5 research outputs found

    Decentralized Monitoring of Moving Objects in a Transportation Network Augmented with Checkpoints

    Get PDF
    This paper examines efficient and decentralized monitoring of objects moving in a transportation network. Previous work in moving object monitoring has focused primarily on centralized information systems, like moving object databases and geographic information systems. In contrast, in this paper monitoring is in-network, requiring no centralized control and allowing for substantial spatial constraints to the movement of information. The transportation network is assumed to be augmented with fixed checkpoints that can detect passing mobile objects. This assumption is motivated by many practical applications, from traffic management in vehicle ad hoc networks to habitat monitoring by tracking animal movements. In this context, this paper proposes and evaluates a family of efficient decentralized algorithms for capturing, storing and querying the movements of objects. The algorithms differ in the restrictions they make on the communication and sensing constraints to the mobile nodes and the fixed checkpoints. The performance of the algorithms is evaluated and compared with respect to their scalability (in terms of communication and space complexity), and their latency (the time between when a movement event occurs, and when all interested nodes are updated with records about that event). The conclusions identify three key principles for efficient decentralized monitoring of objects moving past checkpoints: structuring computation around neighboring checkpoints; taking advantage of mobility diffusion and separating the generation and querying of movement informatio

    Mining candidate causal relationships in movement patterns

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in the International Journal of Geographical Information Science on 01 October 2013, available online: http://wwww.tandfonline.com/10.1080/13658816.2013.841167In many applications, the environmental context for, and drivers of movement patterns are just as important as the patterns themselves. This paper adapts standard data mining techniques, combined with a foundational ontology of causation, with the objective of helping domain experts identify candidate causal relationships between movement patterns and their environmental context. In addition to data about movement and its dynamic environmental context, our approach requires as input definitions of the states and events of interest. The technique outputs causal and causal-like relationships of potential interest, along with associated measures of support and confidence. As a validation of our approach, the analysis is applied to real data about fish movement in the Murray River in Australia. The results demonstrate the technique is capable of identifying statistically significant patterns of movement indicative of causal and causal-like relationships. 1365-8816Australian Research Council Discovery Projec

    Decentralized monitoring of moving objects in a transportation network augmented with checkpoints

    No full text
    This paper examines efficient and decentralized monitoring of objects moving in a transportation network. Previous work in moving object monitoring has focused primarily on centralized information systems, like moving object databases and geographic information systems. In contrast, in this paper monitoring is in-network, requiring no centralized control and allowing for substantial spatial constraints to the movement of information. The transportation network is assumed to be augmented with fixed checkpoints that can detect passing mobile objects. This assumption is motivated by many practical applications, from traffic management in vehicle ad hoc networks to habitat monitoring by tracking animal movements. In this context, this paper proposes and evaluates a family of efficient decentralized algorithms for capturing, storing and querying the movements of objects. The algorithms differ in the restrictions they make on the communication and sensing constraints to the mobile nodes and the fixed checkpoints. The performance of the algorithms is evaluated and compared with respect to their scalability (in terms of communication and space complexity), and their latency (the time between when a movement event occurs, and when all interested nodes are updated with records about that event). The conclusions identify three key principles for efficient decentralized monitoring of objects moving past checkpoints: structuring computation around neighboring checkpoints; taking advantage of mobility diffusion and separating the generation and querying of movement information

    Optimal sensor placement for sewer capacity risk management

    Get PDF
    2019 Spring.Includes bibliographical references.Complex linear assets, such as those found in transportation and utilities, are vital to economies, and in some cases, to public health. Wastewater collection systems in the United States are vital to both. Yet effective approaches to remediating failures in these systems remains an unresolved shortfall for system operators. This shortfall is evident in the estimated 850 billion gallons of untreated sewage that escapes combined sewer pipes each year (US EPA 2004a) and the estimated 40,000 sanitary sewer overflows and 400,000 backups of untreated sewage into basements (US EPA 2001). Failures in wastewater collection systems can be prevented if they can be detected in time to apply intervention strategies such as pipe maintenance, repair, or rehabilitation. This is the essence of a risk management process. The International Council on Systems Engineering recommends that risks be prioritized as a function of severity and occurrence and that criteria be established for acceptable and unacceptable risks (INCOSE 2007). A significant impediment to applying generally accepted risk models to wastewater collection systems is the difficulty of quantifying risk likelihoods. These difficulties stem from the size and complexity of the systems, the lack of data and statistics characterizing the distribution of risk, the high cost of evaluating even a small number of components, and the lack of methods to quantify risk. This research investigates new methods to assess risk likelihood of failure through a novel approach to placement of sensors in wastewater collection systems. The hypothesis is that iterative movement of water level sensors, directed by a specialized metaheuristic search technique, can improve the efficiency of discovering locations of unacceptable risk. An agent-based simulation is constructed to validate the performance of this technique along with testing its sensitivity to varying environments. The results demonstrated that a multi-phase search strategy, with a varying number of sensors deployed in each phase, could efficiently discover locations of unacceptable risk that could be managed via a perpetual monitoring, analysis, and remediation process. A number of promising well-defined future research opportunities also emerged from the performance of this research
    corecore