1,914 research outputs found

    A Distributed and Privacy-Aware Speed Advisory System for Optimising Conventional and Electric Vehicles Networks

    Get PDF
    One of the key ideas to make Intelligent Transportation Systems (ITS) work effectively is to deploy advanced communication and cooperative control technologies among the vehicles and road infrastructures. In this spirit, we propose a consensus-based distributed speed advisory system that optimally determines a recommended common speed for a given area in order that the group emissions, or group battery consumptions, are minimised. Our algorithms achieve this in a privacy-aware manner; namely, individual vehicles do not reveal in-vehicle information to other vehicles or to infrastructure. A mobility simulator is used to illustrate the efficacy of the algorithm, and hardware-in-the-loop tests involving a real vehicle are given to illustrate user acceptability and ease of the deployment.Comment: This is a journal paper based on the conference paper "Highway speed limits, optimised consensus, and intelligent speed advisory systems" presented at the 3rd International Conference on Connected Vehicles and Expo (ICCVE 2014) in November 2014. This is the revised version of the paper recently submitted to the IEEE Transactions on Intelligent Transportation Systems for publicatio

    A Federated learning model for Electric Energy management using Blockchain Technology

    Full text link
    Energy shortfall and electricity load shedding are the main problems for developing countries. The main causes are lack of management in the energy sector and the use of non-renewable energy sources. The improved energy management and use of renewable sources can be significant to resolve energy crisis. It is necessary to increase the use of renewable energy sources (RESs) to meet the increasing energy demand due to high prices of fossil-fuel based energy. Federated learning (FL) is the most emerging technique in the field of artificial intelligence. Federated learning helps to generate global model at server side by ensemble locally trained models at remote edges sites while preserving data privacy. The global model used to predict energy demand to satisfy the needs of consumers. In this article, we have proposed Blockchain based safe distributed ledger technology for transaction of data between prosumer and consumer to ensure their transparency, traceability and security. Furthermore, we have also proposed a Federated learning model to forecast the energy requirements of consumer and prosumer. Moreover, Blockchain has been used to store excess energy data from prosumer for better management of energy between prosumer and grid. Lastly, the experiment results revealed that renewable energy sources have produced better and comparable results to other non-renewable energy resources.Comment: 14 figures, 7 tables, 15 page

    When Data Fly: An Open Data Trading System in Vehicular Ad Hoc Networks

    Get PDF
    Communication between vehicles and their environment (i.e., vehicle-to-everything or V2X communication) in vehicular ad hoc networks (VANETs) has become of particular importance for smart cities. However, economic challenges, such as the cost incurred by data sharing (e.g., due to power consumption), hinder the integration of data sharing in open systems into smart city applications, such as dynamic environmental zones. Moving from open data sharing to open data trading can address the economic challenges and incentivize vehicle drivers to share their data. In this context, integrating distributed ledger technology (DLT) into open systems for data trading is promising for reducing the transaction cost of payments in data trading, avoiding dependencies on third parties, and guaranteeing openness. However, because the integration of DLT conflicts with the short available communication time between fast moving objects in VANETs, it remains unclear how open data trading in VANETs using DLT should be designed to be viable. In this work, we present a system design for data trading in VANETs using DLT. We measure the required communication time for data trading between a vehicle and a roadside unit in a real scenario and estimate the associated cost. Our results show that the proposed system design is technically feasible and economically viable

    Blockchain and Cryptocurrencies: a Classification and Comparison of Architecture Drivers

    Get PDF
    Blockchain is a decentralized transaction and data management solution, the technological leap behind the success of Bitcoin and other cryptocurrencies. As the variety of existing blockchains and distributed ledgers continues to increase, adopters should focus on selecting the solution that best fits their needs and the requirements of their decentralized applications, rather than developing yet another blockchain from scratch. In this paper we present a conceptual framework to aid software architects, developers, and decision makers to adopt the right blockchain technology. The framework exposes the interrelation between technological decisions and architectural features, capturing the knowledge from existing academic literature, industrial products, technical forums/blogs, and experts' feedback. We empirically show the applicability of our framework by dissecting the platforms behind Bitcoin and other top 10 cryptocurrencies, aided by a focus group with researchers and industry practitioners. Then, we leverage the framework together with key notions of the Architectural Tradeoff Analysis Method (ATAM) to analyze four real-world blockchain case studies from industry and academia. Results shown that applying our framework leads to a deeper understanding of the architectural tradeoffs, allowing to assess technologies more objectively and select the one that best fit developers needs, ultimately cutting costs, reducing time-to-market and accelerating return on investment.Comment: Accepted for publication at journal Concurrency and Computation: Practice and Experience. Special Issue on distributed large scale applications and environment

    A review of Smart Contract Blockchain Based on Multi-Criteria Analysis: Challenges and Motivations

    Full text link
    A smart contract is a digital program of transaction protocol (rules of contract) based on the consensus architecture of blockchain. Smart contracts with Blockchain are modern technologies that have gained enormous attention in scientific and practical applications. A smart contract is the central aspect of a blockchain that facilitates blockchain as a platform outside the cryptocurrency spectrum. The development of blockchain technology, with a focus on smart contracts, has advanced significantly in recent years. However research on the smart contract idea has weaknesses in the implementation sectors based on a decentralized network that shares an identical state. This paper extensively reviews smart contracts based on multi criteria analysis challenges and motivations. Therefore, implementing blockchain in multi-criteria research is required to increase the efficiency of interaction between users via supporting information exchange with high trust. Implementing blockchain in the multi-criteria analysis is necessary to increase the efficiency of interaction between users via supporting information exchange and with high confidence, detecting malfunctioning, helping users with performance issues, reaching a consensus, deploying distributed solutions and allocating plans, tasks and joint missions. The smart contract with decision-making performance, planning and execution improves the implementation based on efficiency, sustainability and management. Furthermore the uncertainty and supply chain performance lead to improved users confidence in offering new solutions in exchange for problems in smart contacts. Evaluation includes code analysis and performance while development performance can be under development.Comment: Revie

    A Tertiary Review on Blockchain and Sustainability With Focus on Sustainable Development Goals

    Get PDF
    Sustainable development is crucial to securing the future of humanity. Blockchain as a disruptive technology and a driver for social change has exhibited great potential to promote sustainable practices and help organizations and governments achieve the United Nations’ Sustainable Development Goals (SDGs). Existing literature reviews on blockchain and sustainability often focus only on topics related to a few SDGs. There is a need to consolidate existing results in terms of SDGs and provide a comprehensive overview of the impacts that blockchain technology may have on each SDG. This paper intends to bridge this gap, presenting a tertiary review based on 42 literature reviews, to investigate the relationship between blockchain and sustainability in light of SDGs. The method used is a consensus-based expert elicitation with thematic analysis. The findings include a novel and comprehensive mapping of impact-based interlinkage of blockchain and SDGs and a systematic overview of drivers and barriers to adopting blockchain for sustainability. The findings reveal that blockchain can have a positive impact on all 17 SDGs though some negative effects can occur and impede the achievement of certain objectives. 76 positive and 10 negative linkages between blockchain adoption and the 17 SDGs as well as 45 factors that drive or hinder blockchain adoption for the achievement of SDGs have been identified. Research gaps to overcome the barriers and enhance blockchain’s positive impacts have also been identified. The findings may help managers in evaluating the applicability and tradeoffs, and policymakers in making supportive measures to facilitate sustainability using blockchain.publishedVersio
    • …
    corecore