that the proposed erasure-

coding-based schemes provide high resilience to both release-ahead and drop attacks as well

as to the churn issues in DHT.

In the rest of this chapter, we first provide the system overview and analyze security

challenges in Section 3.1. Then, we present the self-emerging data release protocol in detail

in Section 3.2. After that, we experimentally evaluate the proposed solution in Section 3.3.

Finally, we summarize this chapter in Section 3.4.

19

Figure 3: DHT-based decentralized self-emerging data release system

3.1 SYSTEM OVERVIEW

In this section, we first present the DHT-based decentralized self-emerging data release

system and then discuss the main security challenges, including the adversary models and

churn.

3.1.1 DHT-based decentralized self-emerging data release system

There are four major entities in the DHT-based self-emerging data release system, namely

the data senders, the data recipients, the DHT network and the cloud, as shown in Figure

3. As the owner of private data, the data senders want to protect the data stored in the

cloud from being accessed until a pre-defined data release time. The data, however, needs

to be accessible to the recipients after the release time. As discussed in Section 1.1, the data

senders may use a secret key to encrypt/perturb their data before uploading to the cloud

and use the DHT network to make the secret key ‘disappear’ before the future data release

time. They then need the secret key automatically appears to the recipients at the release

time, allowing the recipients to recover the protected data.

If we denote the start time as ts and the expected future release time as tr, we can express

20

the entire time period that the data owner wants to make the secret key disappear as T . It is

referred to as the emerging time period as the key is emerging from the DHT to the intended

recipient during T . At start time ts, the sender process her data with a secret key and sends

the encrypted/perturbed data and the key to the cloud and the DHT network, respectively

(shown as ‘initialize’ in Figure 3). During the emerging time period T , the secret key will

be packaged, split into multiple fragments and routed among the nodes in the DHT. Each

fragment, after being stored by a node in the DHT for a limited time period (shown as ‘hold’

in Figure 3), will be sent to the next node and gets routed towards the recipient along a

carefully designed path. At the release time tr, the recipient can collect the fragments from

the DHT network to recover the secret key (shown as ‘recover’). The recipient can then

download the encrypted/perturbed data from the storage cloud and recover the original

data using the obtained key. It is easy to see that the DHT network takes the core role in

the system. Next, we analyze the challenges and attacks that lead to the compromise of the

hidden secret key in the DHT network.

3.1.2 Adversary models

Based on the objective of the adversary, we define two attack models, namely the release-

ahead attack aiming to extract the key from DHT network before the release time tr and

the drop attack aiming to prevent the key from being recovered by the legitimate recipient

after tr. For both the attack models, the adversary needs to control a fraction of DHT

nodes which can be realized through Sybil attack [48], Eclipse attack [116] or collusion with

other adversaries. We divide the entire DHT nodes into two categories, namely honest nodes

always following the designed protocol as expected and malicious nodes controlled by the

adversaries. Specifically, we use p to denote the fraction of DHT nodes in the network

controlled by all the adversaries and we assume these adversaries can collude without any

restriction. In other words, we can imagine a single adversary that owns all the malicious

nodes in the network to launch either release ahead attack or drop attack.

In release ahead attack, the adversary, who may be the legitimate recipient, aims to

extract the secret key from the DHT network to recover the original private data before the

21

release time tr. The adversary can collect the fragments of the key from controlled DHT

nodes (i.e., malicious nodes) if the packages were ever stored at any malicious node. This

type of attack is effective in many scenarios that require timed release of self-emerging data.

For instance, in an online exam scenario, if the adversary can obtain the exam questions

before other participants, he can gain more time to answer the questions and affect the

fairness of the exam.

In drop attack, the adversary aims to prevent the secret key from being received by the

legitimate recipient to recover the private data at release time tr. That is, if any malicious

node receives a fragment of the secret key before release time, the malicious node can refuse

following the designed protocol to further route that fragment to the recipient. A successful

drop attack can make the encrypted/perturbed data become inaccessible even after the

release time tr. In those time-sensitive scenarios, this means the scheduled activity has to be

canceled. For example, the online exam cannot be started. In addition, since the key is lost,

unless the adversary releases those dropped fragments again, the private data can never be

recovered.

3.1.3 Churn impact

The data storage in DHT networks always suffers from the churn issue [120], namely the

phenomenon that nodes frequently join and leave the network. The churn impact to our

system can be summarized as short-term and long-term impacts. The short-term impact is

caused by the transiently left nodes. The nodes leave the network for a short time period,

so their ID and responsibilities have not been transferred to other nodes. This may block

the routing of fragments of secret key in the network for a short time period but its effect

is limited. However, the long-term impact is vital to our system. A node is ‘dead’ when it

leaves the network for a long time and its ID and responsibility in the secret key routing is

deprived. Because of the death of the nodes, the fragments of the secret key stored by these

nodes are also lost. Even if the fragments are replicated to other nodes, we note that the

new nodes also have probability p (the fraction of nodes controlled by the adversary) to be

malicious, thus significantly increasing the chance of the adversaries to obtain the fragments

22

and recover the secret key. For example, in the case that a fragment is replicated to three

nodes and two of them are dead and then replaced by new nodes during the emerging time

period T , the probability for the adversary to get the fragment increases from 1 − (1 − p)3

to 1− (1− p)5. Therefore, the conventional replication [126] is not adopted.

Motivated by these challenges, we propose the self-emerging data release protocols for

the DHT network to carefully package and route the fragments of secret key during the

emerging time period T to handle both the attack and churn.

3.2 SELF-EMERGING DATA RELEASE PROTOCOLS

In this section, we present the proposed self-emerging data release protocols in detail. The

protocols consist of three components, namely routing path construction, initial package

generation and package routing, to be implemented in a sequential order. Specifically, at

start time ts, the sender enters DHT network as a node. It first locally determines routing

path pattern based on the adopted pattern construction scheme and pseudo-randomly select

DHT IDs to fill in the pattern. Then, based on the pattern and selected IDs, the sender

node locally generates the initial data packages. Finally, it sends the initial packages out

and the packages will be routed and processed along the paths to deliver the secret key to

the recipient at the release time tr.

Based on the adopted routing path construction schemes, we propose three protocols

and all of them are based on the erasure coding mechanism [126]. As a common mechanism

to protect data, erasure coding [126] can divide a data package to m fragments and re-

code them into n fragments so that the package can be recovered from any m fragments

(m ≤ n). We start from the one-hop path pattern scheme, which applies erasure coding to

establish multiple one-hope paths between sender and recipient to guarantee attack resilience.

Then, by taking dead nodes (churn) into account, we propose the adjusted one-hop path

pattern scheme to make it resilient to churn issues by estimating the number of dead nodes

and adjusting the parameters of erasure coding based on the estimation. After that, by

dividing the entire emerging time period T = ts − tr into several shorter time periods,

23

we propose the multi-hop path pattern scheme to iteratively implement the erasure coding

mechanism to route the fragments of secret key so that the loss of fragments during each

shorter time period can be suppressed and the lost fragments can be recovered by multiple

usages of erasure coding. To compare the schemes in terms of attack resilience, we measure

the release-ahead attack resilience, Rr as the probability that an adversary fails to restore

the secret key before the legitimate release time tr, and drop attack resilience, Rd as the

probability that an adversary fails to prevent the secret key from being restored by the

recipient at the release time tr. Specifically, we desire Rr = Rd because we expect that

the proposed protocol has both good release-ahead attack resilience and good drop attack

resilience without compromising either of them and making the protocol vulnerable. Next,

we present details of the three protocols in turn.

3.2.1 One-hop scheme

The one-hop path pattern scheme applies the erasure coding to split the secret key into n

fragments and send each of them through a one-hop path to the recipient to allow at most

n−m of the fragment transmissions to be unsuccessful. In other words, n holder nodes are

applied to store the n fragments for the entire emerging time period T . We name all the

nodes selected by the sender to form the path pattern as holder nodes. Each holder node

receives fragment(s) from its predecessor(s), holds(stores) the fragments for a time period (in

this scheme the entire emerging time period T) and sends the fragments to its successor(s)

after that time period.

Routing path construction: To construct the one-hop path pattern, we need to determine

the total number of fragments, n and the minimum (threshold) number of fragments to

restore the secret key, m. Given the maximum available nodes that can be used to form the

pattern (namely the limited recourse), N , we can calculate the value of n and m to maximize

the attack resilience through Algorithm 1.

If an adversary controls at least m holder nodes, the secret key will be directly restored

at start time and the release-ahead attack is successful. If the adversary controls at least

n − m + 1 holder nodes, the recipient will fail to receive at least m fragments to restore

24

Algorithm 1: One-hop path pattern
Input : Maximum available node number N .
Output: Total fragment number n, threshold fragment number m.

1 m = bN+1
2 c;

2 n = 2m− 1;

the secret key at release time tr, which makes drop attack successful. Therefore, by setting

n −m + 1 = m, namely n = 2m − 1, we get equivalent release-ahead attack resilience Rr

and drop attack resilience Rd.

Lemma 1. In one-hop scheme, with Rr = Rd, a larger n makes attack resilience Rr and Rd

higher.

Proof. From [110], we can get:

n

m
= (

σ
√

p(1−p)
m

+
√

σ2p(1−p)
m

+ 4(1− p)
2(1− p)

)2 (3.1)

where p denotes the probability that a random DHT node is malicious and σ is positively

proportional to Rd. To get Rr = Rd so that the system has good attack resilience towards

both the two attack models, we need n = 2m − 1, namely n
m

= 2m−1
m
≈ 2. Therefore, in

equation 3.1, with fixed value of n
m

and p, a larger m makes σ larger and therefore Rd higher.

Since n ≈ 2m and Rr = Rd, we can conclude that larger n makes Rr and Rd higher.

Therefore, given the limited available nodes N to form the pattern, we need to maximize

n to maximize the attack resilience, so we set m = bN+1
2
c (line 1) to maximize m as an

integer and then get n = 2m− 1 (line 2).

Initial package generation: The sender generates n initial data packages as the n frag-

ments of secret key.

Package routing: At start time ts, the sender node sends the n fragments to the n holder

nodes. The n holder nodes hold the fragments for the entire emerging time period T . At

the release time tr = ts + T , the holder nodes send the fragments to the recipient node.

Security analysis: The release-ahead attack resilience is Rr = 1−
∑n

i=m

(
n
i

)
pi(1−p)n−i and

drop attack resilience is Rd = 1−
∑n

i=n−m+1

(
n
i

)
pi(1− p)n−i, as the success rate of both the

25

Figure 4: One-hop scheme Figure 5: Adjusted one-hop scheme

attack models follows binomial distribution. In the example shown in Figure 4 with n = 5

and m = 3, two holder nodes are malicious. In release-ahead attack, the two malicious holder

nodes can get two fragments, which is less than m to restore the encryption key package. In

the drop attack, the two malicious holder nodes can drop two fragments, but the recipient

can still get 3 (i.e., m) fragments to restore the encryption key package at release time tr.

In this simple one-hop scheme, the impact of churn is not taken into account. Next, to

handle the churn issues, we propose an adjusted one-hop scheme.

3.2.2 Adjusted one-hop scheme

If the emerging time period T becomes longer, more holder nodes may become dead due to

churn, which makes their stored fragments get lost. We can approach this problem in two

ways. The first solution is to generate a new fragment whenever one existing fragment is

lost. However, to generate the new fragment, at least m living fragments have to be collected

by one DHT node to restore the secret key and re-generate the n fragments through erasure

coding. This means the secret key has to be known by one node, which significantly increases

the success rate of release-ahead attack because this node has probability p to be malicious.

Therefore, we decide to take the second solution, namely estimating the number of dead

holder nodes as d and reserve some fragments at the beginning for these estimated dead

26

holder nodes by adjusting m and n.

Algorithm 2: Adjusted one-hop path pattern
Input : Maximum available node number N , emerging time period T .
Output: Total fragment number n, threshold fragment number m.

1 n = N ;

2 pdead = 1− e−
1
λ
T ;

3 d = pdead ∗ n;
4 for m = 1 to n do

5 Dif = |
∑n

i=m

(
n
i

)
pi(1− p)n−i −

∑n−d
i=n−d−m+1

(
n−d
i

)
pi(1− p)n−d−i|

6 end
7 m = the value between 1 and n that minimizes Dif .

Routing path construction: As suggested by [23], the node death in DHT network can

be expressed by a decay pattern, namely the exponential distribution. We can then estimate

the percentage of dead holder nodes after the emerging time period T to be pdead = 1−e− 1
λ
T ,

where λ is the average DHT node lifetime. (In [23], λ is set to 3 years, but it can be changed

for different DHT networks.) Therefore, among the n total holder nodes, the number of dead

holder nodes should be d = pdead ∗ n, which makes the number of living holder nodes to be

n−d. To do drop attack, the adversary should drop at least n−d−m+ 1 fragments among

the n− d living fragments to make the recipient can at most obtain m− 1 fragments at the

release time tr and therefore failing to recover the secret key. The probability of this, which

follows the binomial distribution, can be calculated by Pd =
∑n−d

i=n−d−m+1

(
n−d
i

)
pi(1−p)n−d−i.

However, the dead nodes have no influence on the release-ahead attack because the adversary

can collect the fragments at the beginning of the process before any node death. The

probability for the adversary to collect at least m fragments from the total n fragments

to restore the encryption key package is Pr =
∑n

i=m

(
n
i

)
pi(1 − p)n−i. Given the maximum

available nodes N and emerging time period T , we can calculate m and n through Algorithm

2. We first set n = N (line 1) to maximize attack resilience(the proof is similar to that of

lemma 1), and then estimate the number of dead nodes (line 2-3). After that, we try to find

the value of m between 1 and n to make Pd = Pr so that Rd = Rr (line 4-7).

Initial package generation: We use the same approach as the one-hope scheme.

Package routing: We use the same approach as the one-hope scheme.

Security analysis: In the example shown in Figure 5, we have the number of maximum

available nodes N = 6 and an estimated pdead = 1
6
. Therefore, we can calculate n = N = 6,

27

Figure 6: Multi-hop scheme

d = 1 and m = 3 from Algorithm 2. If there are two malicious holder nodes and one

dead holder nodes after the emerging time period T , the adversary will fail to restore the

encryption key package with 2 < m obtained fragments and the recipient can successfully

recover the encryption key package with 3 = m received fragments.

Although the adjusted one-hop scheme is resilient to both attack resilience and churn,

it has two security problems when the emerging time period T is large. To better express

T in time scale, we represent T to be α times of average DHT node lifetime, λ. We believe

this is reasonable because different DHT networks may have different average DHT node

lifetime. First, when emerging time period T is large, the percentage (pdead) of nodes to

be dead may be quite large. For example, if we set pdead = 0.99 = 1 − e−
1
λ
T , we can get

α = 4.6, which means 99% fragments will be lost due to churn after 4.6 times of average DHT

node lifetime, λ. In such cases, the adjusted one-hop scheme fails to make attack resilience

high. Another issue in this context is the error of estimating the number of dead nodes. An

implicit assumption for the adjusted one-hop scheme to be successful is the high accuracy

of the estimation result. Unfortunately, in practice, the real number of dead nodes does

not always match with the estimation and the estimation error becomes larger for longer

emerging time period T . To handle these two issues, we propose the multi-hop scheme.

28

Algorithm 3: Multi-hop path pattern
Input : Maximum available node number N , emerging time period T , DHT node average

lifetime λ.
Output: Total fragment number n, threshold fragment number m, number of groups of n

holder nodes l.
1 for l = 1 to b5(Tλ + 1)2lgN−3c do
2 n = bNl c;
3 pdead = 1− e−

T
λl ;

4 d = pdead ∗ n;
5 for m = 1 to n do

6 Dif = |
∑n

i=m

(
n
i

)
pi(1− p)n−i −

∑n−d
i=n−d−m+1

(
n−d
i

)
pi(1− p)n−d−i|

7 end
8 m = the value between 1 and n that minimizes Dif ;

9 Rr = (1−
∑n

i=m

(
n
i

)
pi(1− p)n−i)l;

10 Rd = (1−
∑n−d

i=n−d−m+1

(
n−d
i

)
pi(1− p)n−d−i)l;

11 end
12 The selected (l, n,m) maximizes min(Rr, Rd).

3.2.3 Multi-hop scheme

Instead of leveraging a single set of nodes (Figure 5) to hold the fragments during the entire

T , we now arrange multiple sets of nodes (Figure 6) to carry the fragments in relay from

the sender to the recipient. Also, the single usage of the erasure coding is now extended to

a nested usage so that the old fragments can be merged at each set of nodes to generate

new fragments and the reduced number of alive fragments can be replenished during each

re-generation. Specifically, we divide the entire long emerging time period T to l pieces of

short time periods, namely T = l ∗ 4T . To form the path pattern, we need l sets of nodes

to carry the fragments in relay and each set to take charge of the fragments for 4T , namely

(i − 1)4T ≤ t < i4T , where i ∈ [1, l]. Each set contains n nodes, so the entire number

of nodes to form the path pattern is n ∗ l, which should be pseudo-randomly selected by

the sender node in a non-repeated way. At the start of the ith short time period, namely

the time t = (i − 1)4T , each node in the ith set receives one fragment from each node in

the (i − 1)th set. Ideally, the number of received fragments should be n. However, some

fragments may be lost due to drop attack (the (i − 1)th set has malicious nodes) or churn

(some nodes in the (i− 1)th set become dead during the (i− 1)th short time period). If the

29

number of received fragments is at least m, the node in the ith set can still successfully merge

the received fragments to get the one generating them through erasure coding (called parent

fragment). This parent fragment consists of the n new fragments and the IDs of the nodes

in the (i+ 1)th group. At the end of the ith short time period, namely the time t = i4T , the

n new fragments are sent to the n nodes in the (i + 1)th group. The whole process is then

repeated during the next short time period 4T . This routing scheme has two advantages.

First, since 4T < T , the lost fragments during 4T is much fewer than the lost ones during

T . Second, by iteratively implementing erasure coding, each group of n nodes can recover

the lost fragments caused by drop attack or churn during the previous short time period.

Routing path construction: Besides the values of m and n for erasure coding, the multi-

hop scheme also needs to decide the value of l, namely the number of short time period

4T = T
l
, also as the number of sets of nodes. The multi-hop path pattern algorithm

is shown as Algorithm 3. Assume we have determined l, since the number of maximum

available nodes is N = n ∗ l, we can get n = bN
l
c (line 2). Then, we estimate the dead

nodes d during the short time period 4 = T
l

(line 3-4) and find the value for m (line 5-

8, same as Algorithm 2). We can then calculate the attack resilience Rr and Rd for each

value of l. Our objective is to find the value of l that maximize min(Rr, Rd) from the range

[1 , b5(T
λ

+ 1)2lgN−3c], where the upper bound of the range is estimated through simulation

that will be presented in Section 3.3.

Initial package generation: The sender node should first run algorithm 3 to determine

l, n,m and pseudo-randomly choose non-repeated IDs for the selected nodes. After that, the

sender node can pretend to be the recipient node that has recovered the secret key. Then,

the sender node can split the secret key into n fragments through erasure coding and assume

these n fragments are the parent fragments maintained by the nodes in the last set (lth

set), called lth parent fragments. Next, the sender node should split each of the lth parent

fragments into another n fragments received by the node in the 1st set from the n nodes

in the (l − 1)th set. At this stage, the sender node should have n2 fragments because there

are n nodes in the (l − 1)th set and each of them sends n fragments to the lth set of nodes

(as shown in Figure 6). The n fragments for each node in the (l − 1)th set can be merged

to generate the parent fragment maintained by it so that the sender only need to keep the

30

(l − 1)th parent fragments to save space. By repeating this procedure, the sender node can

get the (l − 2)th parent fragments, (l − 3)th parent fragments... and finally the 1st parent

fragments maintained by the 1st set of nodes, which are actually the initial packages sent

from the sender node to them.

Package routing: Figure 6 shows an example of multi-hop scheme with l = 3 and n = 3.

At start time ts, the sender node sends three initial packages to the three 1st group nodes.

Each 1st group node gets three contained fragments from the initial package, stores them

for a short time period 4T and send the three fragments to the three 2nd group nodes at

t1 = ts + 4T . Then, each 2nd group node restores a parent fragment from the received

fragments, gets three contained fragments, holds them for 4T and sends them to the three

3rd group nodes at t2 = ts + 24T . Finally, each 3rd group node restores a package from

the received fragments, gets the secret key fragment, holds it for 4T and sends it to the

recipient node at tr to make the recipient restore the secret key.

Security analysis: The multi-hop scheme has better performance when the emerging time

T is large. When the Algorithm 3 gives l = 1, the output pattern is same as the one generated

by the adjusted one-hop scheme. Therefore, we can consider the adjusted one-hop scheme

to be a special case of the multiple-hop scheme.

Next, we evaluate the proposed protocols through experimental evaluation.

3.3 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance and security offered by the

proposed protocols. Before reporting our results, we first present our experimental setup.

3.3.1 Experimental setup

We use an Intel Core i7 PC with 16GB RAM to simulate the protocols through the Java-based

DHT toolkit Overlay Weaver. We invoke at most 10000 DHT node instances and repeat

each experiment for 1000 times to show the average results. To evaluate the attack resilience,

31

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

R

p

one-hop
adjusted

multi-hop

(a) T = 0.1λ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

R

p

one-hop
adjusted

multi-hop

(b) T = λ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

R

p

one-hop
adjusted

multi-hop

(c) T = 10λ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

R
p

one-hop
adjusted

multi-hop

(d) T = 100λ

Figure 7: Varying emerging time period T

we mark a DHT node as malicious with probability p. To evaluate the churn resilience, we

set a lifetime for each DHT node, which follows exponential distribution suggested by [23].

3.3.2 Experimental results

In our experiments, we first evaluate the impact of varying emerging time period T to the

performance and security of the three protocols with one-hop scheme (one-hop), adjusted

one-hop scheme (adjusted) and multi-hop scheme (multi-hop) respectively. Then, we evalu-

ate the impact of the maximum available nodes N , namely the limited resource to construct

the path pattern, to the protocols. Finally, we discuss the selection of the upper bound of l

range in Algorithm 3.

The first set of experiments evaluates the protocols with varying emerging time period

T . The objective of the protocols is to hold and hide the secret key in the DHT network for

the emerging time period T . Therefore, the value of T is an important factor to evaluate it.

If the protocol can only effectively work for short T , we do not find its performance to be

32

good enough to satisfy long emerging times. A longer emerging time period T may result in

more dead nodes, which requires the protocol to be both churn-resilient and attack-resilient.

To comprehensively understand the performance of the protocols, we measure their attack

resilience with four representative value of T , namely short emerging time period T = 0.1λ,

medium emerging time period T = λ, long emerging time period T = 10λ and very long

time period T = 100λ, where λ denotes the average lifetime of DHT nodes (e.g. three

years in [23]). Since we equally treat the release ahead attack resilience Rr and drop attack

resilience Rd, the measured R = Rr = Rd. The maximum available nodes N is fixed to 10000.

In Figure 7(a), we measure attack resilience R with varying p for the short emerging time

period T = 0.1λ. All the three protocols show good R. Even the protocol based on one-hop

scheme, which is most susceptible to T , can maintain quite high R when p ≤ 0.44. However,

even for short T with little churn impact, we can see the performance of the multi-hop scheme

is the best. In Figure 7(b), the emerging time period is 10 times than the previous one, which

makes the churn impact start to be strong. For the one-hop and adjusted one-hop schemes,

since pdead = 1− e−1 = 0.63, 63% of the n fragments has been lost due to churn. As can be

seen, since the one-hop scheme does not adjust n and m for this, its R directly drops to 0.

In contrast, the adjusted one-hop scheme adjusts the value of m by estimating the number

of dead nodes and its R is still good before p = 0.26. Compared with these two schemes, the

performance of the multi-hop scheme is much better. The reason for that is the partitioning

of the entire emerging time period T . By dividing it into multiple small pieces, the number

of dead nodes during each small time period can be reduced and the lost fragments can also

be recovered by the iterative erasure coding. In Figure 7(c), the emerging time period T is

further increased by 10 times. Such a long T makes nearly 100% nodes to be dead for the

two one-hop schemes and results in their R = 0. In contrast, although the multi-hop scheme

is also affected, it still keeps R > 0.99 when p ≤ 0.32. Finally, even for the very long T in

Figure 7(d), the multi-hop scheme can still maintain R > 0.99 when p ≤ 0.14. As can be

seen, all the three schemes work well for short T . The adjusted one-hop scheme can keep

good performance for medium T , but only the multi-hop scheme can work well even for long

and very long T .

The second set of experiments evaluates protocols with maximum total available node

33

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

R

p

one-hop
adjusted

multi-hop

(a) N = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

R

p

one-hop
adjusted

multi-hop

(b) N = 1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

R

p

one-hop
adjusted

multi-hop

(c) N = 5000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

R
p

one-hop
adjusted

multi-hop

(d) N = 10000

Figure 8: Varying path construction resource N

N to build the path pattern, namely the path construction resource. Our default choice

of N is 10000, which means the routing path pattern is constructed by 10000 DHT nodes.

This is acceptable for large-scale DHT network. However, in practice, if a DHT network

is not big enough to support N = 10000, we want to understand the impact of reduced

N to the performance of protocols by reducing N to 5000, 1000, and 100. For this set of

experiments, we set the emerging time period T = 2λ, which has made the attack resilience

of the one-hop attack drop to 0 even for N = 10000, so we mainly focus on the performance

of adjusted one-hop scheme and multi-hop scheme. In Figure 8(a), N is reduced to 100,

which means the routing path pattern is formed by at most 100 DHT nodes. We can find

that the attack resilience R of one-hop scheme rapidly drops from 0.866 for p = 0.02 to 0.422

for p = 0.12. In contrast, the attack resilience R of multi-hop scheme keeps higher than 0.99

before p = 0.14 and drops lower than 0.5 when p is around 0.29. We can conclude that the

multi-hop scheme can still effectively work for small path pattern with N = 100 when the

probability of node to be malicious p is not high but the adjusted one-hop scheme does not

34

1e+000

1e+001

1e+002

 0 0.1 0.2 0.3 0.4 0.5

l

p

N=100
N=1000

N=10000

(a) Varying N

1e+000

1e+001

1e+002

1e+003

 0 0.1 0.2 0.3 0.4 0.5

l

p

T=0.1λ
T=λ

T=10λ
T=100λ

(b) Varying T

Figure 9: l upper bound selection

work well. In Figure 8(b), we increase N by 10 times. Both the two schemes have improved

attack resilience. Specifically, the adjusted one-hop scheme can make R > 0.9 for p < 0.08

and R > 0.5 for p < 0.13, and the multi-hop scheme can make R > 0.99 for p < 0.30 and

R > 0.5 for p < 0.38. Then, we further increase N by 5 times to 5000 in Figure 8(c). The

adjusted one-hop scheme can make R > 0.9 for p < 0.10 and R > 0.5 for p < 0.12, and

the multi-hop scheme can make R > 0.99 for p < 0.38 and R > 0.5 for p < 0.42. We find

that the reduction way of the attack resilience R of the adjusted one-hop scheme along the

increasing p changes from a smooth manner to a steep manner from N = 1000 to N = 5000.

We can consider p = 0.12 as the threshold. When N is small, the R value for p < 0.12

gradually drops from 1 to 0.5 and the R for p > 0.12 gradually drops from 0.5 to 0. In

contrast, when N is large, the R keeps close to 1 for p < 0.12 and suddenly drops to almost

0 after p = 0.12. In Figure 8(d), the attack resilience of adjusted one-hop scheme has little

change. The multi-hop scheme slightly increases R > 0.99 for p < 0.40. As can be seen, the

value of N can be reduced to 5000 from 10000 without losing big performance.

The goal of the third set of experiments is to reasonably bound the selection of l in the

Algorithm 3 because we have proved the multi-hop scheme is the most effective one and the

unnecessary loops in l selection can drop the performance of Algorithm 3. In Figure 9(a), we

fix T = 2λ and measure value of l with varying p for N = 100, 1000, 10000. We can see that

the upper bound of l happens at large p and changes from 12 to 26 to 41 for N = 102, 103, 104

respectively so that we can roughly summarize the increment to be twice when N increases

35

from 10i to 10i+1. In Figure 9(b), we fix N = 10000 and measure value of l with varying p

for T = 0.1λ, λ, 10λ, 100λ. We can find the upper bound of l also happens at large p and can

be bounded by 10T
λ

+ 10. We can then combine the finding from the two figures to conclude

that (10T
λ

+ 10) ∗ 2
lgN

lg 10000 = (5T
λ

+ 5) ∗ 2lgN−3.

3.4 SUMMARY AND DISCUSSION

In this chapter, we propose the design of a decentralized self-emerging data release system

using large-scale Distributed Hash Table (DHT) networks as the underlying infrastructure.

The proposed schemes allow the data sender to securely hide the secret keys of the private

data stored in clouds such that the data becomes available at the defined release time but

remains unavailable prior to the release time. We present a suite of routing path construc-

tion schemes for securely storing and routing secret key in DHT networks that prevent an

adversary from inferring the secret key prior to the release time (release-ahead attack) or

from destroying the key altogether (drop attack). Our experimental evaluation using Overlay

Weaver DHT emulator toolkit demonstrates that the proposed schemes are resilient to both

release-ahead attack and drop attack as well as to attacks that arise due to traditional churn

issues in DHT networks.

Due to the design objectives of the DHT protocols, it is hard to enforce behaviors per-

formed by DHT nodes to make the nodes honestly perform desired behaviors, so the DHT-

based decentralized self-emerging data release system proposed in this chapter mainly relies

on the redundancy and recovery mechanisms to make the system resist against attacks and

churn, which usually requires complex routing paths composed of hundreds of DHT nodes.

In the next chapter, we examine another P2P network infrastructure of designing decentral-

ized self-emerging data release systems, which leverages the decentralized consensus and the

native cryptocurrency of blockchains to enhance protocol enforceability, thus reducing the

number of nodes required for safely routing the self-emerging data.

36

4.0 SELF-EMERGING DATA RELEASE USING ETHEREUM

BLOCKCHAIN NETWORK

In this chapter, we study the ways of designing a self-emerging data release system using

the Ethereum blockchain network [128]. Our research in this chapter corresponds to the

research task T-2. Before presenting the details, it is important to first explain the key

research questions of accomplishing this research task when the underlying P2P network

infrastructure has been changed from a DHT infrastructure to a blockchain infrastructure.

Research goals: Similar to the design objectives in Chapter 3, the goal of the system

designed in this chapter is to keep the private data protected until a prescribed data release

time and get automatically released to the legitimate recipient at the release time, even if

the data sender goes offline. However, as we have discussed in section 1.1, unlike a recipient

in DHT networks that simply implies a DHT node, a recipient of self-emerging data in

a blockchain network, such as Ethereum, may imply two types of accounts, namely an

External Owned Account (EOA) controlled by a peer of the blockchain network through a

private/public key pair or a Contract Account (CA) controlled by a smart contract. Due

to the different properties associated with the two types of recipients, such as the abilities

of actively participating in the protocol or locally storing data, the underlying protocols

designed for the self-emerging data release system may also become different. Therefore, it

is important to emphasize that our study in this chapter focuses on the scenario that both

the data sender and recipient of the self-emerging data are EOA accounts. In other words,

self-emerging data is released to peers controlling EOA accounts. In the rest of this chapter,

for ease of presentation, we denote the data sender and recipient as S and R while the rest

of EOA accounts as P s representing peers in the Ethereum network. The details of releasing

self-emerging data to CA accounts, which could support privacy-preserving timed execution

37

of functions in smart contracts, will be presented in the next chapter.

Properties of peers in Ethereum: A peer in Ethereum can create EOA accounts to

interact with the blockchain and other peers. Similar to a peer running DHT nodes, a peer

in Ethereum also has the ability of storing data locally and communicating with other nodes

privately and can freely join and leave the network. Specifically, two peers in Ethereum can

establish a private channel through the Whisper protocol [13], where a sender encrypts a mes-

sage with recipient’s public key and a recipient decrypts the message with the corresponding

private key.

Adversary models: Instead of following the assumption made in Chapter 3 that the peers

(i.e., DHT nodes or EOA accounts) are either honest or malicious, the unique feature of

blockchains produced by the blending of smart contracts and cryptocurrency allows us to

assume that all the peers in Ethereum are adversaries with rationality. In DHT, due to the

lack of trust among nodes, there is no way that one node can enforce another node to do

anything. However, in Ethereum blockchain, since the decentralized trust has been estab-

lished through blockchain, each smart contract can be considered as a (virtual) trusted third

party. Then, by asking each participant of a smart contract to deposit a certain amount of

cryptocurrency as the security deposit to the contract, any fraudulent or dishonest behavior

that violates the agreements recorded in the contract will make the violator be monetarily

penalized, which incentivizes all rational participants to honestly follow the contract. In

this chapter, we leverage such financial incentive and penalty to revisit the countermeasures

against undesirable misbehaviors of service providers.

Technical approaches: Our smart contract implementation recruits a set of Ethereum

peers to jointly follow the proposed self-emerging data release service protocol allowing the

participating peers to earn the remuneration paid by the service users. Meanwhile, the re-

cruited peers need to pay security deposits so that any detected misbehaviors can result in

the deposits being confiscated. We model the problem as an extensive-form game with imper-

fect information to protect against post-facto attacks including drop attack and release-ahead

attack. Through careful design of the smart contract based on game theory, we demonstrate

that the best choice of any rational Ethereum peer in the proposed technique is to always

honestly follow the correct protocol.

38

Figure 10: Blockchain-based decentralized self-emerging data release system

Evaluation: We validate the efficacy and attack-resilience of the proposed techniques

through rigorous analysis and experimental evaluation on the Ethereum official test network.

The experiments demonstrate the low monetary cost and the low time overhead associated

with the proposed approach and validate its guaranteed security properties.

In the rest of this chapter, we first introduce the self-emerging data release system es-

tablished over the blockchain infrastructure in section 4.1. Then, in section 4.2, we present

the self-emerging data release service protocol in detail. In section 4.3, we implement and

evaluate the proposed protocol on the Ethereum official test network. Finally, we summarize

this chapter in section 4.4.

4.1 SYSTEM OVERVIEW

In this section, we present an overview of the proposed self-emerging data release system

using the blockchain infrastructure and we introduce the key ideas behind the proposed

self-emerging data release service protocol.

39

4.1.1 Self-emerging data release system using Ethereum blockchain infrastruc-

ture

The proposed blockchain-based decentralized self-emerging data release system consists of

four key entities (Figure 10) namely data senders, data receivers, a cloud storage and the

blockchain infrastructure enabling the self-emerging data release service.

Data sender (S): Data senders have private data to be released to data recipients at a

future point in time. At setup time ts, a data sender encrypts/perturbs the private data

using a secret key, sends the encrypted/perturbed private data to a cloud storage system

and sends the encrypted secret key into the blockchain infrastructure for timed release at

the expected release time.

Data recipient (R): Data recipients receive the private data at the expected data release

time. While the encrypted/perturbed private data can be downloaded from the cloud stor-

age at any time, the secret key from the blockchain infrastructure can be released to data

recipients only at the release time tr determined by data senders.

Cloud: A cloud storage is used as a medium for data senders to transfer the encrypted/per-

turbed private data to data recipients.

Blockchain infrastructure: The blockchain infrastructure forms the core component of

the self-emerging data release system. It implements the protocols necessary for offering

self-emerging data release services to data senders.

4.1.2 Self-emerging data release service protocol

The proposed timed data release protocol implemented on the blockchain peer-to-peer net-

work splits a long storage time duration into a series of successive shorter time durations,

each of which is handled by a different peer on the blockchain network as the encrypted

secret key gets routed on the blockchain network from time ts to tr. Thus, the encrypted

secret key is routed from the sender to recipient through a routing path formed by multiple

peers of the network, each of which stores the encrypted key for a short time window. In

the example shown in Figure 10, the storage time duration [ts, tr] is split into three fractions

and the encrypted secret key is passed from sender S to recipient R through a routing path

40

formed by peers P1, P2 and P3. The proposed protocol enables such a routing scheme through

onion routing [46] that requires the sender to first encrypt the secret key using the public

key of the recipient and then iteratively form layers of encryption using the public keys of

the selected peers on the routing path. As a result, each peer on the routing path decrypts

one layer of the encryption of the secret key using their private keys before forwarding it to

the subsequent peers on the path until it reaches the recipient who decrypts the final layer

of the encryption to obtain the key in plain text.

The protocol provides incentive to the participating peers by requiring the data senders

to pay remunerations to the peers for obtaining the store and forward services from them

to route the encrypted key along. To participate in the contract, the protocol requires the

peers to pay security deposits so that any misbehaviors detected in the protocol will result

in their deposits being confiscated.

The protocol satisfies two key requirements in order to be effective in practice:

• First, it ensures credibility so that senders, recipients and peers are guaranteed that they

all see the same protocol when they participate in the service. We implement the service

protocol using the Ethereum smart contract platform [128] which ensures that when smart

contracts get deployed into the blockchain infrastructure, the protocol can be recorded in

the blockchain and be available to the public and becomes nearly tamper-proof unless

someone controls a majority of computation power of the distributed network [4].

• Second, the protocol needs to be enforceable so that peers are guaranteed to receive re-

munerations for honestly performing the agreed services while being penalized for any

misbehavior or failure to render the promised service. The terms and conditions of the

protocol implemented as determinate logics in our approach pass the ownership of money

to the smart contract such that it ensures that the only way to receive payment from the

smart contract is to trigger the contract with a satisfied condition dictated in the protocol.

The proposed protocol consists of four key components. We introduce them briefly here

and present their detailed design in section 4.2.

Peer registration: At any point in time, a new peer P can register by paying a security

deposit to join a contract by adding into the registration list maintained by the contract.

41

This process makes the entire network learn that the peer has registered and can provide

services during its prescribed working times. For example, in Figure 10, we find that P1, P2

and P3 have been registered before the setup time ts.

Service setup: At any point in time, a sender S can pay remunerations and submit peers

selected from the registration list to a contract C and set up a self-emerging data release

service. This process makes the service to be recorded by a service list maintained by the

contract, C. In Figure 10, we find that sender S requests a service at ts with selected peers

P1, P2 and P3.

Service enforcement: After a service has been set up, the participants, namely sender

S, recipient R and peers, P s should follow the protocol honestly in order to render the

service successfully. Behaviors violating the protocol will lead to service failure and such

misbehaviors are detected and penalized by the contract. In Figure 10, the process of routing

the encrypted secret key from S to R through the path formed by the three peers is enforced

by the contract C through paying remunerations for honest behaviors while confiscating

deposits for misbehaviors detected by C.

Reporting mechanism: To effectively detect misbehaviors in the protocol implemented

in the smart contract, the reporting mechanism incentives peers to report misbehaviors by

announcing an award in the contract.

4.1.3 Attack models

In this chapter, we model adversaries with rationality and consider two key post-facto attack

models, namely drop attack and release-ahead attack.

Rational adversaries: Recently, it has been widely recognized that assuming an adversary

to be semi-honest or malicious is either too weak or too strong in many practical cases

and hence modeling adversaries with rationality [47, 61, 62, 103] is a relevant choice in

several attack scenarios. Informally, a semi-honest adversary follows the prescribed protocol

but tries to glean more information from available intermediate results while a malicious

adversary can take any action for launching attacks [64, 133]. A rational adversary lies in

the middle of the two types. That is, rational adversaries are self-interest-driven, they choose

42

to violate protocols, such as colluding with other parties, only when doing so brings them

a higher profit. In this chapter, in order to design our system with strong and practical

security guarantees, we model all involved participants, namely S, R and P , to be rational

adversaries without assuming any of them to be honest.

Post-facto attacks: The system targets post-facto attacks. That is, it defends the private

data against future attacks launched after the private data has been sent into the system.

By allowing senders to declare a registration deadline td earlier than ts and only select

peers registered before this deadline, adversaries who decide to attack Alice’s data after

observing the start of self-emergence of Alice’s data from the blockchain cannot make his

newly registered peer be selected. Therefore, the primary way to launch attacks is to bribe

the peers having Alice’s data.

Drop attack: A drop attack happens when the encrypted secret key fails to reach the

recipient R at release time tr. For example, in Figure 10, after receiving the encrypted secret

key from peer P2, peer P3 may decide to destroy it. A rational adversary may launch a drop

attack for getting profit. In post-facto attacks, drop attacks primarily occur through peer

bribery. As we have modeled both adversaries and collaborating peers, P to be rational, a

drop attack happens only when the adversary gets higher profit from the drop attack than

the paid bribery and when P receives higher bribery than the drop penalty. To break the

win-win situation, we carefully design the detection mechanism in section 4.2.3 to make drop

attacks detectable and to allow the reporting mechanism in section 4.2.4 to distinguish and

penalize the adversaries. In addition, by modeling the protocol as an extensive-form game

with imperfect information [79], we demonstrate that drop attack can be entirely prevented

in our rational model.

Release-ahead attack: In release-ahead attacks, an adversary aims to obtain the secret

key before the actual release time tr and earn a profit by utilizing the data prior to the release

time. In Figure 10, peer P3 can launch a release-ahead attack by releasing the encrypted

secret key to recipient R before tr. Similar to drop attacks, release-ahead attacks primarily

happen through peer bribery in post-facto attacks. However, unlike drop attacks that can

be detected, a release-ahead attack happens secretly as peers on the path can share stored

data to any party without leaving a mark. Our proposed techniques handle this challenge

43

by designing a reporting mechanism to model the release-ahead attack as an extensive-form

game with imperfect information (section 4.2.4). It makes rational adversaries choose to

never launch release-ahead attacks as the game ensures that the best choice of any rational

Ethereum peer is to always honestly follow the correct protocol.

4.1.4 Assumptions

We make the following key assumptions in this chapter:

• We assume that the monetary value of the private data within a service request is bounded

by the highest deposit paid by the registered service providers, which represents the real-

time solvency of the system.

• Similar to Bitcoin [100], we assume that the pseudonymity offered by Ethereum to the

network peers is not adequate [93]. Although techniques such as mixing [29] have been

proposed, it is still unclear whether the identification of peers can be adequately pro-

tected in such large-scale P2P networks. Therefore, we assume that adversaries can freely

communicate with any Ethereum peers and we assume no protection of pseudonymity or

anonymity.

• We also assume that an adversary and the peers in communication do not trust each other

as otherwise their cost-free collusion violates the rationality assumption of all parties.

• Our system employs the Whisper protocol [13] to enable communication between two

Ethereum peers. We assume that a private channel generated using the Whisper protocol

between any two Ethereum peers is secure.

• Finally, we assume that the number of registered peers is adequate for providing the

required service. We assume that there are at least two different available registered peers

at any moment for each service request.

44

4.2 SELF-EMERGING DATA RELEASE SERVICE PROTOCOL

In this section, we present the proposed service protocol organized along four subsections,

each of which discusses a key component of the protocol.

4.2.1 Peer registration

In this subsection, we present the first part of the protocol, peer registration, designed for

allowing peers to make themselves known to the network. After presenting the protocol in

Table 1, we discuss the peer working window and deposit management in more detail. To

set up self-emerging data release services, a prerequisite is to have a platform for making

peers P s and data senders Ss know each other. Since peers and senders have no trust in

each other, instead of a face-to-face negotiation, they need to transfer their information (peer

working window Tw and sender storage window T s) and money (remuneration and deposit)

to the decentralized smart contract C and treat C as a trusted intermediary to put the deal

through. A new peer registers by sending their working windows, public keys and deposit to

join the contract C. This information is recorded in the registration list maintained by C.

Peer working windows: As discussed in Section 4.1.2, the proposed service protocol splits

a long storage time duration, T s into a series of successive shorter time durations, each of

which is handled by a different peer during its working window, Tw, as the encrypted secret

key gets routed on the blockchain network. Figure 11 shows an example representing Tws

as horizontal segments in a coordinate frame with timeline and peer indexes as x and y axes

respectively. Here, the segment at the bottom-left corner represents a working window [t1, t2]

belonging to Pi.

Deposit management mechanism: The proposed protocol uses deposits as a mechanism

to penalize peer misbehaviors in order to prevent drop and release-ahead attacks. Senders

may want to pay more for getting a higher deposit from peers as guarantees of their behaviors

to send private data with higher monetary value v. To support such requirements, we design

a dynamic deposit management mechanism that incorporates deposit with two states: frozen

and unfrozen. One can imagine that each peer has a deposit account in contract C. The

45

Table 1: Peer registration

Peer registration protocol

1. To be registered, each peer must submit a set of future working windows Tws and a

public key to contract C. It must also pay a deposit to contract C as assurance of no

misbehavior while providing future services.

2. Each peer agrees to complete any assigned jobs.

3. Each peer agrees to allow the contract to freeze a part of its deposit for an assigned job

until the job is completed.

4. Each peer agrees to renew the public key for each job.

5. Each peer can modify working windows Tws and the unfrozen deposit at any time, but

jobs assigned before modification should still be completed.

deposit account is opened after registration and its balance is denoted as da. Initially, da

is unfrozen. Later, data senders can calculate the amount of deposit they want from peers,

denoted as ds, based on the monetary value of the private data v. Then, during service setup,

senders should only select peers from the registration list with at least ds unfrozen deposit in

their accounts. The amount of ds deposit, once being verified by contract C, will be frozen

from accounts of selected peers until the end of their services. At any time, each peer can

only manage its unfrozen deposit in the account as the ownership of the unfrozen part has

been temporarily transferred to contract C. In this way, the designed deposit management

mechanism encourages peers with secure storage environment to keep a high deposit balance

so that they can get jobs requiring higher deposit ds to earn more payments by taking higher

risk.

4.2.2 Service setup

Next, we present the second part of the protocol, namely service setup, designed for allowing

senders to select peers from the registration list based on their requirements and set up the

46

Table 2: Service setup

Service setup protocol

1. Before setup time ts, senders compute the remuneration r̂ and deposit ds required by

this service and then locally run the peer selection algorithm to select peers from the

registration list satisfying their requirements.

2. At setup time ts, senders submit service information including selected peers to contract

C. Also, both sender S and recipient R should pay p > ds + r̂ to contract C.

3. Upon receiving a setup request, contract C calculates remuneration r̂ and deposit ds of

this service, then:

a. If p > ds + r̂ and each selected peer has unfrozen deposit higher than ds, C will

approve the setup, freeze ds of selected peers and refund p− ds − r̂ to S, p− ds to

R.

b. Otherwise, C will reject the setup and refund p to S, R.

service with contract C after paying remunerations. We first present the protocol description

for service setup in Table 2 and then illustrate the remuneration computation and peer

selection algorithm in detail.

Remuneration computation: The total remuneration r̂ paid by the sender consists of

two parts r̂c and r̂s. The r̂c component is charged to compensate the cost of peers for

invoking functions of contract C during the service, so r̂c = krc for k selected peers. The r̂s

component is charged to reward peers for storing the secret key, so it should be higher for

longer storage time |T s|. Meanwhile, to encourage more peers to serve for long-term storage,

senders should be charged more for a later storage hour closer to release time tr than an

earlier one closer to setup time ts. Therefore, if we represent the charge of ith storage hour as

4ris and set the first hour charge as 4r1s , by setting per hour increment of 4ris as α, we get

4ris = 4ri−1s + α, which further gives r̂s = |T s|[4r1s+4r1s+(|T s|−1)α]
2

= |T s|4r1s + |T s|(|T s|−1)
2

α.

Additionally, S should be charged more for a higher monetary value of private data v as

an incentive to make peers maintain higher balance in deposit accounts, so we consider the

47

above r̂c and r̂s as the charging standard when v = 4v (e.g., 4v = $100) and adjust the

final r̂ based on that. To sum up, a sender should pay remuneration r̂ = (d v
4ve)

β[krc +

|T s|4r1s + |T s|(|T s|−1)
2

α] in total and a peer serving for ith to jth hours in T s should be paid

r = (d v
4ve)

β[rc + (j − i)4r1s + i+j−2
2

α], where α > 0 and β > 1.

Peer selection: The peer selection algorithm has two objectives, namely (i) minimizing

remunerations paid by senders and (ii) maximizing the expected profit made by the peers.

To realize the first objective, we note that the only way to reduce remuneration r̂ is to make

k smaller, namely selecting fewer peers for a service, which does not impact the expected

profit r earned by selected peers as r̂s is fixed. For achieving the second objective, we need

the algorithm to always pick earlier hours in peer working windows Tws first so that deposit

ds can be unfrozen as soon as possible. For example, the algorithm needs to pick just one

hour from a ten-hour Tw for a one-hour service. By picking the last hour in Tw, that peer

only receives a one-hour profit because deposit ds has to be frozen for the entire ten hours.

In contrast, by picking the first hour, since deposit ds will be unfrozen after one hour, the

door for accepting new jobs is reopened and that peer can make a ten-hour profit in the

best case. We design a greedy algorithm to achieve both of these objectives simultaneously.

By decomposing the peer selection problem into a series of subproblems, we define each

subproblem as ‘given all peer working windows Tws covering an input time point, output

the Tw that makes the total number of selected peers minimum’. Once a Tw is selected,

its beginning time tb is then used as the input time point of the subsequent subproblem to

select the next peer. Intuitively, in a subproblem, the greedy choice is to pick the Tw with

earliest tb. Therefore, we have:

Lemma 2. The greedy algorithm that always picks Tw with earliest tb minimizes the number

of selected P for a service.

Proof. Let us consider that the peer selection problem is decomposed into n rounds of con-

tinuous subproblems. If an algorithm falls behind the greedy algorithm in round i, then

the only way for this algorithm to catch up with the greedy algorithm at round i + 1 will

be to select the greedy choice of round i + 1 in round i + 1, but this can at most make its

performance same as the greedy algorithm.

48

Figure 11: Peer selection

We demonstrate an example of the peer selection process in Figure 11. Instead of release

time tr, the algorithm takes tr + |Tt| as the input time point of the first-round subproblem

as we need to leave a short time period |Tt| for data transfer between each pair of adjacent

peers on path. Therefore, in the example with path S → P1 → P2 → P3 → R, we need

four |Tt|s. In the first round, there are three available peer working windows Tws covering

tr + |Tt| and obviously Tw3 , due to its earliest begin time tb among the three, is the greedy

choice. As a result, we select P3 as the last peer on path and set Tw3 .tb + |Ti| as input of the

second-round subproblem. We then get Tw2 as second-round greedy choice, so we select P2

and set Tw2 .tb + |Ti| as input of the third-round subproblem, which gives Tw1 as third-round

greedy choice to pick P1. This is the end of peer selection process as Tw1 has already covered

setup time.

The pseudo-code of the peer selection algorithm is shown in Algorithm 4 (we assume peers

have passed registration deadline check and balance check). The peer selection problem is

decomposed into a series of subproblems. For each subproblem (loop 2-15), the algorithm

traverses all available peer working windows Tws (loop 3-8) to find the ones satisfying the

conditions that: 1) it covers the input time point of this round (line 4); 2) it has earlier tb than

the ones that have been traversed (line 5); 3) the peer has not been selected for this service

(line 5). After an eligible Tw is found, the greedy choice for this round is updated (line 6).

Finally, the end of the traversal gives the greedy choice for the current round subproblem.

49

Algorithm 4: Peer selection algorithm

Input : Registered peer working window set with enough unfrozen deposit T̂w, requested sender
storage window T s = [ts, tr], transfer time period |Tt|.

Output: Selected peer working window list T̃w.
1 Initialize tcur = tr, tpre = tr, Tw

sel;
2 while tpre > ts do

3 for each Tw ∈ T̂w do
4 if Tw.tb < tcur + |Tt| & Tw.te > tcur + |Tt| &
5 Tw.tb < tpre + |Tt| & nonRepeat(Tw) then
6 Tw

sel = Tw; tpre = Tw.tb;
7 end

8 end
9 if nonRepeat(Tw

sel) then

10 T̃w ← Tw
sel; tcur = tpre;

11 end
12 else
13 Fail;
14 end

15 end

If the greedy choice is different from that of the last round, the algorithm approves it and

starts the next round (line 9-11). Otherwise, the algorithm fails to find available P s for this

service and returns False. The complexity of this algorithm is O(|T̂w||T̃w|).

4.2.3 Service enforcement

The third component of the protocol deals with service enforcement that specifies the be-

haviors that should be followed by the sender S, recipient R and peers, P s during the service

process to render the service successful. The protocol sets deadlines for each behavior and

treats any missing behavior as a drop attack to enable drop attacks behavior to be detectable.

Next, we present the protocol in Table 3 with a discussion on the designed behaviors. We

then model the protocol as an extensive-form game with imperfect information to prove that

any rational participating peer will always follow the protocol honestly.

Whisper key submission: Our system employs the Whisper protocol [13] to transfer

secret keys between any two Ethereum peers by building private channels with symmetrical

whisper keys. Specifically, the first peer should encrypt its whisper key with the public key

of the second peer and submit it to contract C so that only the second peer can get the

50

Table 3: Service enforcement

Service enforcement protocol

1. Before time ts + |Tt|, the sender must submit hashes of certificates and the encrypted

whisper key to contract C. It must also encrypt the secret key using public keys of

selected peers and transfer it to the first peer.

2. Each selected peer must decrypt one layer of the received encrypted secret key, submit

the obtained certificate to contract C and verify the behavior of previous participants

before its first deadline d1. It must submit encrypted whisper key to contract C before

its second deadline d2 and transfer the secret key to the next peer before its third

deadline d3.

3. Before time tr + |Tt|, the recipient must first decrypt the last layer of the encrypted

secret key to submit the obtained certificate to contract C and then verify the behavior

of both the previous participants and the recipient itself.

4. If any verification launched by a peer (or recipient) in term 2 (or 3) gives False, C

should immediately terminate the service and judge the last participant on the path

that fails to pass the verification to be guilty. Then, C should refund deposit ds to all

innocent participants, pay remuneration r to innocent peers and issue confiscated ds

and unused r to sender.

5. If a verification gives Ture, contract C should refund deposit ds and pay remuneration

r to all participants that have already honestly finished their job before their deadlines.

51

whisper key and set up the channel.

Certificate: We design certificates for detecting drop attacks. For each peer and recipient,

we need the sender to secretly generate a unique certificate and package it along with the

corresponding layer of the encrypted secret key. Therefore, upon decrypting the received

encrypted secret key with the private key, the peer (or recipient) will get the unique certifi-

cate. The peer (or recipient) then should submit the certificate to contract C. If the hash of

the submitted certificate is same as the one submitted by the sender, the correct reception

of encrypted secret key can be proved. Otherwise, a drop attack is detected. However, with

certificates, we can only detect that a drop attack has happened between two adjacent peers.

It is hard to further figure out which of the two peers launched the attack as the channel

between them is private. We will discuss how to handle such a dispute in Section 4.2.4.

Verification: We design verification as a function of contract C for enforcing submission

of whisper keys and certificates. A missing whisper key or certificate, both causing a drop

attack, cannot be automatically detected by contract C. Here, we need the verification

function to be triggered by Ethereum peers to check whether the submissions have been made

on time. If all the submissions have been correctly made until the time of verification, the

function returns a True. Otherwise, it returns a False. For each self-emerging data release

service, multiple verifications are required to detect a drop attack in a timely manner so that

the service can be terminated on time and deposits of innocent peers can be unfrozen quickly.

We carefully design the protocol as an extensive-form game with imperfect information to

prove that any rational participant in this game will always choose to submit both whisper

key and certificate on time.

The game induced by the protocol: We model the protocol as an extensive-form game

with imperfect information [79], which can be represented as a game tree in Figure 12.

For ease of explanation, the example only has one peer P between sender S and recipient

R on path, however, the services with more peers follow the same result. The game has

three players {S, P,R}. Its basic actions are (whisper key and/or certificate) submission (s)

and verification (v), so the action set is {s, v, s̄, v̄, sv, sv̄, s̄v, s̄v̄}, where s̄ and v̄ represent

no submission and no verification respectively and sv, sv̄, s̄v, s̄v̄ stand for the combinations.

The game tree consists of choice nodes {n0, ..., n14} and terminal nodes {n15, ..., n30}. At the

52

Figure 12: Game tree induced by service enforcement protocol

beginning of the game, sender S ({n0}) can choose either to submit whisper key or not by

taking one action from {s, s̄}. Then, the game moves to peer P ({n1, n2}), who has no idea

about the choice made by sender S (imperfect information). The peer P should choose one

action from {sv, sv̄, s̄v, s̄v̄}, namely four combinations of doing submission and verification

or not, but we argue that sv̄ and s̄v can be omitted. The reason is that a peer P choosing

sv̄ gets same payoff as choosing sv if no previous player has chosen s̄ as there is no need

of verification in this situation. In contrast, if there is at least one previous player who has

chosen s̄, the payoff by choosing sv̄ is equal to that of choosing s̄v̄ as there is no need of

submission when a drop attack has been launched earlier. As a result, sv̄ can be replaced

by sv and s̄v̄, and it is also true for s̄v. Finally, the game goes to the turn of recipient R

({n3, n4}, {n5, n6}), who has no idea of the action taken by sender S and peer P . Similar to

P , recipient R should choose one action from {sv, s̄v̄}, but s here only means the certificate

submission as it is the last peer on the path.

We now analyze the payoffs shown under the terminal nodes, where uS, uP and uR rep-

resent payoff of sender S, peer P and recipient R respectively. The payoffs have uncertainty.

Most peers on the path, by dropping the encrypted secret key, can only save a service cost c,

but some peers can get an additional profit no more than the monetary value of the private

data v (for ease of presentation, we represent it as v in this game). Therefore, it is uncertain

whether peer P and receipt R can get the additional benefit v from dropping the package.

To model this uncertainty, we use P and R to represent the ones only targeting at c and

53

P̄ and R̄ to represent the ones also targeting at v. By considering this uncertainty, this

game can actually be modeled as a more sophisticated Bayesian game [17]. However, we

find that the four situations in this game ({PR, PR̄, P̄R, P̄ R̄}) can reach the same Nash

equilibrium [101] and therefore, for ease of explanation, we will only analyze the situation

that both peer P and recipient R can get additional benefit v, namely P̄ R̄.

In P̄ R̄, we will show that if deposit ds > v is satisfied, then the best choice of each player

is to do both submission and verification on time. We start from analyzing the choice of

recipient R between sv and s̄v̄ at the last step of this game. At n3, by choosing sv, R gets

0 at n7, which is higher than uR = v − ds at n8 if s̄v̄ is chosen and ds > v is satisfied. By

further checking n4 to n6, we can find sv always brings uR no less than uR from s̄v̄, which

proves that sv dominates s̄v̄ and R should always choose sv no matter how the game has

been played before. Following the same rule, peer P should always choose sv at {n1, n2} if

ds > v − (r − c) is satisfied. Since we need r > c to make P s get positive profit from the

service, ds > v − (r − c) can be automatically satisfied when ds > v. Finally, with the same

rule, sender S should always choose s at n0.

In game theory, if by taking a strategy, a player can make the expected payoff no less

than that induced by taking any other strategy no matter what strategies are taken by other

players, this strategy will become his or her best response. If all the players are taking their

best responses, the game will reach a Nash equilibrium [101]. Nash equilibrium is the most

important solution concept in game theory, which describes a situation that every player

chooses the best response and no one can make payoff higher by changing strategy if no one

else changes strategy. In this game, the Nash equilibrium is reached when all the players

follow the bold edges, which results in all rational players, whether they are sender, recipient

or peers, choosing to honestly obey the protocol.

4.2.4 Reporting mechanism

In this subsection, we present the last part of the protocol in Table 4, namely reporting

designed for handling both release-ahead attacks and the dispute of drop attacks that are

hard to be detected by service enforcement protocol.

54

Table 4: Reporting

Reporting protocol

1. Any peer can report a release-ahead attack to contract C with evidence before tr to

earn an award a.

2. Any peer on the path can report a dispute of drop attack between a suspect (the peer

before this reporter on path) and the reporter to contract C before deposit ds of the

suspect is unfrozen to earn an award a.

Release-ahead attack: As discussed in Section 4.1.3, it is very difficult to detect a secret

release attack made by peers on the path. We design a reporting mechanism to enable a

release-ahead attack to be reported with evidence by adversaries themselves. The evidence

should include a message and the message signed by the private key of the disloyal peer,

which has been released by the peer to the adversary. Then, contract C can verify the

correctness of the private key with the public key of that peer. If the private key is proved to

be the one of this peer, the adversary will get an award, a from contract C while the peer will

lose its deposit ds. This reporting mechanism is an effective way to prevent release-ahead

attacks as long as both adversary and the peer are rational. In the game between them,

the best response of the adversary is to always report the peer to earn the award a from

contract C without any penalty. Based on this knowledge, the best response of any peer

on the path is to never accept bribery. Therefore, the Nash equilibrium of this game makes

such a release-ahead attack never happen.

Dispute of drop attack: As discussed in Section 4.2.3, drop attacks cannot be solely

prevented by verification. After a drop attack is detected between two adjacent peers on

the path when the second peer between the two fails to submit the correct certificate, it is

hard to figure out which peer actually launched it. It can be either launched by the first

peer by not sending the correct encrypted secret key to the second peer or by the second

peer by maliciously denying the reception of the encrypted secret key. In addition, it can be

launched by the sender S by submitting fake hashes of certificates to contract C at the very

55

beginning. To solve it, we allow the second account to report the dispute. Upon receiving

the report, contract C should confiscate deposit ds of the three participants and send back

an award a to the second peer. Again, this anti-intuitive reporting mechanism is an effective

way to prevent drop attack dispute by making the three participants as a community of

interests as long as these accounts are rational. In this game, when there is a drop attack,

the second peer has the dominant action to always report the dispute because it will lose

part of its deposit ds − a by reporting it but lose the entire deposit ds due to the missing

certificate by not reporting it. With this knowledge, the best response of the first peer and

sender is to never launch a drop attack because otherwise they will lose the entire deposit

ds > v due to the report. Finally, given the best response of the first peer and sender, if

ds > v + a is satisfied, the best response of the second peer is also to never launch a drop

attack because otherwise it will lose ds − a > v due to the report. As a result, the Nash

equilibrium is reached when all of them choose to never launch a drop attack.

4.3 IMPLEMENTATION

In this section, we present the implementation of the proposed self-emerging data release

smart contract and experimentally evaluate its performance and security.

4.3.1 Implementation

We first introduce the implementation setup and then present the functions created in the

smart contract and demonstrate how they work in practice. Finally, we present the test

instance for our experimental evaluation.

Setup: We programmed the smart contract in the contract-oriented programming language

Solidity [11], deployed it to the Ethereum official test network rinkeby [9] and tested it with

Ethereum official Go implementation Geth [6]. We used the SolRsaVerify contract [12] to

verify signatures in the release reporting mechanism. We ran our experiments on an Intel

Core i7 2.70GHz PC with 16GB RAM.

56

Table 5: Summary of functions in the smart contract

Sections Invokers Functions Purposes

Register

P newPeer register a new Peer

P updateBalance update deposit balance

P updateWindow update working windows

P updatePubKey update public keys

Setup

S senderSign sender signs the contract

R recipientSign recipient signs the contract

S setup setup the service

Enforce

S setCert submit hashes of certificates

P,R verifyCert verify received certificates

P setWhisperKey submit encrypted whisper keys

P,R verification do verification

Report

Any releaseReport report a release-ahead attack

Any releaseAward get award for reporting release

P,R dropReport report a drop attack

P,R dropAward get award for reporting drop

57

Contract functions: We design the smart contract to include 15 main functions for sup-

porting the four parts of protocol presented in Section 4.2. The functions are organized as

follows: The functions are shown in Table 5 with their respective invokers and purposes. For

example, function newPeer() is designed to be invoked by peers during registration phase

for being registered into the list.

• Registration: Peers (P s) can first invoke newPeer() to be registered and recorded into

the peer list and then manage their unfrozen deposit balance, working windows and public

keys through the other three functions.

• Setup: A sender (S) should download the peer list, locally run peer selection algorithm to

select peers from the list and estimate remuneration r. Then, S should sign the contract

through senderSign() and also inform the recipient (R) to sign it through recipientSign().

Finally, S should invoke setup() to complete service setup and the smart contract (C) will

freeze deposit ds of each selected P after verifying payments of S and R and record the

service information into the service list.

• Enforce: At the beginning of a service, S should invoke setCert() to submit hashes of

certificates to C. Then, during the service process, verifyCert() is invoked by P s and R

to submit certifications, setWhisperKey() is invoked by P s to submit encrypted whisper

key and verification() is invoked by P s and R to do verification.

• Report: Any Ethereum peer can invoke releaseReport() to report a release-ahead attack

and get award through releaseAward() after the report has been verified to be correct.

Similarly, P and R on path can report a drop attack through dropReport() and get award

through dropAward().

Test instance: For testing purpose, we generated 100 Ethereum accounts to be registered

as peers. Each peer offers one working window represented as a horizontal segment in Figure

13(a). We design an input parameter Time to simulate the time during testing. As can

be seen, the 100 working windows are distributed in the future 1200 hours. Their start

times follow an exponential distribution with a mean of 300 hours while their lengths follow

a normal distribution with a mean of 15 hours and a standard deviation of 5 hours. The

reason is that we believe more peers may want to serve in the nearer future due to its lower

58

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

w
in

d
o

w
s

timeline (hours)

working windows

(a) All windows

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

w
in

d
o
w

s

timeline (hours)

selected windows

(b) Selected windows (300h)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

w
in

d
o
w

s

timeline (hours)

selected windows

(c) Selected windows (600h)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200
w

in
d
o
w

s
timeline (hours)

selected windows

(d) Selected windows (1000h)

Figure 13: Peer selection

uncertainty. From Figure 13(b) to 13(d), we show the results of peer selection algorithm for

sending the private data to 300, 600 and 1000 hours in the future by selecting two, three and

five peers respectively. The storage on each selected P , upon hitting the dotted line, will be

transferred to the next P . In all cases, storage on each P starts from the beginning of its

window, which signifies the design goal of the peer selection algorithm.

4.3.2 Experimental evaluation

We use the presented test instance to experimentally evaluate the performance and security

of the smart contract. We begin by first evaluating the monetary cost and time overhead

of the functions and then test the contract in different conditions including drop attack and

release-ahead attack scenarios.

Monetary cost: The monetary costs of functions in Table 5 for the three-peer case in

Figure 13(c) are shown in Figure 14(a). The results shown represent the maximum possible

monetary costs for invoking the functions. For ease of presentation, results are grouped

59

into four clusters. Each cluster represents a protocol subsection and contains three or four

functions following their order in Table 5. In Ethereum, each function call will cost some

gases if it changes the state of contract. Therefore, the raw data measured here is the gas cost

of each function, which is then transferred to cost in $ based on 1 gas = 1.0371979124×10−8

ETH and 1 ETH = $300 as of date, 10/29/2017 [5]. As can be seen, most functions cost

very little. Specifically, among the fifteen functions, eight cost lower than $0.2 and twelve

cost lower than $0.3. The remaining three functions are newPeer() ($0.86), senderSign()

($0.73) and setup() ($2.29). They cost higher as data is stored into the registration list and

service list in C through the three functions. However, since each P only calls newPeer() for

once during registration and each S only calls senderSign() and setup() once during service

setup, these costs are quite acceptable in practice. Thus, in case of three selected P s, a

self-emerging data release service costs $5.07 in total, including $3.33 cost incurred by S,

$0.44 cost incurred by each P and $0.41 cost incurred by R. To study the scalability of

the self-emerging data smart contract, we measured the monetary costs of the functions for

the five-peer case in Figure 13(d) as Figure 14(b). Compared with Figure 14(a), only costs

of three functions setup(), setCert() and verification() are increased as a higher number of

selected P s requires more data to be stored in data list with more certificates and more

rounds of verifications. However, the increments of setCert() and verification() are quite

small and the increment of setup() from $2.29 to $3.56 is not a drastic overhead for storing

the private data for a longer duration of 1000 hours.

Time overhead: The time overheads of functions in Table 5 for the three-peer case in

Figure 13(c) are shown in Figure 14(c). All results are averaged for 100 tests. Among the

fifteen functions, nine spent 0-200ms, three spent 200-300ms and two spent 300-400ms. The

setup() function spent the maximum time of 515ms due to the large amount of service data

for storing. Again, we tested the five-peer case in Figure 13(d) and showed the results in

Figure 14(d). The two more selected peers make the same three functions setup(), setCert()

and verification() spend more time for the same reasons. Here again, the increments are

quite acceptable. In addition, we tested the time overhead of the peer selection algorithm,

which shows that the algorithm is quite efficient by spending less than 20ms for even a peer

list with 1000 working windows.

60

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

register

setup
enforce

report

M
o

n
e

ta
ry

 c
o

s
t

($
) 1st func

2nd func
3rd func
4th func

(a) Monetary cost (3 peers)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

register

setup
enforce

report

M
o

n
e

ta
ry

 c
o

s
t

($
) 1st func

2nd func
3rd func
4th func

(b) Monetary cost (5 peers)

 0

 100

 200

 300

 400

 500

 600

 700

 800

register

setup
enforce

report

T
im

e
 o

v
e

rh
e

a
d

 (
m

s
) 1st func

2nd func
3rd func
4th func

(c) Time overhead (3 peers)

 0

 100

 200

 300

 400

 500

 600

 700

 800

register

setup
enforce

report

T
im

e
 o

v
e

rh
e

a
d

 (
m

s
) 1st func

2nd func
3rd func
4th func

(d) Time overhead (5 peers)

Figure 14: Performance evaluation

Table 6: Security evaluation

Cond S P1 P2 P3 P4 P5 R

1. 5 5 5 5 5 5 5

2. 7.872 5.010 5.017 5.026 5.035 5.040 5

3. 8.489 5.010 4.4 5.026 5.035 5.040 5

4. 8.212 5.310 5.017 5.026 5.035 4.4 5

5. 1.347 5.010 5.017 5.026 4.4 1.7 5

61

Security evaluation: Finally, we evaluate the security protection offered by the smart

contract by testing the results of a self-emerging data release service in different conditions

when the S, R and P s engage in suspicious behaviors, shown in Table 6. The test is

based on the five-peer case in Figure 13(d) and the parameters about remuneration are

set as α = 0.000012 ETH, β = 1.1, 4r1s = 0.000001 ETH, 4v = 1 ETH, rt = 0.002 ETH

respectively. The parameter setting can be adjusted, but it should not make the remuneration

too low as in that case, one may not be incentivized to freeze $1000 for half a year for earning

a meager payment of $0.1. In addition, we set ds = 1.2v and award a = 0.1v.

• Condition 1: Before the service, S, R and the five P s all hold 5 available ETH. Then, S

wants to send a secret key with its monetary value v = 3 ETH.

• Condition 2: If all the participants follow the protocol honestly, S can earn 2.872 ETH

from the 3 ETH v after paying 0.128 ETH to P s. Each P can earn its remuneration based

on the length of its service time as well as the distance of its service from the setup time

tr. As can be seen, the P5 offering service for 890h-1000h earns much more than P1 serving

for the first 240 hours.

• Condition 3: If P2 does not submit its whisper key or certificate on time, its confiscated

deposit ds = 3.6 ETH will make its final payoff to be 5− 3.6 + 3 = 4.4 ETH.

• Condition 4: If P5 releases its data to P2, P2 can report it to earn the 0.3 ETH award,

which will make P5 get 5− 3.6 + 3 = 4.4 ETH payoff.

• Condition 5: If P4 does not send the secret key to P5 through the private channel, P5 can

report this drop dispute, which will make P4 get 4.4 ETH payoff. Without reporting it to

earn the 0.3 ETH award, P5 can only get 5 − 3.6 = 1.4 ETH payoff due to the failure of

certificate submission.

As can be seen, in conditions 3 to 5, adversaries with misbehavior only get 4.4 ETH payoff,

which makes them lose 0.6 ETH. Therefore, a rational Ethereum peer should always choose

to honestly follow the protocol resulting in condition 2.

62

4.4 SUMMARY AND DISCUSSION

In this chapter, we develop decentralized techniques for supporting self-emerging data release

using smart contracts in the Ethereum blockchain network. Our proposed service protocol

implemented as smart contracts is immutable in the Ethereum blockchain. The credibility

and enforceability of the protocol are guaranteed through a careful design based on extensive-

form games with imperfect information to prevent possible post-facto misbehaviors including

drop attacks and release-ahead attacks. We develop the smart contract using Solidity and

implement the system on the Ethereum official test network.

The scenario focused by this chapter requires both the data sender and recipient to be

peers controlling External Owned Accounts (EOAs) through private/public key pairs. In

the next chapter, we will discuss a more challenging scenario, namely releasing self-emerging

data to a Contract Account (CA) controlled by a smart contract, where the recipient is

unable to locally store data or privately communicate with other accounts.

63

5.0 PRIVACY-PRESERVING TIMED EXECUTION OF

SMART CONTRACTS

In the previous chapter, we were focusing on releasing self-emerging data to peers who control

EOA accounts through private/public key pairs. In this chapter, we examine a more chal-

lenging scenario that corresponds to the research task T-4 proposed in Section 1.1, namely

releasing self-emerging data to a passive smart contract that has already been deployed by

peers to a CA account. In short, mechanisms satisfying such requirements can facilitate a

wide range of decentralized applications, allowing users to schedule their target smart con-

tracts to be automatically executed at future points of time, without revealing their private

input data (i.e., self-emerging data) before the expected execution time. Next, before going

to the details, we first present the motivations that stimulate our study of releasing self-

emerging data to smart contracts. We then present other key research questions associated

with the objectives of this chapter.

Motivations and objectives: Recent implementations of blockchain-based smart contract

platforms, such as Ethereum [128] and NEO [102], have attracted a large number of de-

velopers to build decentralized applications using smart contracts that avoid the need of a

centralized server to manage and maintain the data [2, 92, 94]. The market cap for the lead-

ing smart contract platform, Ethereum, peaked at $134 billion [52] in 2018 and thousands of

decentralized applications, ranging from social networks to financial software, have been de-

veloped over Ethereum [118]. The Smart Contracts market is estimated to grow at a CAGR

of 32% during the period 2017 to 2023 [117]. A decentralized application may involve one

or more smart contracts and each smart contract may contain multiple functions that need

to be invoked by application users through transactions. For instance, a sealed-bid auction

smart contract [129] requires bidders to reveal their sealed bids by invoking a function (e.g.,

64

a reveal() function) during a time window. Similarly, a voting smart contract [92] requires

voters to publish their votes using a vote() function during the voting time window. Each

called function in a smart contract is executed by the entire blockchain network. Since both

function code and function inputs (i.e., bid or vote) are available on the blockchain, the

function outputs are deterministic and their correctness can be verified by the network, thus

cutting out centralized middlemen or intermediaries for running these functions [78]. A key

fundamental limitation of existing smart contract platforms is the lack of support for users

to schedule timed execution of transactions such that their target functions can be invoked

at a later time, even when the users go offline. For example, if Bob plans to take a week off

work and could not respond to an auction or voting mechanism implemented on Ethereum

during the prescribed time windows, he needs a mechanism to schedule these timed trans-

actions by automatically invoking reveal() and vote() during the time windows. Here, the

inputs to these functions namely the bids and the votes are extremely sensitive and need to

be securely protected until the prescribed time windows even when Bob is offline. There-

fore, we need a two-stage mechanism, namely (1) protecting the inputs of a function (i.e.,

self-emerging data) before a prescribed execution time and (2) automatically releasing these

inputs to the contract address (CA) of target smart contract (i.e., auction smart contract)

at the prescribed execution time to make the function get executed by miners.

Challenges: It is easy to implement such a mechanism in centralized application environ-

ments as function inputs can be stored by centralized servers and function execution can be

triggered by centralized servers at prescribed execution time. For instance, Boomerang [30]

allows users of Gmail to schedule their emails to be sent when users have no connection

with the Internet. Similarly, Postfity [108] helps users to schedule messages to be posted

onto many centralized social networks. However, both the two stages of the aforementioned

mechanism is hard to be designed in decentralized platforms such as Ethereum. First, to

guarantee verifiability of function outputs, function inputs need to be put onto the blockchain

and as a result, both function inputs and outputs become public to all peers at the time

the schedule is initialized, thus leading to privacy risks with the input data. Second, when

a transaction invoking a function is deployed into the network, the invoked function is ex-

ecuted immediately, which makes it difficult to support timed execution when the user has

65

already gone offline.

Properties of contract accounts (CAs) in Ethereum: Unlike accounts controlled by

peers (i.e., DHT nodes, Ethereum EOAs), a contract account (CA) in Ethereum is passive

and transparent. The execution of any function of deployed smart contracts must be invoked

through either transactions sent by EOAs or messages sent from CAs. All these transaction-

s/messages, as well as function inputs inside them, are publicly recorded by the Ethereum

blockchain, which makes the function outputs deterministic because all miners can execute

the function with the same inputs and gets the same outputs.

Adversary models: In this chapter, we further increase the strength of adopted adversary

models for the purpose of designing more robust countermeasures against potential attacks.

In the previous Chapter 4, we have assumed that all the peers are adversaries with rationality.

In the first part of security analysis in this chapter, we follow the same assumption made

in Chapter 4 and assume that all EOAs are rational adversaries but not malicious. Then,

in the second part of security analysis in this chapter, we further assume that there exists a

malicious (or irrational) adversary targeting a specific service request while all other EOAs

not owned by this malicious adversary are still rational adversaries.

Technical approaches: In this chapter, we observe that instead of requesting an EOA

account to invoke the target function at the release time, it is more effective to invoke the

target function through a message sent by a smart contract. This is because smart contracts

are trustworthy while peers running EOA accounts may perform undesirable misbehaviors.

Therefore, we design a new mechanism that makes self-emerging data get released to a proxy

contract deployed by the user of decentralized applications and then make the proxy contract

automatically call the target function on behalf of the user. The mechanism jointly applies

techniques of data redundancy and cryptocurrency-driven enforcement and can handle ra-

tional adversaries and malicious adversaries altogether. The proposed mechanism does not

reveal function inputs (i.e., self-emerging data) before the execution time window selected

by the user, as the function inputs are privately maintained by a set of trustees randomly

selected from the network and released only during the execution time window. The function

inputs are protected through secret share [114] and multi-layer encryption [45] and possible

misbehaviors of the trustees are made detectable and verifiable through a suit of misbe-

66

havior report mechanisms implemented in the Ethereum Smart Contracts and any verified

misbehavior incurs the monetary penalty on the violator.

Evaluation: We implement the proposed approach using the contract-oriented program-

ming language Solidity [11] and test it on the Ethereum official test network rinkeby [9]

with Ethereum official Go implementation Geth [6]. Our implementation and experimental

evaluation that the proposed approach is effective and the protocol has a low gas cost and

time overhead associated with it.

In the rest of this chapter, we first introduce the timed execution in Ethereum in Section

5.1 and then present the designed protocols in detail in Section 5.2. After providing security

analysis in Section 5.3, we implement and evaluate the proposed protocol on the Ethereum

official test network in Section 5.4. Finally, we summarize this chapter in Section 5.5.

5.1 OVERVIEW OF TIMED EXECUTION IN ETHEREUM

In this section, we first describe the challenges involved in implementing timed execution of

smart contracts over Ethereum. We then present the key ideas behind the proposed solution

and introduce the organization of the proposed protocol and discuss the security challenges

and potential attacks encountered in the proposed approach.

5.1.1 Problem statement

The Ethereum blockchain platform [128] can be viewed as a giant global computer as shown

in Figure 15. If a user creates a EOA and uses the EOA to send a transaction with inputs

x1 and x2 to call function f(x1, x2) of a smart contract C at time t1, function f(x1, x2) will

be executed instantly and the inputs x1 and x2 will be made public. This is acceptable if the

user just wants to reveal x1 and x2 at time t1. However, if the user needs to reveal x1 and

x2 during a future execution time window we, sending the transaction at t1 will not work.

For example, Bob may want to make function reveal(amount, nonce) of a sealed-bid auction

smart contract [129] be executed during a future execution time window we. Then, sending

67

Figure 15: At time t1, Bob wants to schedule function reveal(amount,nonce) in contract Sealed-
BidAuction [129] to be executed during a future time window we

the transaction out at t1 will make his bid value be known to all other bidders immediately,

which violates his privacy requirements.

5.1.2 Privacy-preserving timed execution

To support privacy-preserving timed execution of smart contracts, the transaction calling

function f(x1, x2) must be sent during the prescribed execution time window we while inputs

x1 and x2 should not be revealed before we. Our proposed protocol for supporting privacy-

preserving timed execution is implemented as two smart contracts, namely a unique scheduler

contract Cs managing all schedule requests of users in Ethereum and a proxy contract Cp

deployed by each user having a schedule request. At the time of setting a timed execution,

the protocol requires the user to (1) store schedule information, including a cryptographic

keccak-256 hash [21] of function inputs x1 and x2 to the scheduler contract Cs, (2) deploy a

proxy contract Cp and (3) employ a group of EOAs as trustees. The main functionality of

the proxy contract Cp is implemented through a function execute() in it. Once Cp receives

a transaction during we with the desired inputs x1 and x2 verified through their hashes in

scheduler contract Cs, the function execute() will immediately send a message calling the

target function f(x1, x2) with inputs x1 and x2. The trustees are in charge of storing inputs

x1 and x2 off the blockchain before the execution time window we and they send a trans-

68

action with the inputs to the proxy contract Cp during we. The terms of the decentralized

secret trust created by the user as a settlor, namely what the trustees can or cannot do,

are programmed as functions in smart contracts Cs and Cp. Each trustee needs to pay a

security deposit d (i.e., Ether) to the scheduler contract Cs and any detectable misbehavior

of this trustee makes the deposit be confiscated. The security deposit serves as an economic

deterrence model for enforcing behaviors of peers in the blockchain network [16, 94]. Finally,

after the trustees have sent a transaction with inputs x1 and x2 to the proxy contract Cp

during we, they can withdraw both their deposit and remuneration paid by the user from the

scheduler contract Cs. In the example of Figure 15, at t1, Bob stores hash of inputs amount

and nonce to Cs, deploys Cp and employs a group of trustees. These trustees, after signing

an agreement with Bob, are in charge of revealing the asset amount and nonce to the benefi-

ciary, proxy contract Cp, during we. During the execution time window we, after the trustees

have sent a transaction with inputs amount and nonce to Cp, the function execute() in Cp

can trigger reveal() in the SealedBidAuction contract through SealedBidAuction.reveal()

and also unlock trustees’ deposit and remuneration in Cs through withdrawPermission().

5.1.3 Protocol overview

The proposed protocol consists of four components:

Trustee application : At any point in time, an EOA can apply to Cs for getting added

into a trustee candidate pool maintained by Cs by submitting its working time window

and paying a security deposit. During the working time window, the EOA should be able

to connect with Ethereum to send transactions to the proxy contract Cp. In the example

shown in Figure 16, we notice that ten EOAs joined the pool. The public pool then makes

the entire network learn that this EOA can provide services during its declared working

times.

User schedule : During setup time window ws, a user can schedule a transaction by reg-

istering the schedule to scheduler contract Cs, deploying a proxy contract Cp, and secretly

selecting trustees from the pool. The selected trustees should keep the function inputs pri-

vately before the execution time window we while revealing them during we to make the

69

target function be executed. In Figure 16, during setup window ws, the user informed the

schedule with the scheduler contract Cs and deployed the proxy contract Cp. Then, the user

randomly selected three EOAs from the pool as trustees and signed agreements with the

trustees through private channels created by the whisper protocol [13]. Any data exchanged

through the whisper channels are encrypted and can only be viewed by the data sender and

data recipient.

Function Execution : During execution time window we, the selected trustees submit the

function inputs to the proxy contract Cp through transactions, which triggers Cp to verify

correctness of function inputs with Cs and then call the scheduled function in the target

contract Ct. In Figure 16, during we, the trustees submitted stored data to proxy contract

Cp. After verifying the received data with the hashes stored in scheduler contract Cs, Cp

called the function in Ct.

Misbehavior report : During the entire process, trustees may perform several types of

misbehaviors violating the protocol, such as secretly disclosing stored data before we or

rejecting to submit stored data during we. To tackle these issues, the protocol involves

several misbehavior report mechanisms that allow any witness of a misbehavior to report

it to the scheduler contract Cs and earn a component of the deposit paid by the suspect

trustee once the report is verified to be true.

5.1.4 Security challenges and attack models

The proposed mechanism encounters several critical security challenges, which can be roughly

classified using two attack models.

Time difference attacks: The time difference attack happens when an adversary aims at

obtaining the function inputs at a time point td earlier than the execution time window we

so that he can leverage the time difference between td and we to achieve his purpose. There

are three key methods to launch a time difference attack.

• Malicious trustee: An adversary may choose to create a suite of EOAs and make all

these EOAs join the pool so that once some of these EOAs are selected as trustees, the

adversary is able to obtain the stored data directly. To protect the system from malicious

70

Figure 16: Protocol overview

trustees, the protocol employs both secret share [114] and multi-layer encryption [45] in

user schedule component of the protocol.

• Trustee identity disclosure: In user schedule component of the protocol, trustees are

secretly selected by user U . Therefore, from the perspective of EOAs besides the selected

trustees and user U , all EOAs in network with working time windows satisfying U ’s re-

quirement have equal chance to be selected by U , thus protecting the identifications of

selected trustees with highest entropy and uncertainty. However, a trustee, after being

selected, may maliciously announce its identity to the public to seek trade with potential

adversaries about the stored data. To prevent such misbehavior, the proposed protocol

employs a trustee identity disclosure report mechanism in misbehavior report component

of the protocol, which forces a trustee to disclose its identity with the sacrifice of the

confiscation of its security deposit.

• Advance disclosure: A trustee may choose to voluntarily disclose the stored data to

the entire network without seeking bribery. To penalize such misbehavior, an advance

disclosure report mechanism is employed in the misbehavior report component, which

makes any trustee disclosing its stored data in advance lose its security deposit.

Execution failure attack: The execution failure attack happens when an adversary aims

71

at making the execution of the target function fail during the execution time window we.

There are two key methods to launch this attack.

• Absent trustee: A trustee may become absent during the execution time window we,

which makes its stored data get lost. To prevent this type of misbehavior, the user schedule

component of protocol requires each selected trustee to provide a signature, which will only

be revealed along with the function inputs during we. Therefore, before we, the identities

of trustees are kept secret. In contrast, during we, the identities become public so that any

present trustee can report an absent trustee through the absent trustee report mechanism

in the misbehavior report component of protocol, which penalizes any absent trustee by

confiscating its security deposit.

• Fake submission: A trustee may submit fake stored data to the proxy contract Cp during

we, which may cause the restoration of the function inputs to fail. The protocol handles

this type of misbehavior using the fake submission report mechanism in the misbehavior

report component of protocol, which confiscates violator’s security deposit if its submission

is proved to be fake.

5.2 PROTOCOL DESCRIPTION

In this section, we present the proposed protocol organized along the four components in-

troduced in Section 5.1.3.

5.2.1 Trustee application

The first component trustee application allows EOAs that want to earn remuneration through

the trustee job to register to the scheduler contract Cs and make their information public.

We present the trustee application protocol in Table 7, which consists of three key steps.

Step 1: Each trustee candidate should be a newly generated EOA, which only has an

amount of Ether (the cryptocurrency in Ethereum) that will be submitted to the scheduler

contract Cs as security deposit d in step 2. No additional Ether should be left because we

72

Table 7: Trustee application

Trustee application protocol

Input: scheduler contract Cs

Apply:

1. An Ethereum node creates a new EOA.

2. This EOA applies to the scheduler contract Cs for being added into the trustee candidate

pool by submitting a public key, a whisper key, working time window, a security deposit

and a beneficiary address.

3. The scheduler contract Cs verifies the application and accept the application if all

required data has been submitted.

will need the account to make its account private key public during execution time window

we.

Step 2-3: An EOA should apply for the trustee candidate by sending a transaction to Cs

with the five listed information.

• The public key will later be used by user U in step 8 of user schedule component to

generate onions [45]. Here, the term onion refers to the output of iteratively encrypting

data with multiple public keys.

• The whisper key will later be used by user U in user schedule component to establish

private channel with this EOA through whisper protocol [13].

• The working time window will be used by user U in step 6 and 10 of user schedule com-

ponent to select trustees satisfying U ’s requirements (i.e., execution time window).

• The security deposit is a fixed amount of Ether hard-coded in scheduler contract Cs.

Once being submitted to Cs, the deposit can only be withdrawn at the end of EOA’s

working time window, if there is no misbehavior reported through report mechanisms in

misbehavior report components.

• Finally, the protocol needs the EOA to make its account private key public in function

73

execution component, so the beneficiary address will be the address of a safe EOA to

receive deposit and remuneration withdraw.

5.2.2 User schedule

The second component user schedule prescribes how a user should set a schedule through

three key operations, namely deploying a proxy contract (step 3), registering the schedule

information to scheduler contract Cs (step 4) and implementing a two-round trustee selection

(step 5-13). We present this component in Table 8. For the illustration of the protocol in

step 5 to 13, we will use the example shown in Figure 17.

Step 2: The total remuneration that should be paid by user U is r = nlrt + re, where rd

is a fixed per trustee remuneration hard-coded in Cs and re is a fixed amount of reward

hard-coded in Cm paying to the first trustee calling execute() in Ct during we. Both rd and

re can only be withdrawn by trustees after the end of execution time window we.

Step 4: After the schedule has been registered in Cs, the on-chain schedule information

cannot be modified. Therefore, the information can be used by trustee candidates later in

step 7 and 11 to verify the information transmitted through off-chain whisper channels from

user U .

Step 5: The Shamir secret sharing scheme [114] with parameter (m,n) can split the key

to n shares. Later, any m shares among the n can be combined to restore the key while

even m − 1 shares fail to do it. Therefore, even if some shares are compromised, the

compromised shares may be insufficient to restore the key before execution window we

while the rest shares may still be sufficient to restore the key during we. In the example of

Figure 16, we set (m,n) = (2, 3), so three shares are generated from key after splitting.

Step 6-13: The design of two-round trustee selection implements the decentralized secret

trust. The trustees selected in the first round should agree the user encrypt the shares with

their public keys for multiple layers so that the shares become onions [45] and harder to be

compromised. Then, the trustees selected in the second round should take charge of storing

these onions. Later, during we, once both the private keys of the first-round trustees and

onions stored by the second-round trustees are made public, the key can be restored to

74

Table 8: User schedule

User schedule protocol
Input: scheduler contract Cs, target contract Ct
Initialization:

1. User U decides function inputs IN , execution time window we, secret sharing parameters
(m,n), number of layers l, a 256-bit secret key key and a 256-bit random number RU .

2. User U computes the remuneration r.
3. User U deploys proxy contract Cp to the network.
4. User U registers the schedule to scheduler contract Cs with (we,m, n, l, C

addr
p , r) and receive

a schedule ID sid.
5. User U splits key to n shares through (m,n) secret sharing.

First-round trustee selection:

6. User U randomly selects n(l−1) trustees and sends each trustee a (sid, tid), where tid refers
to a non-repeated ID in the range of [0, n(l − 1)) assigned to the trustee.

7. Each selected trustee T then does the following:
7.1. Verify (Uaddr, sid, tid, we, r) with Cs.
7.2. Generate a 256-bit random number RT .
7.3. Take keccak256 hash h(T addr, RT).
7.4. Sign (Uaddr, sid, tid, h(T addr, RT)) with T ’s private key, which gives signature vrs =

(v, r, s).
7.5. Send h(T addr, RT) and vrs back to U .

8. User U encrypts shares to onions with public keys of selected trustees.
9. User U takes keccak256 hash h(onion) of each onion and submits the hash values to Cs.

Second-round trustee selection:

10. User U randomly selects n trustees and sends each trustee a (sid, tid, onion), where tid is
non-repeated in [n(l − 1), nl).

11. Each selected trustee T follows step 7, but in addition verifying received onion with
h(onion) in Cs.

Ciphertext and hash disclosure:

12. User U encrypts (IN, vrs,RU) with key and make E(key, (IN, vrs,RU)) public.
13. User U submits keccak256 hash h(IN,RU) and each trustee’s h(T addr, RT) to Cs.

75

decrypt the function inputs. The process offers following additional security features:

• The identities of selected trustees are kept private. In these steps, each trustee only

communicates with the user through a whisper channel and all information that needs

to be made public are announced by the user (step 9,12,13). Therefore, the identity of

each trustee is only known to the user. This feature helps in suppressing collusion among

trustees.

• The identities of selected trustees are verifiable and only the trustees can pass the verifi-

cation. To be verified as a specific trustee, both the trustee’s address T addr and the nonce

RT need to be submitted to Cs and their hash should match with the one submitted by

user in step 13. Since RT is created by the trustee, only the trustee has the ability to pass

the verification. This feature also helps in suppressing collusion among trustees. We will

discuss it in detail later in misbehavior report component.

• The identities of selected trustees are undeniable. The user has signatures of the trustees

(step 7,11) and the encrypted signatures are made public in step 12. Therefore, once key

is restored during we, the decrypted signatures can reveal the identities of all trustees.

This feature helps in detecting absent trustees who disappear during we.

• The trustees are also protected against malicious users. It may be insecure to only allow

users to publicly speak. A malicious user may fabricate information and make trustees

lose security deposit. To protect trustees from such users. Once a user has registered a

schedule in step 4, the submitted information cannot be changed. Then, in step 7 and 11,

each trustee can check the information before sending a signature to the user. This is also

the main reason that we need two rounds. In step 11, the second-round trustees should

first verify the correctness of the onions with the hash submitted by the user in step 9 and

then provide signatures.

In the example of Figure 17, six trustees (T1-T6) are selected by user U in the first round

and their six public keys encrypt each of the three shares with two layers, thus turning

the shares into two-layer onions. Then, three trustees (T7-T9) are selected by user U in

the second round to store the three onions. Finally, U ends the schedule by making the

ciphertext public and submitting all hash values to Cs.

76

Figure 17: User schedule example

Table 9: Function execution

Function execution protocol

Input: scheduler contract Cs

Submission (first half of we):

1. Each trustee T verifies its identity with h(T addr, RT) by submitting RT to Cs.

2. Each trustee T submits onion or its private key to Cs, where onion should be verified

with h(onion).

Execution (second half of we):

3. Any trustee T can get shares by decrypting onions with the private keys.

4. Any trustee T can get key by combing any m shares.

5. Any trustee T can get (IN, vrs, RU) by doing D(key, E(key, (IN, vrs, RU))).

6. Any trustee T can submit (IN,RU) to proxy contract Cp, where (IN,RU) can be

verified with h(IN,RU) in Cs and the correct function inputs IN will trigger Cp to call

the target contract Ct.

77

5.2.3 Function Execution

The third component of the protocol, function execution indicates how the trustees selected in

user schedule component should collaboratively reveal the function inputs during execution

window we and send a transaction with the function inputs to the proxy contract Cp through

two phases, namely submission (step 1-2) and execution (step 3-6). We present the third

component in Table 9.

Step 1-2: The submission phase indicates the first half of execution window we, during

which the protocol requires first-round and second-round trustees to submit their private

keys and stored onions, respectively. To submit either a private key or an onion, a trustee

should also provide the nonce RT generated in step 7 and 11 of user schedule so that its

identity can be verified with h(T addr, RT).

Step 3-6: The execution phase refers to the second half of execution window we. Since both

onions and private keys have been submitted, during this phase, any verified trustee should

be able to turn onions back to shares. Then, based on Shamir secret sharing scheme, any m

shares can be combined to restore the key created by user S in step 1 of user schedule. After

getting the key, any trustee is able to decrypt the encrypted (IN, vrs, RU). Finally, before

the end of we, a verified trustee, after obtaining function inputs IN and nonce RU , should

send proxy contract Cp a transaction with both IN and RU . Then, Cp will immediately verify

received IN and RU with h(IN,RU) in scheduler contract Cs. If both of them are correct,

Cp immediately send a message with IN to the target contract Ct to call the scheduled

function.

5.2.4 Misbehavior report

The misbehavior report represents the final component of the protocol and involves four

types of misbehaviors that will result in the violator’s security deposit being confiscated. All

these misbehaviors are witnessable and the protocol rewards the reporter of a misbehavior

a component of the violator’s security deposit as an incentive while sending the rest of the

violator’s security deposit to the user. We present this final component in Table 10.

Trustee identity disclosure report: This report mechanism is designed to handle the

78

Table 10: Misbehavior report

Misbehavior report protocol

Input: scheduler contract Cs

Trustee identity disclosure report:

1. Before the start of execution time we, any EOA can report a trustee identity disclosure

misbehavior by submitting the nonce RT of the violator to scheduler contract Cs.

2. If h(T addr, RT) using the submitted RT is same as the one in Cs, the misbehavior is

verified.

Advance disclosure report:

3. Before the start of execution time we, any EOA can report an advance disclosure mis-

behavior by submitting the private key belonging to the violator to scheduler contract

Cs.

4. If the public key derived from that private key is same as the violator’s public key in

Cs, the misbehavior is verified.

Absent trustee report:

5. After step 5 in function execution, any trustee can report an absent trustee misbehavior

to scheduler contract Cs by submitting the signature vrs of the absent trustee.

6. The address of the violator can be derived through T =

sigV erify((Uaddr, sid, tid, h(T addr, RT)), vrs).

Fake submission report:

7. After step 2 in function execution, any trustee can report a fake submission misbehavior

to scheduler contract Cs if the trustee finds a submitted private key is incorrect.

8. If the public key derived from that private key is different from violator’s public key in

Cs, the misbehavior is verified.

79

trustee identity disclosure misbehavior presented in Section 5.1.4. Before the start of exe-

cution window we, a trustee may choose to reveal its identity to seek collusion. To prove

its identity, the violator has to reveal the nonce RT created by itself in step 7/11 of user

schedule so that its identity can become verifiable through h(T addr, RT) in Cs. However,

with this report mechanism, any EOA, after knowing RT before we, can report it to Cs to

earn reward.

Advance disclosure report: The advance disclosure misbehavior introduced in the Sec-

tion 5.1.4 can be handled using this report mechanism. Before the start of we, a round-one

trustee may choose to disclose its private key, which may help an adversary to decrypt

onions to shares, restore key and obtain IN before the start of we. However, with this

report mechanism, any EOA, after knowing violator’s private key before we, can betray the

violator by reporting it to Cs.

Absent trustee report: This report mechanism handles the absent trustee misbehavior

described in Section 5.1.4. Any trustee may become absent during we, thus increasing

the failure chance of schedule. With this report mechanism, any trustee, after obtaining

signatures of all other trustees in step 5 of function execution, can locally verify attendance

of all other trustees, thus being able to report absent trustees to Cs.

Fake submission report: Finally, the design of fake submission report aims at dealing with

the fake submission misbehavior presented in Section 5.1.4. In step 2 of function execution,

a submitted private key may not be the right one. Any trustee can locally verify a private

key submitted by a suspect trustee through deriving the corresponding public key from the

private key and comparing it with the public key submitted by that suspect trustee during

trustee application, thus becoming able to report violators to Cs.

5.3 SECURITY ANALYSIS

Next, we analyze the security guarantees of the proposed approach by modeling adversaries

in two different categories, namely rational adversaries and malicious adversaries. Specifi-

cally, in Section 5.3.1, we start by assuming that all EOAs are rational adversaries but not

80

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

s
u

c
c
e

s
s
 r

a
te

m

l=3

l=4

l=5

(a) n = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

s
u

c
c
e

s
s
 r

a
te

m

l=3

l=4

l=5

(b) n = 10

Figure 18: Schedule success rate when 5% of trustees perform misbehaviors inadvertently

malicious. Then, in Section 5.3.2, we further assume that there exists a malicious adversary

targeting user U ’s private data while all other EOAs not owned by this malicious adversary

are still rational adversaries.

5.3.1 Rational adversary

We have introduced the properties of rational adversaries in Chapter 4. In this chapter,

we start by assuming that all EOAs in the network are rational adversaries but no one is

malicious. Without countermeasures, such rational adversaries, after being selected by user

as trustees, may perform four types of misbehaviors introduced in Section 5.1.3, including

trustee identity disclosure, advance disclosure, absent trustee and fake submission. As per

the four misbehavior report mechanisms designed in misbehavior report component, as long

as the key can be restored during the execution time window we, any of the four types of

misbehaviors will lead to confiscation of the violator’s deposit. To prevent restoration of

the key so that misbehaviors can be performed in free, a certain fraction of trustees must

collude to not submit their stored data (i.e., onion or private key) together. However, due to

trustee identity disclosure report mechanism in misbehavior report, revealing trustee identity

to other EOAs means losing deposit, so such a collusion will not happen among rational

81

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

s
u

c
c
e

s
s
 r

a
te

m

l=3

l=4

l=5

(a) n = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

s
u

c
c
e

s
s
 r

a
te

m

l=3

l=4

l=5

(b) n = 10

Figure 19: Schedule success rate when 50% of trustees are malicious

adversaries. Therefore, when there is no malicious adversary, rational adversaries will never

voluntarily perform misbehaviors.

It is possible that a rational adversary performs misbehaviors inadvertently, such as

forgetting providing the service or losing EOA’s private key. Such kinds of inadvertent mis-

behaviors lead to same results of intentionally performing absent trustee misbehavior. If we

denote the percentage of EOAs performing inadvertent misbehaviors as pIM , the success rate

of a schedule with parameters (l,m, n) will be computed through the Cumulative Distribu-

tion Function of Binomial distribution, namely SR = 1−
∑n

i=n−m+1

(
n
i

)
P i(1−P)n−i, where

P = 1− (1−pIM)l represents the probability that one share is lost. In Figure 18, we present

the computed schedule success rate when 5% of trustees perform misbehaviors inadvertently.

Specifically, in Figure 18(a), by fixing n to 5 and changing m from 1 to 5, it shows that a

smaller m, namely lower threshold for restoring key, performs higher resistance against in-

advertent misbehaviors. By further changing l from 3 to 5, we can find that a smaller l offers

better resistance against inadvertent misbehaviors. Then, in Figure 18(b), n is increased to

10. The increment of n enhances the resistance against inadvertent misbehaviors when m

and l do not change. Thus, larger l and n while smaller m help maintaining high resistance

against inadvertent misbehaviors.

82

5.3.2 Malicious adversary

We next assume that there exists a malicious adversary aiming at attacking a specific user

U while the rest of EOAs are rational adversaries. The malicious adversary may choose

to launch either a time difference attack or an execution failure attack. There are two

approaches to launch the two types of attacks, namely trustee bribery and Sybil attack [48].

Through trustee bribery, the malicious adversary can deploy a smart contract with a fund

larger than the security deposit d and use this smart contract as bait to bribe a trustee,

even if the trustee’s identity is not known. For example, to obtain a specific trustee’s private

key for launching a time difference attack, the smart contract can be set with a condition

‘If any EOA in the network can submit the private key owned by the trustee who is in

charge of (Uaddr, sid, tid) to the bribery contract before U ’s execution time window, the

EOA can withdraw the fund stored in bribery contract.’ Since the fund in bribery contract

is larger than the security deposit, a rational trustee may choose to reveal the private key

to the bribery contract to increase its profit. Besides, the malicious adversary can create an

arbitrary amount of EOAs and make all these EOAs join the trustee candidate pool. This

attack approach was named Sybil attack [48].

We now analyze the cost to make either a time difference attack or an execution failure

attack successful.

Lemma 3. To launch a successful execution failure attack, a malicious adversary needs to

spend at least (n−m+ 1)d.

Proof. To launch a successful execution failure attack, a malicious adversary should aim at

impeding the restoration of key at execution time, which means at least n −m + 1 shares

should be dropped. The drop of a single share may be implemented by either a rational

trustee bribed by the malicious adversary or a trustee directly controlled by the malicious

adversary through Sybil attack. However, in both the two conditions, due to the existence

of the misbehavior report mechanisms, the drop of a single share will cost security deposit

d, so the cost of dropping n−m+ 1 shares will be at least (n−m+ 1)d.

83

Lemma 4. A malicious adversary needs to spend at least m(l − 1)d to bribe trustees for

making a time difference attack successful.

Proof. To bribe trustees for making a time difference attack successful, a malicious adversary

should aim at restoring key before execution time window we, which means at least m shares

should be obtained before we. To obtain a single share, the malicious adversary needs to

deploy l − 1 bribery smart contracts to collecting private keys from l − 1 different trustees,

which, due to the existence of the misbehavior report mechanisms, will cost at least (l−1)d.

Therefore, the cost of obtaining m shares before we will be at least m(l − 1)d.

Lemma 5. Through Sybil attacks [48], the expected value of security deposit that a malicious

adversary needs to pay to launch a successful time difference attack is (l − 2)vd, where v

denotes the number of trustee candidates available to user U that are not controlled by this

malicious adversary.

Proof. The situation refers to the malicious trustee method introduced in Section 5.1.4, where

the trustee candidates available to user U during user schedule component can be divided

into two parts. By denoting the number of rational candidates not controlled by the malicious

adversary as v and the number of malicious candidates injected by the malicious adversary as

x, we get pM = x
x+v
→ x = vpM

1−pM
, where pM denotes the percentage of malicious candidates.

To obtain a single share, all the l − 1 trustees providing private keys for encrypting this

share to an onion should be selected from malicious candidates, which has the probability

pl−1M . Since there are n shares in total, the overall process can be viewed as a Binomial

distribution B(n, pl−1M) with mean npl−1M . Then, the expected amount of security deposit d̂

that should be paid by the malicious adversary to make npl−1M = m can be computed with

d̂
xd

= m

npl−1
M

, which makes d̂ = x · dm

npl−1
M

= vpM
1−pM

· dm

npl−1
M

= vdm
n
· p2−lM

1−pM
. Since the malicious

adversary cannot control (v, d,m, n), to minimize d̂, we set f(pM) = vdm
n
· p

2−l
M

1−pM
and compute

f ′(pM) = 0, which gives
(2−l)p1−lM

1−pM
+

p2−lM

(1−pM)2
= 0→ pM = l−2

l−1 Therefore, when d̂ is minimized:

x = v · l−2
l−1 · (l − 1) = (l − 2)v → d̂min = (l − 2)vd

For example, when v = 10000, l = 4 and d = $100, d̂min will be four million dollars. In

Figure 19, we present the computed schedule success rate when 50% of trustees are controlled

84

by a malicious adversary who aims at launching a time difference attack. As can be seen,

smaller m while larger n and l help enhancing the resistance against time difference attacks

performed through Sybil attack.

5.4 IMPLEMENTATION

In this section, we present the implementation of the proposed protocol and discuss the

experimental evaluation of the proposed mechanism in Ethereum.

5.4.1 Implementation of protocol

We first introduce the implementation setup and then present both key off-chain functions in

node.js and on-chain functions in Solidity [11] and demonstrate how they work in practice.

After that, we present two test instances used in our experimental evaluation.

Setup: We programmed the smart contracts in Solidity [11], the most commonly used

smart contract programming language, deployed them to the Ethereum official test net-

work rinkeby [9] and tested them with Ethereum official Go implementation Geth [6]. Our

experiments are performed on an Intel Core i7 2.70GHz PC with 16GB RAM.

Implemented functions: The protocol primarily relies on 6 off-chain functions shown in

Table 11 and 15 on-chain functions shown in Table 12. In both the tables, we show the

components and steps where each function works in protocol. For example, function share()

is used in step 5 of user schedule component to split key to n shares using Shamir secret

sharing [114].

• Trustee application : Any EOA in the network can invoke newCandidate() to join the

trustee candidate pool maintained by scheduler contract Cs.

• User schedule : Any EOA can invoke newUser() to be recorded as a user and then

set up new schedule through newSchedule(). Then, during whisper communication with

trustees, h(onion) should be submitted to Cs through setOnion() while h(T addr, RT) and

h(IN,RU) should be submitted to Cs through setTrustee(). Meanwhile, the generation of

85

Table 11: Key off-chain functions in node.js, share() and combine() are in secrets.js [113],

ecsign() is in ethereumjs-util [53], encrypt() and decrypt() are in eth-ecies [51], soliditySha3()

is in web3-utils [127]

Component Step Function Purpose

Schedule

5 share split key to shares

7,11 ecsign sign data with private key

8 encrypt encrypt shares to onions

9,13 soliditySha3 compute keccak256 hash

Execute
3 combine combine shares to key

4 decrypt decrypt onions to shares

shares, signatures, onions and hash values are completed by share(), ecsign(), encrypt(),

soliditySha3() in node.js, respectively.

• Function execution : A trustee can submit private key and onion through submit-

Privkey() and submitOnion(), respectively. Then, after decrypting onions to shares

through decrypt() and combining shares to key through combine(), any trustee has the

ability to make the target function be executed through execute(). Finally, after the execu-

tion window is over, trustees can withdraw deposit and remuneration through withdrawD()

and withdrawR(), respectively.

• Misbehavior report : The four types of report mechanisms are implemented by iden-

tityReport(), advanceReport(), absentReport() and fakeReport(), respectively. Then, after

the execution window is over, reporters can withdraw reward through withdrawA().

Test instance: We design two test instances A and B as in Table 13: Instance A employs

15 trustees while instance B employs 40 trustees. As a result, instance B has higher schedule

success rate under both 5% inadvertent misbehaviors (IM) and 50% malicious (M) trustees.

Besides, based on Lemma 1 (L1), Lemma 2 (L2) and Lemma 3 (L3), the cost of malicious

86

Table 12: Key on-chain functions in solidity, the three colored functions are in proxy contract

Cp, the rest of the functions are in scheduler contract Cs

Component Step Function Purpose

Apply 2,3 newCandidate join candidate pool

Schedule

4 newUser register as a new user

4 newSchedule initialize a new schedule

9 setOnion submit hashes of onions

13 setTrustee submit hashes of trustees

Execute

1,2 submitPrivkey submit private key

1,2 submitOnion submit onion

6 execute execute the target contract

7 withdrawD withdraw security deposit

7 withdrawR withdraw remuneration

Report

1,2 identityReport report identity disclosure

3,4 advanceReport report advance disclosure

5,6 absentReport report absent trustee

7,8 fakeReport report fake submission

2,4,6,8 withdrawA withdraw report award

87

Table 13: Test instances

Instance l,m,n 5% IM 50% M L1 L2 L3

A 3,2,5 99.82% 98.44% 4d 4d vd

B 4,4,10 99.95% 99.99% 7d 12d 2vd

adversaries in instance B is higher than that in instance A. However, since instance B requires

more trustees in instance A, user U ’s cost in instance B is also higher than that in instance

A, which is the price of stronger security guarantee. In both instance A and B, we use the

SealedBidAuction contract [129] as the target contract Ct and we assumed user’s goal was

to schedule a transaction calling function reveal(amount, nonce). Specifically, we designed

an input parameter time to simulate the time during testing.

5.4.2 Experimental evaluation

We use the presented test instances to experimentally evaluate the performance of the smart

contracts, namely the gas cost and time overhead of each function presented in Table 12.

Gas cost: Gas is spent in Ethereum for deploying smart contracts or calling functions.

The gas costs of functions in Table 12 for instance A and B are shown in Figure 20(a) and

Figure 20(b), respectively. For ease of presentation, results are grouped into four clusters.

Each cluster represents a protocol component and contains a group of functions following

their order in Table 12. As can be seen, most functions cost very little. Specifically, among

the fifteen functions, eight cost lower than 105 gas and eleven cost lower than 2 × 105 gas.

Among the rest four functions, both advanceReport() and fakeReport() cost around 8.5×105

because the two functions need to derive public key from private key on chain. Gas costs

of the last two functions, namely setOnion() and setTrustee(), change with n and nl,

respectively. From instance A to B, l increases from 3 to 4 and n increases from 5 to 10.

As a result, gas cost of setOnion() increases from 1.40 × 105 to 2.55 × 105 and gas cost of

88

 0

 50

 100

 150

 200

apply
schedule

execute

report

G
a

s
 c

o
s
t

(x
1

0
4
)

1st
2nd
3rd
4th
5th

(a) Instance A

 0

 50

 100

 150

 200

apply
schedule

execute

report

G
a

s
 c

o
s
t

(x
1

0
4
)

1st
2nd
3rd
4th
5th

(b) Instance B

Figure 20: Gas cost

settrustee() increases from 7.17× 105 to 1.87× 106.

To complete a schedule, some functions need to be invoked for multiple times. In Ta-

ble 14, we show the number of times that each function needs to be invoked in a single

schedule when there is no report needed:

Besides, the gas cost of deploying proxy contract Cp is about 1.33 × 106. Therefore,

the total gas costs of instance A and B are 7.60 × 106 and 1.72 × 107, respectively. Both

gas price and Ether price keeps dramatically swinging [5]. For example, based on prices

of date 12/5/2016, instance A and B cost $1.2 and $2.72, respectively. However, based

Table 14: Call count of functions in a single schedule

Function No. Function No. Function No.

newCandidate nl setTrustee 1 execute 1

newSschedule 1 submitPrivkey n(l − 1) withdrawD nl

setOnion 1 submitOnion n withdrawR nl

89

on prices of date 10/29/2017, the two instances cost $22.8 and $51.6, respectively. As

can be seen, the monetary cost of a timed-execution service is highly influenced by the

fluctuation of cryptocurrency market, which may be a common limitation of cryptocurrency-

based applications.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

apply
schedule

execute

report

T
im

e
 o

v
e

rh
e

a
d

 (
m

s
) 1st

2nd
3rd
4th
5th

(a) Instance A

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

apply
schedule

execute

report

T
im

e
 o

v
e

rh
e

a
d

 (
m

s
) 1st

2nd
3rd
4th
5th

(b) Instance B

Figure 21: Time overhead

Time overhead: The time overheads of functions in Table 12 for instance A and B are shown

in Figure 21(a) and Figure 21(b), respectively. All results are averaged for 100 tests. Among

the fifteen functions, fourteen functions spend 0-200ms. It is the function setTrustee() that

spends more time to record information of all the trustees to the blockchain. Specifically,

setTrustee() spends 375ms for instance A while 881ms for instance B as there are more

trustees in instance B.

5.5 SUMMARY AND DISCUSSION

In this chapter, we develop a new decentralized privacy-preserving timed execution mech-

anism that allows users of Ethereum-based decentralized applications to schedule timed

transactions without revealing sensitive inputs before an execution time window chosen by

the users. The proposed approach involves no centralized party and allows users to go offline

at their discretion after scheduling a timed transaction. The timed execution mechanism pro-

90

tects the sensitive inputs by employing a set of trustees from the decentralized blockchain

network to enable the inputs to be revealed only during the execution time. We implement

the proposed approach using Solidity and evaluate the system on the Ethereum official test

network. Our rigorous theoretical analysis and extensive experiments validate the security

properties and demonstrate the low gas cost and low time overhead associated with the

proposed approach.

Among the three research components proposed in Chapter 1.1, namely Infrastructure,

Output and Input, we have discussed Infrastructure in Chapter 3 and Chapter 4 and also

Output in this chapter. In the next chapter, we will examine the last component Input and

look for a solution that can support the cost-effective gradual release of self-emerging data.

91

6.0 GRADUAL RELEASE OF PRIVATE DATA OVER TIME

Figure 22: All-or-nothing release and gradual release

We have investigated decentralized mechanisms of releasing self-emerging data with DHT

infrastructure and blockchain infrastructure respectively in Chapter 3 and Chapter 4 and

have also examined approaches of outputting self-emerging data to smart contracts in Chap-

ter 5. In this chapter, we explore the research task T-4, namely the last research task

proposed in this dissertation, which aims at developing techniques to support gradual re-

lease of self-emerging data in a cost-effective way. As shown in Figure 22, depending on how

the data sensitivity changes over time, an application requiring to release self-emerging data

may choose between two schemes:

• All-or-nothing release: It is used when data sensitivity suddenly drops at a future time

point, allowing the data user (i.e., recipient) gets nothing useful before the time while

learning what he expects only after the time. Data is released for a single time.

• Gradual release: It is used when data sensitivity gradually reduces over time, allowing

the data utility to keep increasing along with the continuously dropping data sensitivity.

92

Data is released for multiple times.

We notice that all-or-nothing release is a special case of gradual release, so we only focus on

the more challenging gradual release of private data in the rest of this chapter.

Next, depending on the ways of inputting private data to the designed systems, the

cost of gradual release using the systems designed in the previous chapters could be quite

different. As we have discussed in Section 1.1, an application can choose among three

options to input the private data into the system, namely the plaintext, its encryption key

or its perturbation key. Obviously, simply inputting the plaintext of private data will result

in both high storage cost and high communication cost when the size of private data is

large (e.g., a healthcare dataset). Therefore, in the rest of this chapter, we first explore the

rest two options in Section 6.1, namely encryption key and perturbation key, to determine

a cost-effective approach for the gradual release of private data. After that, in Section 6.2

and Section 6.3, we develop techniques of implementing the cost-effective approach in two

representative scenarios, namely association data disclosure and location data disclosure,

respectively. Finally, we summarize this chapter in Section 6.4.

6.1 COST-EFFECTIVE GRADUAL RELEASE OF PRIVATE DATA

In this section, we first present an approach of using encryption keys for gradual release of

private data and then discuss the way of reducing the cost by replacing encryption keys with

perturbation keys.

The approach of using encryption keys for gradual release is shown in Figure 23. In this

approach, at the initial time point tA, the data owner (i.e., sender) can operate a specific

privacy-preserving data perturbation technique (e.g., [36, 37, 38, 49, 54, 71, 73, 85, 66])

over the private data for multiple times so that multiple snapshots of the private data with

different perturbation levels (and thus different utility levels) can be generated. Then, after

encrypting all the snapshots with different encryption keys (denoted as EKey), the encryp-

tion keys (except EKey1) and encrypted snapshots should be sent into the decentralized

self-emerging data release system and a cloud storage platform respectively. Specifically,

93

Figure 23: Using encryption keys for gradual release of private data

EKey1 can be directly used by the data user (i.e., recipient) to get the most heavily per-

turbed snapshot. After that, the data sensitivity may keep dropping as time goes by. At a

future time point tB, the encryption key EKey2 will be released by the decentralized self-

emerging data release system, allowing the data user to decrypt the moderately perturbed

snapshot in cloud and thus obtaining more useful information from it. Similarly, at an even

remoter time point tC , the released encryption key EKey3 will allow the user to gain further

information from the decrypted minimally perturbed snapshot.

However, we find that a major limitation of using encryption keys is the cost for storing

multiple encrypted snapshots of the dataset. In case that the Amazon S3 cloud storage

service is used (0.023 USD/GB per month), to release one 100GB snapshot per month for

one year (i.e. first month: release one snapshot, store the rest eleven snapshots; second

month: release one snapshot, store the rest ten snapshots...), the storage cost will be about

150 USD. We believe such a high storage cost is unnecessary, so we further proposed the cost-

effective approach shown in Figure 24. The key idea behind this approach is to develop a new

class of reversible perturbation techniques that can use perturbation keys (denoted as PKey)

to pseudo-randomly perturb data so that these keys, once being released in future, can be

used to directly de-perturb the single snapshot held by the user to reduce its perturbation

level. We say the perturbation level of such kind of snapshots is reversible because it can be

reduced by perturbation keys in future. In Figure 24, at tA, with the reversible perturbation

techniques, the perturbation key PKey2 pseudo-randomly perturbs the minimally perturbed

snapshot to the moderately perturbed snapshot. Then, PKey1 further pseudo-randomly

perturbs the moderately perturbed snapshot to the heavily perturbed snapshot. At this

94

Figure 24: Cost-effective gradual release of private data by using perturbation keys

phase, all the snapshots except the most heavily perturbed one can be deleted and only

the encrypted heavily perturbed snapshot should be stored in cloud. Also, the data owner

should send the perturbation keys into the decentralized self-emerging data release system

while sending the encryption key of the heavily perturbed snapshot directly to the data

user. After that, at future time point tB, with the released PKey1, the user can de-perturb

the heavily perturbed snapshot to the moderately perturbed snapshot. Similarly, at tC , the

minimally perturbed snapshot can be recovered from the moderately perturbed snapshot

using the released PKey2. Compared with the approach of using encryption keys, the cost-

effective approach only needs to maintain one snapshot as the ‘seed’ of all other snapshots,

thus significantly reducing the cost.

In the next two sections, we present techniques of gradually releasing two types of com-

monly used data, namely association data (Section 6.2) and location data (Section 6.3),

using the cost-effective approach presented in this section. At the core of these techniques

is the use of pseudo-randomness created by perturbation keys in the privacy-preserving data

perturbation mechanisms. In order to making the process of data perturbation reversible,

we propose to apply perturbation keys as the seeds of a generator of pseudo-randomness and

replace any randomness involved in conventional data perturbation mechanisms with such

pseudo-randomness so that the same keys, upon being released by the designed system, could

be used by the recipients of self-emerging data to reverse the perturbation process and reduce

the perturbation level. In both the two following sections, we first introduce the relevant

concepts and then present details of using perturbation keys to develop privacy-preserving

data perturbation mechanisms that support the cost-effective approach of gradually releasing

95

data from the designed system. Finally, we experimental evaluate the designed approaches.

6.2 GRADUAL RELEASE OF ASSOCIATION DATA

In this section, we present details of gradually releasing association data from the designed

systems using perturbation keys. Private association data is usually published via privacy-

preserving data perturbation schemes, where the raw data is perturbed to meet the privacy

requirements before the data is published. However, conventional privacy-preserving data

perturbation schemes have focused on publishing a single snapshot of a dataset that offers a

fixed privacy level, thus failing to support the gradual release of private data [49, 54, 71, 73].

In order to applying the cost-effective approach to the gradual release of association data, we

develop a set of techniques of multi-level reversible association data perturbation that use

perturbation keys to control the sequential generation of multiple snapshots of the perturbed

data to offer multi-level access based on privacy levels, thus allowing only the perturbation

keys to be sent into the self-emerging data release system and only a single snapshot of

perturbed dataset to be maintained. Extensive experiments on real association dataset show

that our techniques are efficient and scalable.

6.2.1 Overview of Concepts and Models

In this subsection, we first model bipartite association graphs and introduce the definitions

of differential privacy. We then model the multilevel reversible association data privacy.

Bipartite Association Graph Model: Private data in real world often arises in the form

of associations between entities such as the drugs purchased by patients in a pharmacy store

or the movies rated by viewers in a movie rating database or the products purchased by

buyers in an online shopping website [33, 63, 65]. Such associations are best captured as

bipartite association graphs with nodes representing the entities (e.g., drugs and patients)

and the edges correspond to the associations between them (e.g., Patient Bob purchased the

Insulin drug). A bipartite graph can be represented as BG = (V,W,E), which consists of

m = |V | nodes of a first type, n = |W | of a second type and a set of edges E ⊆ V ×W .

96

Thus, a bipartite graph can represent a set of two-node pairings, where a two-node pairing

(a, b) represents an edge between node a ∈ V and node b ∈ W .

Differential privacy: Differential privacy [49] is a state-of-the-art privacy paradigm that

makes conservative assumptions about the adversary’s background knowledge and protects

a single individual’s information in a dataset by considering adjacent datasets which differ

only in one record. The conventional (individual) differential privacy protects the inference

of a single individual’s information in a dataset. For example, in a bipartite graph represent-

ing the associations between drugs and patients, such a single individual’s protection may

correspond to the inference of the graph edge representing a patient (e.g., ‘Alice’) purchas-

ing a drug (e.g.,‘Citalo’). For the purpose of protecting sensitive information of a group of

individuals (e.g., the total number of cancer medicines purchased by patients in a specific

neighborhood), differential privacy can be further extended to support group data protection

based on the notion of group differential privacy [105]. Group differential privacy protects

sensitive aggregate information about groups of records using higher noise injection and

perturbation. When records of a dataset are grouped into larger groups, the transformed

dataset will provide coarser aggregate information and the privacy offered by group differ-

ential privacy will be stronger. Therefore, by grouping the records of a dataset into multiple

granularity levels, different privacy levels can be offered by implementing group differential

privacy at different granularity levels in the dataset. In this section, we employ both in-

dividual and group differential privacy to provide multi-level disclosure of the association

data using a single instance of the perturbed dataset. For more details about individual and

group differential privacy, please refer to [105].

Multilevel reversible association data privacy: We would like techniques developed in

this section to support the multi-level reversible association data privacy, which can be viewed

as a sequence of permutation and noise injection steps. Figure 25 illustrates the process with

an example bipartite graph where the original bipartite graph is shown as snapshot S0, which

consists of eight left (patient) nodes denoted by PID, eight right (medicine) nodes denoted

by MID and eleven edges representing which medicine was purchased by which patient. To

protect group differential privacy, the bipartite graph is first partitioned into multiple levels

of subgraphs representing different granularity levels based on a taxonomy tree or some

97

Figure 25: Multilevel reversible association data privacy

granular subgraph generation techniques such as the one presented in [105]. In the example

of Figure 25 , at level L2×2, both the left and right nodes are grouped into groups of two

nodes and thus it generates sixteen subgraphs. Similarly, at level L4×4 and level L8×8, nodes

are grouped into four subgraphs and a single graph, respectively. Based on the partitioning,

dataset owners (i.e., senders of self-emerging data) can choose to make a lightly perturbed

snapshot, S1 at L2×2, a moderately perturbed snapshot, S2 at L4×4 and a heavily perturbed

snapshot, S3 at L8×8. To generate each perturbed snapshot mentioned above, we propose

to implement one step of (node) permutation followed by one step of (edge) perturbation.

The purpose of node permutation is to ensure information generalization. For example, at

snapshot S0, left nodes P2, P3 and right nodes M7, M3 form a subgraph contained by L2×2,

which has a single edge (P2,M3). Without node permutation, specific information in S0, such

as the edge (P2,M3) that indicates P2 purchased M3, can be viewed by users who only have

privilege to view S1 to learn generalized information about subgraphs at L2×2. In contrast,

by permuting P2, P3 and also by permuting M7, M3 within their size-two groups, the label

M3 is swapped with M7. Thus, instead of edge (P2,M3), a fake edge (P2,M7) indicating

incorrect specific information is contained in S1, whereas generalized information about the

subgraph is still maintained in S1. This process is followed by the edge perturbation process

which aims to prevent specific information to be inferred from the generalized information in

the exposed snapshot. For example, after node shuffling, the subgraph between P2, P3 and

M3, M7 shows generalized information that one patient between P2 and P3 has purchased one

98

medicine between M3 and M7. It has four possibilities, namely (P2,M3), (P2,M7), (P3,M3)

and (P3,M7). An adversary with some background knowledge may infer that (P2,M7),

(P3,M3) and (P3,M7) cannot exist and therefore will be able to conclude the existence of

edge (P2,M3) from the generalized information. To address this concern, edge perturbation

can be used to perturb the edges of each subgraph based on randomized differential privacy

mechanisms (e.g., Laplace Mechanism [49]). In the example, users receiving S1 can also

view the injected edge (P3,M3) guaranteeing differential privacy, thus feeling uncertain to

conclude the existence of (P2,M3). After the two steps, S1 can be generated, which reveals

generalized information about subgraphs at L2×2 while protecting individual information in

S0. Similarly, S2 and S3 reveal L4×4 information while protecting specific information of

L2×2 and L8×8 information while protecting information of L4×4, respectively. At the end of

the encoding phase, if S3 still contains sensitive information about L8×8 that the data owner

is not willing to share to all possible users, edge permutation can be executed over S3 to

permute all the edges in S3 so that the obtained S4 is safe for disclosure.

6.2.2 Reversible association data perturbation

To generate snapshot Si from Si−1 as shown in Figure 25, a perturbation key is used to first

pseudo-randomly permute the two sides of nodes of each subgraph and then pseudo-randomly

perturb edges within each subgraph. Also, edge permutation at the last step can be pseudo-

randomly implemented using a perturbation key. Next, we show how to use perturbation keys

to perform edge perturbation, node permutation and edge permutation so that legitimate

users (i.e., recipients of self-emerging data) can use perturbation keys to reverse S4 to any

previous snapshots (e.g., S0, S1, S2, S3) containing finer information. The pseudo-codes of

edge perturbation, node permutation and edge permutation are presented in Appendix C.

Reversible edge perturbation: For each subgraph, the reversible edge perturbation step

first uses the perturbation key to pseudo-randomly sample a noise using the Laplace Mecha-

nism [49]. Specifically, during noise injection, the number of injected edges is sampled from

Laplace pseudo-random value generator with mean 0, variance 4f/ε and seed K, where

4f and ε denote the sensitivity and budget of Laplace Mechanism [49] and K refers to

99

the perturbation key. After this process, legitimate users can receive the perturbation key

to reversibly remove the injected noise. With the same seed K, same n can be generated,

which can then select and remove the same sequence of edges.

Reversible node permutation: For each subgraph, the reversible node permutation step

uses the perturbation key to pseudo-randomly shuffle node labels (e.g., PID, MID) during

the encoding phase and later uses the same key to recover their order during the decoding

process. During the encoding phase, the perturbation key is used as a seed of the pseudo-

random stream generator to generate a sequence of pseudo-random numbers, which is then

used to shuffle the left nodes and right notes of the subgraph. Specifically, each pseudo-

random number swaps two left (right) nodes. The first node between the two is selected from

top to bottom along with its position while the second node is pseudo-randomly selected by

the pseudo-random number using modular arithmetic. At the end of encoding phase, both

left nodes and right nodes have been shuffled in a reversible manner. Later, during decoding

phase, given the same key, the same sequence of pseudo-random numbers can be obtained to

recover left nodes and right nodes of the subgraph. Instead of starting from top to bottom,

the decoding process starts from bottom to top with a reverse order so that operations

implemented during encoding can be reversibly implemented during decoding, which results

in the recovery of the original subgraph. In Figure 26, the labels of the nodes are permuted

through reversible node permutation while the edges are permuted through reversible edge

permutation (to be discussed later). In the example, Alice uses a perturbation key as a seed

to the pseudo-random stream generator to get a sequence of pseudo-random numbers R,

where the first six pseudo-random numbers (assumed to be [35, 18, 46, 12, 27, 57]) and second

six pseudo-random numbers (assumed to be [7, 18, 24, 29, 62, 67]) in R are used to shuffle

the left and right nodes of the bipartite graph respectively. Then, the first pseudo-random

number R1 = 35 swaps P2 and P3, followed by 18 swapping P3 and P6, 46 swapping P4 and

P5, 12 swapping P6 and P5, 27 swapping P4 and P6, 57 swapping P2 and P4. As a result,

left nodes in the left bipartite graph are permuted to the order in the right bipartite graph.

Later, in Figure 27, Bob gets the permutation key from Alice and uses the key as a seed and

generates the same R as generated by Alice. Among the first six pseudo-random numbers

[35, 18, 46, 12, 27, 57], R6 = 57 is first picked to swap P2 and P4, followed by 27 swapping P4

100

Figure 26: Encoding Figure 27: Decoding

and P6, 12 to swapping P6 and so on. Therefore, the original order of the left nodes can be

recovered.

Reversible edge permutation: Edge permutation is implemented as the last step in the

encoding phase and therefore it represents the first step during the decoding phase. The

edges of the bipartite graph are represented using an adjacency matrix. For example, the

adjacency matrix of the left bipartite graph in Figure 26 is shown as the matrix E below,

where the first row represents that P2 is linked with M1. Here, the edges can be shuffled by

simply permuting the adjacency matrix.

E =

0 1 0 0 0 0
1 0 0 1 0 0
0 0 1 0 0 1
0 0 0 0 1 0
0 1 0 1 0 0
0 0 0 1 0 0

 E =

1 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
1 0 1 0 0 0

Similar to node permutation, in both the encoding and decoding phase, the same se-

quence of pseudo-random numbers can be obtained through the same perturbation key. Then,

given the adjacency matrix of size |V ||W |, we use the first |V ||W | pseudo-random numbers

to perform |V ||W | rounds of swap operation. Each time, the first edge is selected based on

a fixed order (top to bottom and left to right during encoding phase, right to left and bot-

tom to top during decoding phase) and the second edge is pseudo-randomly selected by the

pseudo-random number using modular arithmetic. In this way, by reversibly performing the

101

swap operation during the decoding phase, the original order of the edges can be recovered.

In Figure 26, if the first and second pseudo-random numbers generated by a key are 53 and

71, we first use 53 to swap E[b0
6
c][0 mod 6] = E[0][0] and E[b53 mod 36

6
c][(53 mod 36) mod

6] = E[2][5]. Then, we use 71 to swap E[0][1] and E[5][5]. By repeating this for all the 36

pseudo-random numbers, the adjacency matrix can be transformed as E to represent the

right bipartite graph in Figure 26.

6.2.3 Experimental Evaluation

In this subsection, we present the experimental study on the performance of the proposed

reversible data perturbation techniques. We first briefly describe the experimental setup.

Experimental setup: Our experiment setup was implemented in Java with an Intel Core

i7 2.70GHz 16GB RAM PC. The bipartite graph dataset used in this work is the Movie-

Lens dataset [63] which consists of 6,040 users (left nodes), 3,706 movies (right nodes) and

1,000,209 edges describing rating of movies made by users.

Experimental results: The experimental results are organized into two parts. First, we

evaluate the performance efficiency of the three key components of the reversible perturba-

tion process separately, namely edge perturbation, node permutation and edge permutation.

Then, we integrate the three components and evaluate the performance of the complete re-

versible data perturbation process. In our experiments, we generate three granularity levels

and evaluate the time and space consumption for each granularity level during encoding and

decoding phases.

The first set of experiments evaluates the performance efficiency of edge perturbation,

node permutation and edge permutation separately. We evaluate the scalability of these

algorithms by varying the size of dataset and we measure the time taken for their execution

both in encoding and decoding phases. In Figure 28(a), edge perturbation is evaluated.

The dataset size is changed from one thousand edges to one million edges. Specifically, the

one-million-edge dataset represents the entire MovieLens dataset. The results show that

both noise injection (encode) and removal (decode) processes have significantly low time

consumption cost and demonstrate high scalability. Even when the dataset size increases

1000 times, the time consumption increases only by a factor of 2. For a dataset with one

102

 0

 5

 10

 15

 20

 25

 30

 35

1 10 100 1000

m
s
e
c

dataset size (/1000 edges)

encode
decode

(a) edge perturbation

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 10 100 1000

s
e
c

dataset size (/1000 edges)

encode
decode

(b) node permutation

 0

 5

 10

 15

 20

 25

200 600 1000

s
e
c

dataset size (/1000 edges)

encode
decode

(c) edge permutation

Figure 28: Algorithm performance

million edges, the noise injection and removal processes cost only about 35ms and 10ms

respectively. Here, compared with noise injection, the noise removal process usually has a

lower time consumption. This is because the process of noise removal employs some meta

data information attached to the perturbed dataset which significantly accelerates its speed

of execution. Next, in Figure 28(b), we evaluate the node permutation process with the

same experiment setting. Unlike edge perturbation, although the time consumption of node

permutation is significantly small for small datasets, it becomes acceptably larger for the

one-million-edge dataset, which is about 14s. Finally, in Figure 28(c), we measure the time

taken by the edge permutation process using dataset sizes that vary from 0.2 million edges to

1 million edges. The results show that the time taken by the process for the one-million-edge

dataset is about 23s, which is quite acceptable as the edge shuffling process is only required

to be run once during the entire process.

The second set of experiments evaluates the performance of the multiple levels of per-

turbation during the process. In this part, we processed the dataset to generate three gran-

ularity levels of subgraphs, denoted as L1, L2 and L3 respectively. We applied the DiffPar

partitioning algorithm [105] to generate the granularity levels. The algorithm runs several

rounds of specializations and each specialization can partition a bipartite graph into four

non-overlapping subgraphs. Therefore, after n rounds of specializations, the original bipar-

tite graph has been partitioned to 4n non-overlapped subgraphs. In this experiment, we use

the MovieLens dataset and we consider the entire graph as level L1, the 16 (42) subgraphs

generated by two specializations as level L2 and the 256 (44) subgraphs generated by four

specializations as level L3. For ease of understanding, L1, L2 and L3 can be considered to

103

 0

 5

 10

 15

 20

 25

200 600 1000

s
e
c

dataset size (/1000 edges)

L3-encode
L3-decode
L2-encode
L2-decode
L1-encode
L1-decode

(a) time consumption w/ vary-
ing size

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 16 64

s
e

c

number of groups at L2

L3-encode
L3-decode
L2-encode
L2-decode
L1-encode
L1-decode

(b) time consumption w/ vary-
ing partitioning

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5

m
e
g

a
b
y
te

s

no. of snapshots

convertional
reversible

(c) comparison of storage cost

Figure 29: Multi-level performance

roughly correspond with L8×8, L4×4 and L2×2 in the example of Figure 25. In Figure 29(a),

we evaluate the encoding and decoding time for each granularity level when the dataset

size is varied from 0.2 million edges to 1 million edges. As can be seen, as the dataset size

increases, the time taken by all the three granularity levels also show a reasonable increase.

Level L3 needs to run edge perturbation and node permutation over the 256 subgraphs. Due

to the very small subgraph size and the low sensitivity for protecting differential privacy for

individual edges, L3 has the lowest time consumption. At level L2, although the number of

subgraphs reduces to 16, the corresponding increase in subgraph size makes its time con-

sumption higher than that of L3 for large dataset size. Finally, the time consumption of level

L1 is dominated by edge permutation, which follows the same trend as shown in Figure 28(c).

In Figure 29(b), we fix the dataset size as one million edges while changing the number of

subgraphs at level L2 from 16 to 4 and 64. This change at L2, as shown in Figure 29(b),

has no influence on the results of L3. The reduction from 16 to 4 makes an increase for

both L2 and L1 while the increase from 16 to 64 makes results at L2 significantly increased

and results at L1 obviously decreased. These results show that instead of the average size

of subgraphs, the time consumptions of granularity levels are much more sensitive to the

amount of the injected noises. Finally, in Figure 29(c), we compare the storage cost required

by conventional framework and reversible framework. Based on Figure 25, three granularity

levels can generate at most five snapshots. As can be seen, using the conventional framework,

the storage cost is linearly increased with the number of generated snapshots as data owner

needs to store all of them. However, the proposed reversible framework efficiently employs

104

the use of perturbation keys to allow all snapshots to be recovered from a single published

snapshot protected with the highest privacy level. Thus, the data owner only needs to store

one snapshot. The size of the perturbation keys and the stored metadata for noise injection

have little influence on the overall storage cost.

6.3 GRADUAL RELEASE OF LOCATION DATA

In this section, we present details of gradually releasing location data using perturbation

keys. Location anonymization refers to the process of perturbing the exact location of users

as a spatially cloaked region such that a user’s location becomes indistinguishable from the

location of a set of other users. However, conventional location anonymization techniques [36,

37, 66] are developed as unidirectional and irreversible techniques which fail to support the

cost-effective gradual release of privacy data shown in Figure 24. Therefore, we present

ReverseCloak, a new class of reversible spatial cloaking mechanisms that effectively provides

multi-level location privacy protection, allowing de-anonymization of the cloaking region

when corresponding perturbation keys are released to the data users in future through the

self-emerging data release system. Extensive experiments on real road networks show that

our techniques are efficient and scalable.

6.3.1 Overview of Concepts and Models

In this subsection, we first describe the road network model used to capture the mobility fea-

tures of mobile users [41, 80, 125]. Then, we present the concept of location anonymization.

Finally, we define the multilevel reversible location privacy problem.

Road network model: We model the road network as a graph G = (νG, εG), where

νG represents the set of junctions and εG represents the set of road segments. A junction is

defined as the crossover point of any two roads or the end of a road segment. A road segment

is defined as the direct road connecting any two adjacent junctions. Each segment is uniquely

determined by the two junctions associated with it while each junction is associated with

105

one or more adjacent road segments. In the road network, each mobile user is assumed to

move along the segments and change direction only at junctions. A user may send her true

location information with the anonymization requirements to a trusted anonymization server

which then transforms this raw location information into a cloaking region that meets the

required privacy levels.

Location anonymization: We consider two kinds of privacy requirements arising in a road

network namely location k-anonymity and segment l-diversity. The k-anonymity requirement

ensures that the exposed location of a user indistinguishable from the location information

of at least k − 1 other users. However, satisfying location k-anonymity alone may not be

sufficient to protect the location privacy of the user in cases when there are homogeneity

attacks [89]. For instance, if all the k users contained in a k-anonymized spatial region

are present in a single physical location, such as a hospital, then even though there are

k users in the cloaked region, an adversary observing the region can still infer the actual

location of the subject with high certainty. To protect against such scenarios, the notion

of location l-diversity has been introduced [86, 89]. A cloaked location satisfies segment l-

diversity [125] if the cloaked region not only includes k distinct users but also contains l well

represented road segments. Therefore, from an attacker’s perspective, a cloaking area with

more segments increases the difficulty to track a user and hence ensuring a larger l-diversity

provides higher location privacy. In a personalized location privacy model, for each location

anonymization request, the level of k-anonymity, δk, and l-diversity, δl, are given by the user

in a customizable manner. These two parameters together decide the anonymization level. In

addition, in order to maintain the QoS above a certain level, user needs to set anonymization

restrictions to cloaking spatial area, namely the spatial tolerance σs, indicating the maximum

acceptable cloaking spatial area.

Multilevel reversible location privacy: We would like techniques developed in this

section to support multi-level location privacy in data gradual release scenarios. In such cases,

the location privacy of users is protected under multiple privacy levels, with higher anonymity

levels to be maintained in recent future and lower privacy levels to be maintained in remote

future. In the multi-level reversible location privacy framework, a trusted anonymizer obtains

the raw location information from the mobile clients with the user-defined profile. With

106

Figure 30: Multilevel reversible location anonymization

the multi-level privacy model, the user-defined profile consists of the privacy requirements

for each privacy level, Li, except L0 referring to a cloaking region with only the segment

of actual user. Accordingly, the user-defined privacy profile is represented by (δik, δ
i
l), where

1 ≤ i ≤ N−1 and N denotes the number of privacy levels. In addition, each privacy level, Li

is associated with a shared perturbation key, Keyi, which is used to drive the anonymization

process for that privacy level. Therefore, with access to the perturbation key of a particular

privacy level, users of the cloaked location can selectively de-anonymize the cloaked region

to reduce privacy levels to obtain finer location information. A detailed example of a four

level case is shown in Figure 30. The segment s4 contains the actual user of level, L0. Using

the perturbation key Key1, s6 is added to reach the privacy level, δ1k, δ
1
l of L1. Then, Key2

is used further to extend the cloaking region to meet δ2k, δ
2
l of level L2 by adding segments

{s3, s5}. Finally, {s1, s2, s7, s8} are added using the perturbation key, Key3 to reach the

highest privacy level, L3. Based on the cost-effective gradual release approach described in

Figure 24, the keys should be sent into the decentralized self-emerging data release system

while only the largest cloaking region {s1, s2, s3, s4, s5, s6, s7, s8} need to be stored in cloud.

Later, when the cloaked location information needs to be reduced in privacy levels, it can

be done using the perturbation keys. For instance, for accessing the information at the

lower privilege level, L2, Key3 can be used to exactly identify and remove the segments

{s1, s2, s7, s8} from the cloaking region to reduce to the cloaked region corresponding to

level, L2. Similarly, using both Key3 and Key2, the segments {s1, s2, s7, s8, s3, s5} can be

identified and removed from the cloaking region to reduce to level, L1. Therefore, by merely

107

managing the shared perturbation keys among the location users at different privilege levels,

the whole process protects location privacy under multiple discrete levels as customized in

the user-defined privacy profile.

6.3.2 Reversible Location Cloaking

In this subsection, we present the proposed ReverseCloak mechanisms that support multi-

level location cloaking over road networks. We propose two algorithms, namely reversible

global expansion (RGE) and reversible pre-assignment-based local expansion (RPLE). The

pseudo-codes of the two algorithms are presented in Appendix D.

Figure 31: Reversible global expansion
Figure 32: Reversible pre-assignment-

based local expansion

In reversible location cloaking, the anonymization and de-anonymization processes are

considered as a continuous selection and removal of road segments on the geographic road

map respectively. To ensure that the process is reversible, the segments are selected in a

pseudo-random manner. Each road segment on the map is linked to several other segments,

which are located close to it. Once a road segment S is selected during anonymization, the

next selected road segment is from one of its linked segments. With a certain perturbation

key, a fixed segment S ′ among them is deterministically selected. However, without the

perturbation key, all its linked segments would have the same probability to be selected, thus

making the selection process pseudo-random and making it impossible to reverse without

possessing the perturbation key. Then, during the de-anonymization process, the newly

108

selected segment S ′ maps to the previous road segment S using the perturbation key. The

algorithms checks which road segment is linked with S ′ to narrow down the options and

whether segment S ′ can be deterministically selected with the perturbation key if we assume

a segment is S. A key challenge here is the ‘collision’ issue that could happen in the de-

anonymization process. That is, we may find multiple road segments that meet the conditions

to be the candidate of the previously chosen road segment. To address this issue, in RGE, for

each road segment selection during anonymization, the links of previously selected segments

are rebuilt on the fly to avoid collisions and optimize the selection based on the current

state. In RPLE, prior to the anonymization process, all the road segments in the map are

pre-assigned their links in a collision-free manner. As a result, RGE has larger anonymization

runtime to build collision-free links on the fly but smaller memory requirement while RPLE

has smaller anonymization runtime but requires larger memory space to store the collision-

free links. Next, we review the process of RGE and RPLE with Figure 31 and Figure 32,

respectively.

In both Figure 31 and Figure 32, the current cloaking region is {s8, s9, s11}, where s8 is

the last selected segment, and the algorithms are selecting the next segment to be added into

the cloaking region. In RGE (Figure 31), the three selected segments {s8, s9, s11} and the

same number of non-selected nearby segments {s6, s10, s14} are taken to form a 3x3 square

matrix, where the cells are filled with 0-2 in a way that each row/column has no repeated

value. Assume that the pseudo-random number Ri generated through the perturbation key

gives Ri mod 3 = 2, then s14 will be the next selected segment because only the cell [s8][s14]

has value 2 at row s8. Later in de-anonymization, after removing s14, the same matrix can

be formed and the same perturbation key can give Ri mod 3 = 2. By looking at column s14,

since only the cell [s8][s14] has value 2, the algorithm understands that s8 should be the next

removed segment. In this way, the reversibility can be established in a collision-free manner.

Unlike RGE, in RPLE (Figure 32), prior to the anonymization process, the algorithm has

generated one forward list and one backward list for each segment in the map. All the

lists have the same length, which is six in the example. Assume that the pseudo-random

number Ri gives Ri mod 6 = 3, then s14 will be the next selected segment because it is the

third element in the forward list of s8. Later in de-anonymization, since s8 is also the third

109

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70 80 90 100
A

n
o
n

y
m

iz
a
ti
o
n
 T

im
e
 (

m
s
)

δk

RGE
RPLE
RS
SE

(a) Anonymization Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70 80 90 100D
e
-a

n
o
n
y
m

iz
a
ti
o

n
 T

im
e
(m

s
)

δk

RGE
RPLE

(b) De-anonymization Time

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60 70 80 90 100

R
S

R

δk

RGE

RPLE

RS

SE

(c) Relative Spatial Resolution

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

S
u

c
c
e
s
s
 R

a
te

δk

RGE

RPLE

RS

SE

(d) Success Rate

Figure 33: Performance with Varying Anonymity Level

element in the backward list of s14, with the same perturbation key giving Ri mod 6 = 3,

the algorithm is able to remove s8 after s14. As can be seen, to establish reversibility in

RPLE, s14 should be at the same position in the forward list of s8 where s8 is located in the

backward list of s14. With this objective, in RPLE, the two lists for all the road segments

can be generated in a greedy manner.

6.3.3 Experimental Evaluation

In this subsection, we first present the experimental setup, and then evaluate the perfor-

mance of proposed reversible global expansion and pre-assignment-based location expansion

algorithms, compared with several existing cloaking algorithms.

Experimental setup: To simulate different anonymization schemes, we use GTMobiSim

mobile trace generator for road network [107]. Our experiments were designed based on

a real road network map of northwest part of Atlanta, involving 6979 junctions and 9187

segments, obtained from maps of National Mapping Division of the USGS. There are 10,000

cars randomly generated along the roads based on Gaussian distribution. Once a car is

110

generated, the associated destination is also randomly chosen and the route selection is

based on shortest path routing. In our experiments, four different anonymization schemes

are implemented: Random Sampling (RS), Star-based road-network expansion(SE) [125],

a candidate representative of existing road network-based expansion schemes, Reversible

Global Expansion(RGE) and Reversible Pre-assignment-based Local Expansion(RPLE). The

first two algorithms (RS and SE) are irreversible while the two algorithms proposed in this

section (RGE and RPLE) are reversible support multi-level privacy control. All the schemes

are implemented in Java with the help of GTMobiSim.

Experimental results: We evaluates the performance of the algorithms by varying the

anonymity level δk as δk = 10i for i = 1, 2...10. Here, the spatial tolerance, σs, is set as a

function of the anonymity level, δk such that σs = 400
√
i for i = 1, 2...10, where the unit is

meter. Therefore, the maximum allowable special region is a circular region with the user’s

actual location as the center and the spatial tolerance, σs as the radius. we also set 5%

standard deviation for each σs and the segment diversity level δl is fixed to be 10. For this

experiment, we consider only one privacy level and for the multi-level reversible techniques,

this privacy requirement represents the privacy level of the least privileged user.

We compare the average anonymization time for the various approaches in Figure 33(a).

In Figure 33(a), we find that RPLE is fastest in the anonymization phase among all the

compared techniques. The reason is that the assignment of transition values in the RPLE

scheme has been done apriori and at the time location cloaking, the transition graph is

directly looked up as compared to dynamically computing it on the fly in the RGE approach.

Also, for all the algorithms, the anonymization time is longer for larger δk as stricter privacy

requirements result in cloaking areas with more segments and it therefore requires addition

of more segments into the cloaking area.

Figure 33(b) shows the impact of varying δk on the de-anonymization time. Since only

reversible algorithms can perform de-anonymization of the cloaked region, RS and SE are

not considered for this experiment. For both RGE and RPLE, the variation trends of de-

anonymization time are similar as the anonymization time in Figure 33(a) as the computa-

tional complexity of the de-anonymization process is similar to that of the anonymization

process. In both anonymization and de-anonymization phases, RPLE is faster than RGE

111

because RPLE prevents collision in a apriori manner through its intelligent pre-assignment

of forward and backward transitions while RGE prevents collision by dynamically assigning

the transition values during location cloaking.

Figure 33(c) displays the impact of changing the anonymity level, δk on relative spatial

resolution (RSR) which is defined the ratio of the size of the obtained cloaking area to size of

the maximum allowable spatial area, specified by the spatial tolerance level, d. Here, RS has

the lowest relative spatial resolution (RSR) as its candidate expansion region covers all the

segments within the maximum allowable spatial area, thus making the size of the cloaking

area close to the maximum spatial area even when δk is small. we also find that the relative

spatial resolution of SE and RGE is larger than RPLE as the cloaking segments in SE and

RGE are selected from a global neighboring segment set, providing a tighter structure as

compared to a local neighboring set in the RPLE approach.

In Figure 33(d), we compare the success rate of the anonymization process with varying

δk value. The success rate represents the fraction of the cases where the cloaking algorithm

is able to provide a cloaking region meeting the privacy requirements in terms of δk and

δl. we find that all the algorithms have a high success rate indicating that most of the

anonymization requests are cloaked successfully to meet the privacy requirements. we also

find that for all the schemes, the success rate decreases slowly when δk becomes very large.

This is because a larger δk requires a larger cloaking area, which is harder to be satisfied

by a given spatial tolerance. However, we note that even for higher anonymity levels, such

as δk = 100, the success rates of both RGE and RPLE are higher and are close to 90%.

RS keeps the highest success rate here as its failure occurs only when the total number of

users within the maximum spatial area is smaller than δk. In fact, the success rate of the RS

scheme defines the theoretical maximum success rate of the cloaking process for the given

anonymization requests. we also note that SE and RGE have slightly higher success rate

than RPLE as their cloaking regions have higher density and smaller size, thus being easier

to meet the spatial tolerance requirement.

112

6.4 SUMMARY AND DISCUSSION

In this chapter, we propose the cost-effective approach for gradual release of self-emerging

data that allows the perturbation level of private data to be gradually reduced over time by

using the decentralized self-emerging data release system. We propose two representative ap-

plications that use the proposed cost-effective approach to gradually release association data

and location data, respectively. For each of them, we present the adopted privacy paradigms

and also develop a set of reversible perturbation techniques used for generating multiple

reversible snapshots of the private data through perturbation keys. Extensive experiments

show that the proposed techniques are effective and efficient.

So far, we have comprehensively discussed all the three research components (i.e., Infras-

tructure, Output, Input) and have resolved all the research tasks proposed in Section 1.1. In

the next chapter, we will conclude this dissertation and present possible future directions.

113

7.0 CONCLUSION AND FUTURE DIRECTIONS

7.1 CONCLUSION

In this dissertation, we study new decentralized designs of self-emerging data release systems

using large-scale peer-to-peer (P2P) networks as the underlying infrastructure. The first part

of the dissertation presents the design of decentralized self-emerging data release systems

using two different P2P network infrastructures, namely Distributed Hash Table (DHT) and

blockchain. Specifically, our system designed in Chapter 3 leverages the efficient lookup

service of DHT to establish a suite of routing path construction schemes for securely storing

and routing the self-emerging data in DHT networks before a prescribed data release time.

It demonstrates that increasing data redundancy is an effective approach of concealing data

in the highly dynamic DHT network and protect the data from being stolen by adversaries.

However, due to the lack of ways of enforcing behaviors performed by the peers in DHT, the

DHT-based system usually needs complex routing paths constructed by hundreds of nodes

to offer sufficient data redundancy, which may result in an unacceptable cost. To resolve

this issue, our system designed in Chapter 4 leverages the decentralized trust and the native

cryptocurrency offered by blockchain to enforce peers to honestly follow their agreements

through cryptocurrency-driven monetary incentive and penalty. With the assumption that

all peers are rational, the protocols carefully designed through game theory in Chapter 4

can make rational nodes choose to honestly comply with the protocols, instead of tending

to perform any misbehavior violating the protocols, as such misbehaviors will make their

deposit get confiscated.

The second part of this dissertation proposes new mechanisms for supporting two func-

tionalities of self-emerging data release, namely supporting the release of self-emerging data

114

to smart contracts and supporting the cost-effective gradual release of self-emerging data.

The mechanism proposed in Chapter 5 enables releasing self-emerging data to smart con-

tracts, thus facilitating a wide range of decentralized applications, allowing users of decen-

tralized applications to schedule functions of smart contracts to be executed automatically at

future points of time, without revealing the private input data before the expected function

execution time. In Chapter 6, we analyze possible options of inputting the self-emerging data

to the designed system and propose a cost-effective approach of using perturbation keys to

gradually release self-emerging data over time. We develop a suite of mechanisms supporting

cost-effective gradual release and demonstrate the effectiveness of the proposed mechanisms

in two representative scenarios of gradually releasing self-emerging data, namely location

data disclosure and association data disclosure.

7.2 FUTURE DIRECTIONS

We believe that the outcome of this dissertation would contribute to the development of

decentralized security primitives and protocols in the context of timed release of private

data. Next, we provide a brief list of possible future directions for our work.

• The protocols proposed in this dissertation are designed for making the self-emerging

data get released at a release time prescribed by the data sender. In some cases, it may

be hard for the data sender to clearly identify the expected release time. Instead, it may

be desirable to release the data when a certain event happens. Therefore, one future

direction is to extend the existing time-driven data release to event-driven data release

for the purpose of increasing flexibility of releasing self-emerging data.

• In the systems designed in this dissertation, upon sending the self-emerging data out,

the data senders cannot make any change to their service requests or their data. In

some circumstances, senders may want to change their strategies of releasing their data

or change their data after the data has been passed to service providers within the P2P

network infrastructure. Therefore, additional protocols are desirable to make the systems

115

support such functionalities securely. Here we list a part of possible functionalities to be

designed:

– Acceleration: Senders can make the data get released earlier than the release time.

– Deceleration: Senders can make the data get released later than the release time.

– Revocation: Senders can revoke the self-emerging data before the release time.

– Redirection: Senders can change the data recipient before the release time.

– Update: Senders can update the self-emerging data before the release time.

• In Ethereum, any transaction creating new smart contracts or calling functions of exist-

ing smart contracts will spend gas, namely spending real money. As a result, services

established over Ethereum is highly sensitive regarding gas cost because expensive ser-

vices are hard to be widely accepted by users in practice. In the blockchain-based systems

designed in this dissertation, we have paid attention to the gas consumption and have

required only the hash values to be saved in the blockchain in most cases, so the gas

cost corresponding to a specific service request is mainly relevant to the number of in-

volved service providers. However, the proposed protocols do not differentiate old service

providers from new service providers, failing to utilize the past performance of service

providers for reducing service cost. Therefore, one future direction of this dissertation

could be establishing a trust management mechanism that leverages the service history

of each provider to compute a trust score and dynamically adjusts the number of involved

service providers based on their trust scores, thus being able to reduce the number of

selected service providers when most of them maintain high trust scores.

116

APPENDIX A

DISTRIBUTED HASH TABLE

In this section, we introduce Distributed Hash Table (DHT) with more details. The DHT

technology refers to a class of protocols that provide lookup services for storing (key,value)

pairs in an overlay network and also for efficiently retrieving the stored value associated with

a given key. In a distributed network composing of N nodes, a straightforward approach

of mapping data to the nodes is by leveraging the hash function and modular arithmetic,

namely taking hash(file) mod N . However, in a distributed system, it is quite common

that a node may have downtime and may join and leave the network frequently. In case

of a new node joining the network, the number of nodes in the network increases from

N to N + 1, requesting the mapping between data and nodes to be re-computed through

hash(file) mod (N + 1). As a result, many files that have been stored on the previous N

node need to be relocated, resulting in significantly high traffic that may even block the

network.

Consistent hashing : To resolve the aforementioned issue, we need technique to organize the

nodes in a way that the amount of migrated data due to a single joint or left node can be

minimized. Such a technique is named consistent hashing and has been adopted by most

DHT protocols as a fundamental building block [91, 119]. As illustrated in Figure 34, with

consistent hashing, the space that the hash function can map is fixed to [0, 2n − 1] and is

organized as a ring. Each node in the network should choose a n-bit ID that has the same

length of each lookup key associated with a file, so both node IDs and lookup keys occupy the

same ring-shaped space. In the example of Figure 34, four nodes are mapped to a hash ring

117

Figure 34: Consistent hashing Figure 35: Routing protocol in Chord

with a fixed size of [0, 2n− 1], partitioning the entire ring into four non-overlapped sections,

namely (A, B), (B, C), (C, D) and (D, A). Then, when data is mapped to a position of the

ring according to its n-bit lookup key, the node taking charge of storing the data should

be the one that has the closest ID to the data position in the counterclockwise direction of

the ring. For example, in Figure 34, node A is responsible for storing data falling within

the range (A, B), and node B is responsible for storing data falling within the range of

(B, C). Compared with the straightforward approach, the most significant advantage of the

consistent hashing is that a node joining or leaving the network does not affect data mapped

to the entire ring-shaped space, but only affects data allocated to a single section of the ring

as well as nodes associated with this section. For instance, if node A leaves the network, all

the data falling within the range of (A, B) should then be re-assigned to node D, which only

affects the data falling within the range of (A, B). In another example where a new node,

say node E, joins the network and locates between node A and node B, only a part of data

stored in node A needs to be transferred to node E.

Routing in DHT : In a naive routing protocol, a node receiving a lookup query first checks

the local storage. If the data is not locally stored, the node then forwards the query to its

neighboring node on the ring in the counterclockwise direction. The process will be repeated

until the data is found. With such a naive routing protocol, in the worst case, the query

118

time complexity is O(N), where N denotes the network size. For example, in Figure 34,

to retrieve a lookup key K stored at node C from node D, the query has to be forwarded

through a path D → A → B → C. In order to improving the efficiency of lookup queries,

it would be necessary to request each node to maintain some routing information regarding

the mapping between lookup keys and DHT nodes. For instance, if we request node D in

Figure 34 to store the fact that ‘lookup key K is stored at node C’, then node D will be able

to directly forward a query of key K to node C. In practice, different DHT protocols may

implement the above strategy in different approaches. In this dissertation, we introduce the

routing protocol used by Chord [119]. Chord requests each node to maintain a finger table.

The entry i in the finger table of node j is the first node that succeeds or equals j + 2i. For

example, if a node has ID j = 1, then its finger table should consist of the IP addresses of

nodes associated with the following IDs: 1 + 20 = 2, 1 + 21 = 3, 1 + 22 = 5, 1 + 23 = 9 and so

forth. Then, upon receiving a query of key K, a node in Chord always forwards the query

to the node in its finger table with the closest ID to K. To describe this greedy process, we

present an example shown in Figure 35. In the beginning, node A receives a lookup query

of key K from a client and finds K is not locally stored. Node A then checks its finger table

and finds that K is larger than even the largest node ID, say node E, in its finger table, so

node A forwards the query to node E. After that, node E also finds K is not locally stored

but it then finds that K is very close to node H stored in its finger table, so node E forwards

the query to node H. Finally, node H finds the file associated with K from the local memory

and sends the file back to the client through the path H → E → A. To sum up, Chord

requests each node to maintain a finger table of degree O(logN) for the purpose of reducing

the query time complexity from O(N) to O(logN).

119

APPENDIX B

BLOCKCHAIN AND SMART CONTRACT

In this section, we introduce the blockchain and smart contracts with more details. A

blockchain represents a decentralized and distributed public digital ledger that guarantees

that the records stored in it cannot be tampered without compromising a majority of nodes

in the network. It was first conceptualized by a person known as Satoshi Nakamoto in

2008 as the underlying technology of a cryptocurrency named Bitcoin [100]. Since then, the

growth of Bitcoin and the emerging follow-up cryptocurrencies have positioned blockchain

as a promising solution for creating trust in a decentralized environment.

The Blockchain technology is an elegant combination of cryptography and game theory.

It first relies on solid cryptographic techniques such as hash function, digital signature and

Merkle tree to offer the cryptocurrency with mathematically provable security, thus gath-

ering investment from its believers and placing a monetary value on the cryptocurrency.

It then leverages the monetary value of the cryptocurrency to incentivize members of the

entire P2P network to compete with each other for positions that can receive rewards of

cryptocurrency for updating the ledger on behalf of the entire network. In the Proof-of-

Work (PoW) consensus protocol of Bitcoin, members must spend computational resources

to solve a mathematical problem and only the winner can update the blockchain. As a

result, to falsify the ledger, an attacker must own a huge amount of computational power

that can defeat the sum of the power of the entire P2P network, which is extremely difficult

in practice. Besides, even if there is a strong attacker who has the power of falsifying the

ledger, using the power to gather more rewards of cryptocurrency from the mathematical

120

Figure 36: Blockchain structure in Bitcoin

competition may be a better choice than attacking the blockchain. Once the attack happens,

investors will lose their confidence in the security of blockchain and the monetary value of

the cryptocurrency will significantly drop, which also reduces the value of cryptocurrency

owned by the attacker. From the perspective of game theory, this fact may make a rational

self-interested attacker choose to honestly obey the rules of a blockchain for the purpose of

pursuing higher profit.

Blockchain structure: Most blockchains follow a chain-of-block structure to organize data. In

Figure 36, we show a chain of four blocks with block IDs n−3 to n. In the Bitcoin blockchain

network, each account (i.e., a peer of the P2P network) owns a unique pair of public/private

keys and also a unique account address derived from the public key. To transfer Bitcoin

from one account to another, the sender account needs to create and broadcast a transaction

that first applies sender’s signatures of private key to claim ownership of the transferred

Bitcoin and then uses recipient’s public key to declare the ownership shift. Later when

the recipient wants to spend the received Bitcoin, he or she can easily apply the account

private key to prove the ownership. In the Bitcoin network, accounts trying to obtain

cryptocurrency rewards are called miners. Each miner keeps collecting transactions created

by other accounts and package them into the body of a block. Meanwhile, each miner keeps

computing the answer to a mathematical challenge. Once a miner obtains the answer, this

miner will generate a header for the current block, which consists of four main components:

121

• Pre hash: The previous hash refers to the cryptographic hash of the header of the previous

block. For example, a miner that is producing block n should compute the hash of the

header of block n− 1. Due to the use of previous hash, the separated blocks are chained

together so that falsification of any block header on the chain becomes verifiable.

• Merkle root : Merkle root is the root of a Merkle tree that is used for efficiently ver-

ifying the integrity of any transaction packaged at the body of the block. In the ex-

ample of Figure 36, the body of block n contains eight transactions, namely T1 to

T8. Then, the hashes of the eight transactions, H1 to H8, are iteratively grouped

and hashed in a way that H12 = hash(H1|H2), H1234 = hash(H12|H34) and finally

root = hash(H1234|H5678). With Merkle root, fueled by pre-hash, falsification of any

transaction of any block becomes verifiable.

• Timestamp: Timestamp refers to the time point when the block header is generated.

• Nonce: Nonce refers to a value relevant to the difficulty of the mathematical challenge.

In Bitcoin, the average time of extending the blockchain by one new block is expected

to be ten minutes, so nonce is used to dynamically adjust the difficulty of the challenge

based on the recent computational power of the whole network for the purpose of making

the block generation time stable.

Smart contract : In the leading smart contract platform Ethereum [128], there are two types

of accounts, namely External Owned Accounts (EOAs) controlled by peers through pairs of

private/public keys and Contract Accounts (CAs) assigned to smart contracts. A peer of

Ethereum should first create an EOA with a pair of keys and then deploy smart contracts

from the EOA, resulting in the creation of CAs associated with the smart contracts. A

smart contract in Ethereum refers to a piece of program code that usually consists of mul-

tiple functions, a few parameters and perhaps some modifiers. After programming a smart

contract in a language such as Solidity [11], a peer can compile the contract to get its byte-

code and Application Binary Interface (ABI) and can send a contract creation transaction

to the Ethereum network with bytecode and (optional) ABI. Upon receiving the transaction,

miners will include the bytecode into the next block, meaning that a new smart contract has

been created, whose CA can be deterministically computed from the address of its creator

and a nonce. Each CA can be viewed as a small decentralized server that can act based on

122

the functions in its contract and can store data (e.g., cryptocurrency) allowed by its con-

tract. However, CAs are passive, meaning that execution of any function of deployed smart

contracts must be invoked through either transactions sent by EOAs or messages sent from

CAs. As a result, the transactions/messages, as well as function inputs inside them, are all

recorded by the Ethereum blockchain, which makes the function outputs deterministic be-

cause all miners can execute the function with the same inputs and gets the same outputs. It

is worth noting that a peer needs to pay Gas [128] for either deploying a new smart contract

or calling a function of existing smart contracts in Ethereum. Gas can be exchanged with

Ether, the cryptocurrency used in Ethereum, and Ether can be exchanged with real money.

contract be t t i ng {
function depos i t () payable public part i c ipantOnly ;
function r e v e a l () public part i c ipantOnly ;
function r e a s s i g n () public part i c ipantOnly ;

}

Algorithm B.1: A simplified betting contract

We now illustrate smart contracts with a simplified betting contract presented in Algo-

rithm B.1, where Alice and Bob decide to bet on a topic with cryptocurrency they have. The

betting contract consists of three functions. Alice and Bob can first make deposits (i.e., the

cryptocurrency Ether) to the contract (i.e., CA of the betting contract) through deposit(),

then invoke reveal() after a certain temporal threshold to reveal the result and finally reassign

the cryptocurrency locked in the contract based on the result by calling reassign().

123

APPENDIX C

REVERSIBLE ASSOCIATION DATA PERTURBATION

In this section, we present the pseudo-codes of the algorithms proposed for the reversible

association data perturbation, including the pseudo-codes of reversible edge perturbation,

reversible node permutation and reversible edge permutation.

C.1 REVERSIBLE EDGE PERTURBATION

Algorithm 5: Noise injection
Input : Bipartite graph BG = (V,W,E), sensitivity 4f , budget ε, key K.

Output: Perturbed bipartite graph B̃G.
1 n = bLaplaceRandom(0,4f/ε,K)c;
2 Initialize counter c = 0, index i = 0, new edge recorder NE, skipped index recorder SI;
3 while c < n do
4 ne = (rand(2i,K) mod |V |, rand(2i+ 1,K) mod |W |);
5 if ne /∈ E ∪NE then
6 NE ← ne; c+ +;
7 end
8 else
9 SI ← i;

10 end
11 i++;

12 end

13 B̃G = (V,W,E ∪NE);

When the sampled noise is positive, the procedures of noise injection and noise removal

are performed as shown in Algorithm 5 and Algorithm 6 respectively. During each loop (line

124

Algorithm 6: Noise removal

Input : Perturbed bipartite graph B̃G, sensitivity 4f , budget ε, key K, skipped index recorder SI.
Output: Bipartite graph BG.

1 n = bLaplaceRandom(0,4f/ε,K)c;
2 Initialize index i = 0;
3 while i < n+ |SI| && i /∈ SI do
4 re = (rand(2i,K) mod |V |, rand(2i+ 1,K) mod |W |);
5 Remove edge re from B̃G;
6 i++;

7 end

8 BG = B̃G;

3-12), two pseudo-random numbers are used to select one left node and one right node from

the subgraph to form a new edge ne (line 4). If ne is not an existing edge, its selection will

be confirmed (line 5-7); otherwise, this iteration will be skipped to avoid collision and this

skipped index will be recorded into a list that will be attached with the key to be used during

the decoding process later (line 8-10). The algorithm complexity is O(n). Later in noise

removal, with the same seed K, same n can be generated (line 1), which can then select and

remove the same sequence of edges with assistance of SI (line 3-7). The complexity of this

algorithm is O(n+ |SI|). However, when noises are negative, instead of using |SI| to record

the skipped iterations, we need to record all removed edges using the perturbation key.

C.2 REVERSIBLE NODE PERMUTATION

Algorithm 7: Node permutation: encoding
Input : Bipartite graph BG = (V,W,E), key K.
Output: Permuted bipartite graph BG.

1 R = PseudoRandom(K);
2 for i = 0; i < |V |; i+ + do
3 Swap node V [i] and node V [R[i] mod |V |];
4 end
5 for i = |V |; i < |V |+ |W |; i+ + do
6 Swap node W [i− |V |] and node W [R[i] mod |W |];
7 end

We show the encoding phase and decoding phase in Algorithm 7 and Algorithm 8 respec-

tively. During the encoding phase, the perturbation key is used as a seed to generate a se-

125

Algorithm 8: Node permutation: decoding

Input : Permuted bipartite graph BG = (V,W,E), key K.
Output: Bipartite graph BG.

1 R = PseudoRandom(K);
2 for i = |V | − 1; i ≥ 0; i−− do
3 Swap node V [i] and node V [R[i] mod |V |];
4 end
5 for i = |V |+ |W | − 1; i ≥ |V |; i−− do
6 Swap node W [i− |V |] and node W [R[i] mod |W |];
7 end

quence of pseudo-random numbers denoted as R (line 1). Then, the first |V | pseudo-random

numbers in R are used to shuffle the left nodes in BG (line 2-4) while the pseudo-random

numbers generated later, namely |W | are used to shuffle the right nodes (line 5-7). Each

pseudo-random number swaps two left (right) nodes. At the end of Algorithm 7, both left

nodes and right nodes are shuffled in a reversible manner. Later, during decoding phase,

given the same key, the same R can be obtained (line 1). The same two groups of pseudo-

random numbers in R are used to recover left nodes (line 2-4) and right nodes (line 5-7)

respectively. Here, both the algorithms have a complexity of O(|V |+ |W |).

C.3 REVERSIBLE EDGE PERMUTATION

Algorithm 9: Edge permutation: encoding
Input : Bipartite graph BG = (V,W,E[|V |][|W |]), key K.
Output: Permuted bipartite graph BG.

1 R = PseudoRandom(K);
2 for i = 0; i < |V ||W |; i+ + do

3 Swap edge E[b i
|W |c][i mod |W |] and edge E[bR[i] mod |V ||W |

|W | c][R[i] mod |V ||W |) mod |W |];
4 end

The encoding and decoding parts are shown in Algorithm 9 and Algorithm 10 respec-

tively. In both the algorithms, same R can be obtained through the perturbation key (line

1). Then, we use the first |V ||W | pseudo-random numbers in R to perform |V ||W | rounds of

swap operation (line 2-4). In this way, by reversibly performing the swap operation during

the decoding phase, the original order of the edges can be recovered. Here, the algorithms

126

Algorithm 10: Edge permutation: decoding

Input : Permuted bipartite graph BG = (V,W,E[|V |][|W |]), key K.
Output: Bipartite graph BG.

1 R = PseudoRandom(K);
2 for i = |V ||W | − 1; i ≥ 0; i−− do

3 Swap edge E[b i
|W |c][i mod |W |] and edge E[bR[i] mod |V ||W |

|W | c][R[i] mod |V ||W |) mod |W |];
4 end

have a complexity of O(|V ||W |).

127

APPENDIX D

REVERSIBLE LOCATION DATA PERTURBATION

In this section, we present the pseudo-codes of the algorithms proposed for the reversible

location data perturbation, including the pseudo-codes of reversible global expansion and

reversible pre-assignment-based local expansion.

D.1 REVERSIBLE GLOBAL EXPANSION

The reversible global expansion (RGE) algorithm is shown as Algorithm 11. To perform the

ith forward transition in the anonymization process (loop 3 to 25), the selected segments

and the candidate segments form a table that contains |CloakA| rows and |CanA| columns.

(line 4 to 6). In the table, each transition value is assigned to one forward transition and its

corresponding backward transition simultaneously so that these two transitions have same

ID. The transition value in table cell (i, j) associated with ith row and jth column is computed

by ((i − 1) + (j − 1)) mod |CanA|. Since the transition values for these potential forward

transitions are different, the key can distinguish them clearly and select a unique forward

transition from them (line 7 to 12). Here we note that the perturbation key can uniquely

choose one backward transition. The key is used to generate a sequence of pseudo-random

numbers and each pseudo-random number controls the selection of one transition. The ith

pseudo-random number, denoted by Ri, is responsible for both the ith forward transition

and {n− i}th backward transition. Therefore, for the ith forward transition and {n− i}th

128

backward transition, the same value can be uniquely determined by the pseudo-random

number and the current cloaking region. This value, called picked value, can be calculated

by pi = Ri mod |A| and it is used to select the transition with the transition value same as

the picked value (line 13 to 19). After updating CloakA and CloakU (line 20), the algorithm

stops when required δk and δl are met (line 22 to 24).

Algorithm 11: RGE
Input : Road network graph G, original segment su, perturbation key Ks, user defined δk, δl, σs.
Output: A cloaking area CloakA and a set of users CloakU .

1 Initially, CloakA = {su}, CloakU = {users on su};
2 currentSeg = su;
3 while dist(currentSeg, su) ≤ σs do
4 for j = 1 to |CloakA| do
5 Add the next neighboring segment to candidate set CanA;
6 end
7 Sort CloakA, CanA;
8 row = index of currentSeg in CloakA;
9 for j = 0 to |CanA| − 1 do

10 column = j;
11 transitionV alue[row, column] = (row + column) mod |CanA|;
12 end
13 R = PseudoRandomNext(Ks);
14 pickV alue = R mod |CanA|;
15 for j = 0 to |CanA| − 1 do
16 if transitionV alue[row, j] == pickV alue then
17 nextSeg = CanA[j];
18 end

19 end
20 Update CloakA and CloakU with nextSeg;
21 currentSeg = nextSeg;
22 if |CloakA| ≥ δl and |CloakU | ≥ δk then
23 Return CloakA, CloakU ;
24 end

25 end

D.2 REVERSIBLE PRE-ASSIGNMENT-BASED LOCAL EXPANSION

The reversible pre-assignment-based local expansion (RPLE) algorithm is shown as Algo-

rithm 12. In the RPLE algorithm, both the two transition tables contain E × T empty

cells initially (line 2), where E = |εG| (line 1 to 2). Each of them has E rows and

each row, which stands for a segment within G, has one forward transition list and one

backward transition list with size T . Since there is a one-to-one correspondence between

129

the two tables, once we fill the forward transition table, the backward transition table

is automatically filled. For each segment s in G (loop 3 to 25), it first establishes the

neighboring list by calculating the n-hop neighboring segment. Like RGE, the calcula-

tion of n-hop neighboring segment can be done separately. After that, from line 7 to 24,

it updates the forward and backward transition tables together. For each segment s in

G, it tries each neighboring segment from its corresponding neighboring list, and treats

that segment as potential segment sp to form a transition relationship (line 8). Then,

it begins to update the forward transition list of s and backward transition list of sp.

Algorithm 12: RPLE(Pre-assignment)
Input : Road network graph G, original segment su, temporal key Kt, spatial key Ks, transition

list length T , user defined δk, δl, σt.
Output: forward transition table FT , backward transition table BT .

1 E = No. of segments in G;
2 Initially, the E × T FT and BT are empty;
3 for each segment s in G do
4 for i = 1 to E do
5 Add next neighboring segment to the neighboring list NL;
6 end
7 for i = 0 to E − 1 do
8 Potential segment sp = NL[i];
9 Initialize empFT and empBT with size T ;

10 for j = 0 to T − 1 do
11 if FT [s][j] is empty then
12 Put j to empFT ;
13 end
14 if BT [sp][j] is empty then
15 Put j to empBT ;
16 end

17 end
18 emp = empFT ∩ empBT ;
19 if emp ! = ∅ then
20 selPosition = emp[0];
21 FT [s][selPosition] = sp;
22 BT [sp][selPosition] = s;

23 end

24 end

25 end

Since the two transition tables are filled gradually, the algorithm first checks the available

positions of row s in forward table and row sp in backward table (line 10 to 17), then takes

the intersection that gives the empty position shared by the two transition lists (line 18)

and finally choose the left most shared available position to put sp in the row s in forward

table and s in the row sp in backward table (line 19 to 23). Therefore, by checking the same

130

position of the two rows, we can do the transitions between s and sp in anonymization and

de-anonymization phases.

131

APPENDIX E

PUBLICATION LIST

Papers contributing to this dissertation:

• Chao Li and Balaji Palanisamy, “Reversible Spatio-temporal Perturbation for Protecting

Location Privacy”, Elsevier Computer Communications, 2019.

• Chao Li and Balaji Palanisamy, “Decentralized Privacy-preserving Timed Execution in

Blockchain-based Smart Contract Platforms, in IEEE HiPC, 2018.

• Chao Li and Balaji Palanisamy, “Decentralized Release of Self-emerging Data using

Smart Contracts”, in IEEE SRDS, 2018.

• Chao Li, Balaji Palanisamy and Prashant Krishnamurthy, “Reversible Data Perturbation

Techniques for Multi-level Privacy-preserving Data Publication”, in BigData Congress,

2018.

• Balaji Palanisamy, Chao Li and Prashant Krishnamurthy, “Group Privacy-aware Disclo-

sure of Association Graph Data”, in IEEE Big Data, 2017.

• Chao Li and Balaji Palanisamy, “Emerge: Self-emerging Data Release using Cloud Data

Storage”, in IEEE Cloud, 2017.

• Chao Li and Balaji Palanisamy, “Timed-release of Self-emerging Data using Distributed

Hash Tables”, in IEEE ICDCS, 2017.

• Chao Li, Balaji Palanisamy, Aravind A. Kalaivanan and Sriram Raghunathan, “Reverse-

Cloak: A Reversible Multi-level Location Privacy Protection System”, in IEEE ICDCS,

2017. [demo]

132

• Balaji Palanisamy, Chao Li and Prashant Krishnamurthy, “Group Differential Privacy-

preserving Disclosure of Multi-level Association Graphs”, in IEEE ICDCS, 2017. [poster]

• Chao Li and Balaji Palanisamy, “De-anonymizable Location Cloaking for Privacy con-

trolled Mobile Systems”, in NSS, 2015.

• Chao Li and Balaji Palanisamy, “ReverseCloak: Protecting Multi-level Location Privacy

over Road Networks”, in ACM CIKM, 2015.

Other papers during my PhD study:

• Chao Li and Balaji Palanisamy, “Incentivized Blockchain-based Social Media Platforms:

A Case Study of Steemit”, ACM Web Science, 2019.

• Runhua Xu, James Joshi and Chao Li, “CryptoNN: Training Neural Networks over

Encrypted Data”, IEEE ICDCS, 2019.

• Chao Li, Balaji Palanisamy and Runhua Xu, “Scalable and Privacy-preserving Design

of On/Off-chain Smart Contracts”, in BlockDM, 2019.

• Chao Li and Balaji Palanisamy, “Privacy in Internet of Things: from Principles to Tech-

nologies”, IEEE Internet of Things Journal, 2019.

• Lei Jin, Chao Li, Balaji Palanisamy and James Joshi, “k-Trustee: Location Injection

Attack-resilient Anonymization for Location Privacy”, Elsevier Computers & Security,

2018.

• Chao Li, Balaji Palanisamy and James Joshi, “Differentially Private Trajectory Analysis

for Points-of-Interest Recommendation”, in IEEE BigData Congress, 2017.

• Chao Li, Balaji Palanisamy and James Joshi, “SocialMix: Supporting Privacy-aware

Trusted Social Networking Services”, in IEEE ICWS, 2016.

133

BIBLIOGRAPHY

[1] Amazon simple storage service (s3):. https://aws.amazon.com/s3/.

[2] Auctionhouse. http://auctionhouse.dappbench.com/.

[3] Aws best practices for ddos resiliency:. https://d0.awsstatic.com/whitepapers/DDoS
White Paper June2015.pdf.

[4] Ethernodes: The ethereum node explorer. https://www.ethernodes.org/network/1.

[5] Etherscan: gas price. https://etherscan.io/chart/gasprice.

[6] Geth: Official go implementation of the ethereum protocol. https://github.com/
ethereum/go-ethereum.

[7] Google cloud storage:. https://cloud.google.com/storage/.

[8] Microsoft azure storage:. https://azure.microsoft.com/en-us/services/storage/.

[9] Rinkeby: Ethereum official testnet. https://www.rinkeby.io/#stats.

[10] Semantec report: The continued rise of ddos attacks:. http://www.
symantec.com/content/en/us/enterprise/media/security response/whitepapers/
the-continued-rise-of-ddos-attacks.pdf.

[11] The solidity contract-oriented programming language. https://github.com/ethereum/
solidity.

[12] Solrsaverify: Verification of rsa sha256 pkcs1.5 signatues. https://github.com/
adriamb/SolRsaVerify.

[13] Whisper. https://github.com/ethereum/wiki/wiki/Whisper.

[14] Miguel E Andrés, Nicolás E Bordenabe, Konstantinos Chatzikokolakis, and Catuscia
Palamidessi. Geo-indistinguishability: Differential privacy for location-based systems.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 901–914. ACM, 2013.

134

https://aws.amazon.com/s3/
http://auctionhouse.dappbench.com/
https://d0.awsstatic.com/whitepapers/DDoS_White_Paper_June2015.pdf
https://d0.awsstatic.com/whitepapers/DDoS_White_Paper_June2015.pdf
https://www.ethernodes.org/network/1
https://etherscan.io/chart/gasprice
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://cloud.google.com/storage/
https://azure.microsoft.com/en-us/services/storage/
https://www.rinkeby.io/#stats
http://www.symantec.com/content/en/us/enterprise/media/ security_response/whitepapers/the-continued-rise-of-ddos-attacks.pdf
http://www.symantec.com/content/en/us/enterprise/media/ security_response/whitepapers/the-continued-rise-of-ddos-attacks.pdf
http://www.symantec.com/content/en/us/enterprise/media/ security_response/whitepapers/the-continued-rise-of-ddos-attacks.pdf
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://github.com/adriamb/SolRsaVerify
https://github.com/adriamb/SolRsaVerify
https://github.com/ethereum/wiki/wiki/Whisper

[15] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek.
Fair two-party computations via bitcoin deposits. In International Conference on Fi-
nancial Cryptography and Data Security, pages 105–121. Springer, 2014.

[16] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek.
Secure multiparty computations on bitcoin. In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 443–458. IEEE, 2014.

[17] Walter Armbruster and Werner Böge. Bayesian game theory. Game theory and related
topics, 17:28, 1979.

[18] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art thou r3579x?:
anonymized social networks, hidden patterns, and structural steganography. In Pro-
ceedings of the 16th international conference on World Wide Web, pages 181–190.
ACM, 2007.

[19] Bhuvan Bamba, Ling Liu, Peter Pesti, and Ting Wang. Supporting anonymous lo-
cation queries in mobile environments with privacygrid. In Proceedings of the 17th
international conference on World Wide Web, pages 237–246. ACM, 2008.

[20] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In
International Cryptology Conference, pages 421–439. Springer, 2014.

[21] Guido Bertoni et al. The keccak sha-3 submission. Submission to NIST (Round 3),
6(7):16, 2011.

[22] Smriti Bhagat, Graham Cormode, Balachander Krishnamurthy, and Divesh Srivastava.
Class-based graph anonymization for social network data. Proceedings of the VLDB
Endowment, 2(1):766–777, 2009.

[23] Ranjita Bhagwan, David Moore, Stefan Savage, and Geoffrey M Voelker. Replication
strategies for highly available peer-to-peer storage. In Future directions in distributed
computing, pages 153–158. Springer, 2003.

[24] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan,
and Brent Waters. Time-lock puzzles from randomized encodings. In Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages
345–356. ACM, 2016.

[25] Bittorrent. https://www.bittorrent.com/.

[26] Ian F Blake and Aldar C-F Chan. Scalable, server-passive, user-anonymous timed
release public key encryption from bilinear pairing. IACR Cryptology ePrint Archive,
2004:211, 2004.

[27] Manuel Blum. Coin flipping by telephone a protocol for solving impossible problems.
ACM SIGACT News, 15(1):23–27, 1983.

135

https://www.bittorrent.com/

[28] Dan Boneh and Moni Naor. Timed commitments. In Advances in CryptologyCrypto
2000, pages 236–254. Springer, 2000.

[29] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A Kroll,
and Edward W Felten. Mixcoin: Anonymity for bitcoin with accountable mixes. In
International Conference on Financial Cryptography and Data Security, pages 486–504.
Springer, 2014.

[30] Boomerang. https://www.boomeranggmail.com/.

[31] Nicolás E Bordenabe, Konstantinos Chatzikokolakis, and Catuscia Palamidessi. Opti-
mal geo-indistinguishable mechanisms for location privacy. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pages 251–262.
ACM, 2014.

[32] Julien Cathalo, Benôıt Libert, and Jean-Jacques Quisquater. Efficient and non-
interactive timed-release encryption. In ICICS, volume 3783, pages 291–303. Springer,
2005.

[33] O. Celma. Music Recommendation and Discovery in the Long Tail. Springer, 2010.

[34] CERT Insider Threat Center. Us state of cybercrime survey (2014), 2014.

[35] Konstantinos Chalkias, Dimitrios Hristu-Varsakelis, and George Stephanides. Im-
proved anonymous timed-release encryption. Computer Security–ESORICS 2007,
pages 311–326, 2007.

[36] Rui Chen, Gergely Acs, and Claude Castelluccia. Differentially private sequential data
publication via variable-length n-grams. In Proceedings of the 2012 ACM conference
on Computer and communications security, pages 638–649. ACM, 2012.

[37] Rui Chen, Benjamin Fung, Bipin C Desai, and Nériah M Sossou. Differentially private
transit data publication: a case study on the montreal transportation system. In Pro-
ceedings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 213–221. ACM, 2012.

[38] Rui Chen, Noman Mohammed, Benjamin CM Fung, Bipin C Desai, and Li Xiong. Pub-
lishing set-valued data via differential privacy. Proceedings of the VLDB Endowment,
4(11):1087–1098, 2011.

[39] Reynold Cheng, Yu Zhang, Elisa Bertino, and Sunil Prabhakar. Preserving user loca-
tion privacy in mobile data management infrastructures. In International Workshop
on Privacy Enhancing Technologies, pages 393–412. Springer, 2006.

[40] Jung Hee Cheon, Nicholas Hopper, Yongdae Kim, and Ivan Osipkov. Provably secure
timed-release public key encryption. ACM Transactions on Information and System
Security (TISSEC), 11(2):4, 2008.

136

https://www.boomeranggmail.com/

[41] Chi-Yin Chow and Mohamed F Mokbel. Privacy in location-based services: a system
architecture perspective. Sigspatial Special, 1(2):23–27, 2009.

[42] Graham Cormode, Divesh Srivastava, Ting Yu, and Qing Zhang. Anonymizing bipar-
tite graph data using safe groupings. Proceedings of the VLDB Endowment, 1(1):833–
844, 2008.

[43] Wei-Yen Day, Ninghui Li, and Min Lyu. Publishing graph degree distribution with
node differential privacy. In Proceedings of the 2016 International Conference on Man-
agement of Data, pages 123–138. ACM, 2016.

[44] Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan. Con-
ditional oblivious transfer and timed-release encryption. In International Conference
on the Theory and Applications of Cryptographic Techniques, pages 74–89. Springer,
1999.

[45] Roger Dingledine et al. Tor: The second-generation onion router. Technical report,
Naval Research Lab Washington DC, 2004.

[46] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. Technical report, Naval Research Lab Washington DC, 2004.

[47] Changyu Dong, Yilei Wang, Amjad Aldweesh, Patrick McCorry, and Aad van Moorsel.
Betrayal, distrust, and rationality: Smart counter-collusion contracts for verifiable
cloud computing. ACM CCS, 2017.

[48] John R Douceur. The sybil attack. In International Workshop on Peer-to-Peer Systems,
pages 251–260. Springer, 2002.

[49] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In TCC, volume 3876, pages 265–284. Springer,
2006.

[50] Keita Emura, Atsuko Miyaji, and Kazumasa Omote. A timed-release proxy re-
encryption scheme. IEICE TRANSACTIONS on Fundamentals of Electronics, Com-
munications and Computer Sciences, 94(8):1682–1695, 2011.

[51] eth-ecies. https://github.com/libertylocked/eth-ecies.

[52] Ethereum market cap. https://coinmarketcap.com/currencies/ethereum/.

[53] ethereumjs-util. https://github.com/ethereumjs/ethereumjs-util.

[54] Arik Friedman and Assaf Schuster. Data mining with differential privacy. In Proceed-
ings of the 16th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 493–502. ACM, 2010.

137

https://github.com/libertylocked/eth-ecies
https://coinmarketcap.com/currencies/ethereum/
https://github.com/ethereumjs/ethereumjs-util

[55] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Proceedings of the forty-fifth annual ACM symposium on Theory
of computing, pages 467–476. ACM, 2013.

[56] Roxana Geambasu, Tadayoshi Kohno, Amit A Levy, and Henry M Levy. Vanish:
Increasing data privacy with self-destructing data. In USENIX Security Symposium,
volume 9, 2009.

[57] Bugra Gedik and Ling Liu. A customizable k-anonymity model for protecting location
privacy. Technical report, Georgia Institute of Technology, 2004.

[58] Gabriel Ghinita, Panos Kalnis, and Spiros Skiadopoulos. Prive: anonymous location-
based queries in distributed mobile systems. In Proceedings of the 16th international
conference on World Wide Web, pages 371–380. ACM, 2007.

[59] Gabriel Ghinita, Yufei Tao, and Panos Kalnis. On the anonymization of sparse high-
dimensional data. In Data Engineering, 2008. ICDE 2008. IEEE 24th International
Conference on, pages 715–724. Ieee, 2008.

[60] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages
218–229. ACM, 1987.

[61] Adam Groce and Jonathan Katz. Fair computation with rational players. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 81–98. Springer, 2012.

[62] Siyao Guo, Pavel Hubáček, Alon Rosen, and Margarita Vald. Rational sumchecks. In
Theory of Cryptography Conference, pages 319–351. Springer, 2016.

[63] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and con-
text. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4):19, 2016.

[64] Carmit Hazay and Yehuda Lindell. A note on the relation between the definitions of
security for semi-honest and malicious adversaries. IACR Cryptology ePrint Archive,
2010:551, 2010.

[65] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering. In Proceedings of the 25th
International Conference on World Wide Web, pages 507–517. International World
Wide Web Conferences Steering Committee, 2016.

[66] Xi He, Graham Cormode, Ashwin Machanavajjhala, Cecilia M Procopiuc, and Divesh
Srivastava. Dpt: differentially private trajectory synthesis using hierarchical reference
systems. Proceedings of the VLDB Endowment, 8(11):1154–1165, 2015.

138

[67] Jason I Hong and James A Landay. An architecture for privacy-sensitive ubiquitous
computing. In Proceedings of the 2nd international conference on Mobile systems,
applications, and services, pages 177–189. ACM, 2004.

[68] Dimitrios Hristu-Varsakelis, Konstantinos Chalkias, and George Stephanides. Low-cost
anonymous timed-release encryption. In Information Assurance and Security, 2007.
IAS 2007. Third International Symposium on, pages 77–82. IEEE, 2007.

[69] Tibor Jager. How to build time-lock encryption. IACR Cryptology ePrint Archive,
2015:478, 2015.

[70] Panos Kalnis, Gabriel Ghinita, Kyriakos Mouratidis, and Dimitris Papadias. Prevent-
ing location-based identity inference in anonymous spatial queries. IEEE transactions
on knowledge and data engineering, 19(12):1719–1733, 2007.

[71] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. Private
analysis of graph structure. Proceedings of the VLDB Endowment, 4(11):1146–1157,
2011.

[72] Kohei Kasamatsu, Takahiro Matsuda, Keita Emura, Nuttapong Attrapadung, Goichiro
Hanaoka, and Hideki Imai. Time-specific encryption from forward-secure encryption.
In International Conference on Security and Cryptography for Networks, pages 184–
204. Springer, 2012.

[73] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
Analyzing graphs with node differential privacy. In Theory of Cryptography, pages 457–
476. Springer, 2013.

[74] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual Inter-
national Cryptology Conference, pages 357–388. Springer, 2017.

[75] Hidetoshi Kido, Yutaka Yanagisawa, and Tetsuji Satoh. Protection of location privacy
using dummies for location-based services. In Data Engineering Workshops, 2005. 21st
International Conference on, pages 1248–1248. IEEE, 2005.

[76] Ryo Kikuchi, Atsushi Fujioka, Yoshiaki Okamoto, and Taiichi Saito. Strong security
notions for timed-release public-key encryption revisited. In International Conference
on Information Security and Cryptology, pages 88–108. Springer, 2011.

[77] Fragkiskos Koufogiannis, Shuo Han, and George J Pappas. Gradually releasing private
data under differential privacy. 2015.

[78] Kristian Lauslahti et al. Smart contracts–how will blockchain technology affect con-
tractual practices? Discussion paper, 2017.

139

[79] Kevin Leyton-Brown and Yoav Shoham. Essentials of game theory: A concise mul-
tidisciplinary introduction. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 2(1):1–88, 2008.

[80] Chao Li and Balaji Palanisamy. Reversecloak: Protecting multi-level location privacy
over road networks. In Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, pages 673–682. ACM, 2015.

[81] Chao Li and Balaji Palanisamy. Emerge: Self-emerging data release using cloud data
storage. In Cloud Computing (CLOUD), 2017 IEEE 10th International Conference on,
pages 26–33. IEEE, 2017.

[82] Chao Li and Balaji Palanisamy. Timed-release of self-emerging data using distributed
hash tables. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th Interna-
tional Conference on, pages 2344–2351. IEEE, 2017.

[83] Chao Li and Balaji Palanisamy. Decentralized privacy-preserving timed execution in
blockchain-based smart contract platforms. In 2018 IEEE 25th International Confer-
ence on High Performance Computing (HiPC), pages 265–274. IEEE, 2018.

[84] Chao Li and Balaji Palanisamy. Decentralized release of self-emerging data using smart
contracts. In 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS),
pages 213–220. IEEE, 2018.

[85] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy be-
yond k-anonymity and l-diversity. In Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pages 106–115. IEEE, 2007.

[86] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy be-
yond k-anonymity and l-diversity. In Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pages 106–115. IEEE, 2007.

[87] Jia Liu, Flavio Garcia, and Mark Ryan. Time-release protocol from bitcoin and witness
encryption for sat. IACR Cryptology ePrint Archive, 2015:482, 2015.

[88] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan
Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In Data Engineering,
2006. ICDE’06. Proceedings of the 22nd International Conference on, pages 24–24.
IEEE, 2006.

[89] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan
Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In Data Engineering,
2006. ICDE’06. Proceedings of the 22nd International Conference on, pages 24–24.
IEEE, 2006.

[90] Timothy May. Timed-release crypto. http://www. hks. net. cpunks/cpunks-0/1560.
html, 1992.

140

[91] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. In International Workshop on Peer-to-Peer Systems, pages
53–65. Springer, 2002.

[92] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. A smart contract for board-
room voting with maximum voter privacy. In International Conference on Financial
Cryptography and Data Security, pages 357–375. Springer, 2017.

[93] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy,
Geoffrey M Voelker, and Stefan Savage. A fistful of bitcoins: characterizing payments
among men with no names. In Proceedings of the 2013 conference on Internet mea-
surement conference, pages 127–140. ACM, 2013.

[94] Andrew Miller and Iddo Bentov. Zero-collateral lotteries in bitcoin and ethereum. In
Security and Privacy Workshops (EuroS&PW), 2017 IEEE European Symposium on,
pages 4–13. IEEE, 2017.

[95] Mohamed F Mokbel, Chi-Yin Chow, and Walid G Aref. The new casper: Query pro-
cessing for location services without compromising privacy. In Proceedings of the 32nd
international conference on Very large data bases, pages 763–774. VLDB Endowment,
2006.

[96] Marco Casassa Mont, Keith Harrison, and Martin Sadler. The hp time vault service:
Innovating the way confidential information is disclosed, at the right time. 2002.

[97] Marco Casassa Mont, Keith Harrison, and Martin Sadler. The hp time vault service:
exploiting ibe for timed release of confidential information. In Proceedings of the 12th
international conference on World Wide Web, pages 160–169. ACM, 2003.

[98] Andrew P Moore, Dawn M Cappelli, and Randall F Trzeciak. The big picture of insider
it sabotage across us critical infrastructures. In Insider Attack and Cyber Security,
pages 17–52. Springer, 2008.

[99] Yasumasa Nakai, Takahiro Matsuda, Wataru Kitada, and Kanta Matsuura. A generic
construction of timed-release encryption with pre-open capability. In International
Workshop on Security, pages 53–70. Springer, 2009.

[100] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[101] John F Nash et al. Equilibrium points in n-person games. Proceedings of the national
academy of sciences, 36(1):48–49, 1950.

[102] Neo. https://neo.org/.

[103] Thanh Hong Nguyen, Rong Yang, Amos Azaria, Sarit Kraus, and Milind Tambe.
Analyzing the effectiveness of adversary modeling in security games. In AAAI, 2013.

141

https://neo.org/

[104] Claudio Orlandi. Is multiparty computation any good in practice? In Acoustics, Speech
and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 5848–
5851. IEEE, 2011.

[105] Balaji Palanisamy, Chao Li, and Prashant Krishnamurthy. Group privacy-aware dis-
closure of association graph data. IEEE Big Data, 2017.

[106] Kenneth G Paterson and Elizabeth A Quaglia. Time-specific encryption. In Interna-
tional Conference on Security and Cryptography for Networks, pages 1–16. Springer,
2010.

[107] P Pesti, B Bamba, M Doo, L Liu, B Palanisamy, and M Weber. Gtmobisim: A mobile
trace generator for road networks. College of Computing, Georgia Inst. of Tech, 2009.

[108] Postfity. https://postfity.com/.

[109] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-
release crypto. 1996.

[110] Rodrigo Rodrigues and Barbara Liskov. High availability in dhts: Erasure coding
vs. replication. In International Workshop on Peer-to-Peer Systems, pages 226–239.
Springer, 2005.

[111] Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Y Zhao.
Sharing graphs using differentially private graph models. In Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement conference, pages 81–98. ACM,
2011.

[112] Pierangela Samarati. Protecting respondents identities in microdata release. IEEE
transactions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

[113] secrets.js. https://github.com/grempe/secrets.js.

[114] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[115] Kazuyuki Shudo, Yoshio Tanaka, and Satoshi Sekiguchi. Overlay weaver: An overlay
construction toolkit. Computer Communications, 31(2):402–412, 2008.

[116] Atul Singh et al. Eclipse attacks on overlay networks: Threats and defenses. In In
IEEE INFOCOM. Citeseer, 2006.

[117] Smart contracts market research report global forecast to 2023. https://www.
marketresearchfuture.com/reports/smart-contracts-market-4588.

[118] State of the dapps. https://www.stateofthedapps.com/.

142

https://postfity.com/
https://github.com/grempe/secrets.js
https://www.marketresearchfuture.com/reports/smart-contracts-market-4588
https://www.marketresearchfuture.com/reports/smart-contracts-market-4588
https://www.stateofthedapps.com/

[119] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. ACM
SIGCOMM Computer Communication Review, 31(4):149–160, 2001.

[120] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks. In
Proceedings of the 6th ACM SIGCOMM conference on Internet measurement, pages
189–202. ACM, 2006.

[121] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

[122] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

[123] Tor. https://www.torproject.org/.

[124] Qian Wang, Yan Zhang, Xiao Lu, Zhibo Wang, Zhan Qin, and Kui Ren. Rescuedp:
Real-time spatio-temporal crowd-sourced data publishing with differential privacy. In
Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE Interna-
tional Conference on, pages 1–9. IEEE, 2016.

[125] Ting Wang and Ling Liu. Privacy-aware mobile services over road networks. Proceed-
ings of the VLDB Endowment, 2(1):1042–1053, 2009.

[126] Hakim Weatherspoon and John D Kubiatowicz. Erasure coding vs. replication: A
quantitative comparison. In International Workshop on Peer-to-Peer Systems, pages
328–337. Springer, 2002.

[127] web3-utils. https://www.npmjs.com/package/web3-utils.

[128] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 151:1–32, 2014.

[129] Writing a sealed-bid auction contract. https://programtheblockchain.com/posts/2018/
03/27/writing-a-sealed-bid-auction-contract/.

[130] Zhen Xiao, Xiaofeng Meng, and Jianliang Xu. Quality aware privacy protection for
location-based services. In International Conference on Database Systems for Advanced
Applications, pages 434–446. Springer, 2007.

[131] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foundations of
Computer Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

[132] Bidi Ying and Dimitrios Makrakis. Protecting location privacy with clustering
anonymization in vehicular networks. In Computer Communications Workshops (IN-
FOCOM WKSHPS), 2014 IEEE Conference on, pages 305–310. IEEE, 2014.

143

https://www.torproject.org/
https://www.npmjs.com/package/web3-utils
https://programtheblockchain.com/posts/2018/03/27/writing-a-sealed-bid-auction-contract/
https://programtheblockchain.com/posts/2018/03/27/writing-a-sealed-bid-auction-contract/

[133] Wei-Wei Zhang and Ke-Jia Zhang. Cryptanalysis and improvement of the quantum
private comparison protocol with semi-honest third party. Quantum information pro-
cessing, 12(5):1981–1990, 2013.

144

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Peer registration
	2. Service setup
	3. Service enforcement
	4. Reporting
	5. Summary of functions in the smart contract
	6. Security evaluation
	7. Trustee application
	8. User schedule
	9. Function execution
	10. Misbehavior report
	11. Key off-chain functions in node.js, share() and combine() are in secrets.js secrets.js, ecsign() is in ethereumjs-util ethereumjs-util, encrypt() and decrypt() are in eth-ecies eth-ecies, soliditySha3() is in web3-utils web3-utils
	12. Key on-chain functions in solidity, the three colored functions are in proxy contract Cp, the rest of the functions are in scheduler contract Cs
	13. Test instances
	14. Call count of functions in a single schedule

	LIST OF FIGURES
	1. An overview of research tasks
	2. Commitment-based secure computation using Ethereum
	3. DHT-based decentralized self-emerging data release system
	4. One-hop scheme
	5. Adjusted one-hop scheme
	6. Multi-hop scheme
	7. Varying emerging time period T
	(a). T=0.1
	(b). T=
	(c). T=10
	(d). T=100
	8. Varying path construction resource N
	(a). N=100
	(b). N=1000
	(c). N=5000
	(d). N=10000
	9. l upper bound selection
	(a). Varying N
	(b). Varying T
	10. Blockchain-based decentralized self-emerging data release system
	11. Peer selection
	12. Game tree induced by service enforcement protocol
	13. Peer selection
	(a). All windows
	(b). Selected windows (300h)
	(c). Selected windows (600h)
	(d). Selected windows (1000h)
	14. Performance evaluation
	(a). Monetary cost (3 peers)
	(b). Monetary cost (5 peers)
	(c). Time overhead (3 peers)
	(d). Time overhead (5 peers)
	15. At time t1, Bob wants to schedule function reveal(amount,nonce) in contract SealedBidAuction SealedBidAuction to be executed during a future time window we
	16. Protocol overview
	17. User schedule example
	18. Schedule success rate when 5% of trustees perform misbehaviors inadvertently
	(a). n=5
	(b). n=10
	19. Schedule success rate when 50% of trustees are malicious
	(a). n=5
	(b). n=10
	20. Gas cost
	(a). Instance A
	(b). Instance B
	21. Time overhead
	(a). Instance A
	(b). Instance B
	22. All-or-nothing release and gradual release
	23. Using encryption keys for gradual release of private data
	24. Cost-effective gradual release of private data by using perturbation keys
	25. Multilevel reversible association data privacy
	26. Encoding
	27. Decoding
	28. Algorithm performance
	(a). edge perturbation
	(b). node permutation
	(c). edge permutation
	29. Multi-level performance
	(a). time consumption w/ varying size
	(b). time consumption w/ varying partitioning
	(c). comparison of storage cost
	30. Multilevel reversible location anonymization
	31. Reversible global expansion
	32. Reversible pre-assignment-based local expansion
	33. Performance with Varying Anonymity Level
	(a). Anonymization Time
	(b). De-anonymization Time
	(c). Relative Spatial Resolution
	(d). Success Rate
	34. Consistent hashing
	35. Routing protocol in Chord
	36. Blockchain structure in Bitcoin

	PREFACE
	1.0 INTRODUCTION
	1.1 Overview of research tasks
	1.2 Chapters overview

	2.0 LITERATURE REVIEW
	2.1 Timed-release of private data
	2.2 Cryptocurrency-driven enforcement
	2.3 Privacy-preserving data perturbation

	3.0 SELF-EMERGING DATA RELEASE USING DISTRIBUTED HASH TABLES
	3.1 System overview
	3.1.1 DHT-based decentralized self-emerging data release system
	3.1.2 Adversary models
	3.1.3 Churn impact

	3.2 Self-emerging data release protocols
	3.2.1 One-hop scheme
	3.2.2 Adjusted one-hop scheme
	3.2.3 Multi-hop scheme

	3.3 Experimental evaluation
	3.3.1 Experimental setup
	3.3.2 Experimental results

	3.4 Summary and discussion

	4.0 SELF-EMERGING DATA RELEASE USING ETHEREUM BLOCKCHAIN NETWORK
	4.1 System overview
	4.1.1 Self-emerging data release system using Ethereum blockchain infrastructure
	4.1.2 Self-emerging data release service protocol
	4.1.3 Attack models
	4.1.4 Assumptions

	4.2 Self-emerging data release service protocol
	4.2.1 Peer registration
	4.2.2 Service setup
	4.2.3 Service enforcement
	4.2.4 Reporting mechanism

	4.3 Implementation
	4.3.1 Implementation
	4.3.2 Experimental evaluation

	4.4 Summary and discussion

	5.0 PRIVACY-PRESERVING TIMED EXECUTION OF SMART CONTRACTS
	5.1 Overview of timed execution in Ethereum
	5.1.1 Problem statement
	5.1.2 Privacy-preserving timed execution
	5.1.3 Protocol overview
	5.1.4 Security challenges and attack models

	5.2 Protocol description
	5.2.1 Trustee application
	5.2.2 User schedule
	5.2.3 Function Execution
	5.2.4 Misbehavior report

	5.3 Security analysis
	5.3.1 Rational adversary
	5.3.2 Malicious adversary

	5.4 Implementation
	5.4.1 Implementation of protocol
	5.4.2 Experimental evaluation

	5.5 Summary and discussion

	6.0 GRADUAL RELEASE OF PRIVATE DATA OVER TIME
	6.1 Cost-effective gradual release of private data
	6.2 Gradual release of association data
	6.2.1 Overview of Concepts and Models
	6.2.2 Reversible association data perturbation
	6.2.3 Experimental Evaluation

	6.3 Gradual release of location data
	6.3.1 Overview of Concepts and Models
	6.3.2 Reversible Location Cloaking
	6.3.3 Experimental Evaluation

	6.4 Summary and discussion

	7.0 CONCLUSION AND FUTURE DIRECTIONS
	7.1 Conclusion
	7.2 Future directions

	APPENDIX A. DISTRIBUTED HASH TABLE
	APPENDIX B. BLOCKCHAIN AND SMART CONTRACT
	APPENDIX C. REVERSIBLE ASSOCIATION DATA PERTURBATION
	 C.1 Reversible edge perturbation
	 C.2 Reversible node permutation
	 C.3 Reversible edge permutation

	APPENDIX D. REVERSIBLE LOCATION DATA PERTURBATION
	 D.1 Reversible global expansion
	 D.2 Reversible pre-assignment-based local expansion

	APPENDIX E. PUBLICATION LIST
	BIBLIOGRAPHY

