3,609 research outputs found

    Data-Efficient Decentralized Visual SLAM

    Full text link
    Decentralized visual simultaneous localization and mapping (SLAM) is a powerful tool for multi-robot applications in environments where absolute positioning systems are not available. Being visual, it relies on cameras, cheap, lightweight and versatile sensors, and being decentralized, it does not rely on communication to a central ground station. In this work, we integrate state-of-the-art decentralized SLAM components into a new, complete decentralized visual SLAM system. To allow for data association and co-optimization, existing decentralized visual SLAM systems regularly exchange the full map data between all robots, incurring large data transfers at a complexity that scales quadratically with the robot count. In contrast, our method performs efficient data association in two stages: in the first stage a compact full-image descriptor is deterministically sent to only one robot. In the second stage, which is only executed if the first stage succeeded, the data required for relative pose estimation is sent, again to only one robot. Thus, data association scales linearly with the robot count and uses highly compact place representations. For optimization, a state-of-the-art decentralized pose-graph optimization method is used. It exchanges a minimum amount of data which is linear with trajectory overlap. We characterize the resulting system and identify bottlenecks in its components. The system is evaluated on publicly available data and we provide open access to the code.Comment: 8 pages, submitted to ICRA 201

    Collaborative Monocular Visual SLAM for Multi-Robot

    Get PDF
    Collaborative SLAM is an amazing extension of single robot locations where multiple robots with monocular cameras work together in a dynamic environment to build one global map. The global map is later used by the multiple moving robots to localize themselves on the map. The application of collaborative SLAM can be used in various fields that include collaborative military tasks, search and rescue, agricultural planting, multi-robots working together to improve efficiency, and many others.  Generally, every existing collaborative SLAM method uses an offline technique to process the collected data in the indoor environment. The indoor environment has limited space and lacks GPS connectivity. In this paper, we aim to give a step toward the usage of two drones equipped with monocular cameras and a standard laptop as the server for monitoring indoor workplaces. We worked on Simultaneous localization and mapping standard architecture with building the centralized global SLAM by the micro aerial vehicles such as Tello in our case. We investigated the method and localization of the drone on the global map

    Towards Collaborative Simultaneous Localization and Mapping: a Survey of the Current Research Landscape

    Get PDF
    Motivated by the tremendous progress we witnessed in recent years, this paper presents a survey of the scientific literature on the topic of Collaborative Simultaneous Localization and Mapping (C-SLAM), also known as multi-robot SLAM. With fleets of self-driving cars on the horizon and the rise of multi-robot systems in industrial applications, we believe that Collaborative SLAM will soon become a cornerstone of future robotic applications. In this survey, we introduce the basic concepts of C-SLAM and present a thorough literature review. We also outline the major challenges and limitations of C-SLAM in terms of robustness, communication, and resource management. We conclude by exploring the area's current trends and promising research avenues.Comment: 44 pages, 3 figure

    A decentralized framework for multi-agent robotic systems

    Get PDF
    Over the past few years, decentralization of multi-agent robotic systems has become an important research area. These systems do not depend on a central control unit, which enables the control and assignment of distributed, asynchronous and robust tasks. However, in some cases, the network communication process between robotic agents is overlooked, and this creates a dependency for each agent to maintain a permanent link with nearby units to be able to fulfill its goals. This article describes a communication framework, where each agent in the system can leave the network or accept new connections, sending its information based on the transfer history of all nodes in the network. To this end, each agent needs to comply with four processes to participate in the system, plus a fifth process for data transfer to the nearest nodes that is based on Received Signal Strength Indicator (RSSI) and data history. To validate this framework, we use differential robotic agents and a monitoring agent to generate a topological map of an environment with the presence of obstacles

    Decentralization of Multiagent Policies by Learning What to Communicate

    Full text link
    Effective communication is required for teams of robots to solve sophisticated collaborative tasks. In practice it is typical for both the encoding and semantics of communication to be manually defined by an expert; this is true regardless of whether the behaviors themselves are bespoke, optimization based, or learned. We present an agent architecture and training methodology using neural networks to learn task-oriented communication semantics based on the example of a communication-unaware expert policy. A perimeter defense game illustrates the system's ability to handle dynamically changing numbers of agents and its graceful degradation in performance as communication constraints are tightened or the expert's observability assumptions are broken.Comment: 7 page

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas
    • …
    corecore