3 research outputs found

    A Semantic Framework to Debug Parallel Lazy Functional Languages

    Get PDF
    It is not easy to debug lazy functional programs. The reason is that laziness and higherorder complicates basic debugging strategies. Although there exist several debuggers for sequential lazy languages, dealing with parallel languages is much harder. In this case, it is important to implement debugging platforms for parallel extensions, but it is also important to provide theoretical foundations to simplify the task of understanding the debugging process. In this work, we deal with the debugging process in two parallel languages that extend the lazy language Haskell. In particular, we provide an operational semantics that allows us to reason about our parallel extension of the sequential debugger Hood. In addition, we show how we can use it to analyze the amount of speculative work done by the processes, so that it can be used to optimize their use of resources

    Rule-Based Software Verification and Correction

    Full text link
    The increasing complexity of software systems has led to the development of sophisticated formal Methodologies for verifying and correcting data and programs. In general, establishing whether a program behaves correctly w.r.t. the original programmer s intention or checking the consistency and the correctness of a large set of data are not trivial tasks as witnessed by many case studies which occur in the literature. In this dissertation, we face two challenging problems of verification and correction. Specifically, verification and correction of declarative programs, and the verification and correction of Web sites (i.e. large collections of semistructured data). Firstly, we propose a general correction scheme for automatically correcting declarative, rule-based programs which exploits a combination of bottom-up as well as topdown inductive learning techniques. Our hybrid hodology is able to infer program corrections that are hard, or even impossible, to obtain with a simpler,automatic top-down or bottom-up learner. Moreover, the scheme will be also particularized to some well-known declarative programming paradigm: that is, the functional logic and the functional programming paradigm. Secondly, we formalize a framework for the automated verification of Web sites which can be used to specify integrity conditions for a given Web site, and then automatically check whether these conditions are fulfilled. We provide a rule-based, formal specification language which allows us to define syntactic as well as semantic properties of the Web site. Then, we formalize a verification technique which detects both incorrect/forbidden patterns as well as lack of information, that is, incomplete/missing Web pages. Useful information is gathered during the verification process which can be used to repair the Web site. So, after a verification phase, one can also infer semi-automatically some possible corrections in order to fix theWeb site. The methodology is based on a novel rewritBallis, D. (2005). Rule-Based Software Verification and Correction [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194

    Graphical application and visualization of lazy functional computation.

    Get PDF
    Mere academic toys or the tools of the future? Lazy functional programming languages have undoubted attractive properties. This thesis explores their potential, from the programmer's point of view, for implementing interactive and graphical applications to which they do not seem immediately suited. The discussion is centred round two example applications. One is a graphical design program based on an idea of the artist M. C. Escher. The thesis argues that the graphical user interface may be encapsulated in an "interpret " function that when applied by a mouse click to an interface of appropriate type yields the required behaviour. The second example is a monitoring interpreter for a functional language. The idea is that if the mechanics of the reduction are presented at a suitable level of abstraction, this may be used to give insight into what is going on. On the basis of this the programmer might modify the code so that a program runs more efficiently in terms of speed and memory requirements. Problems of displaying the reduction are addressed, and solutions proposed for overcoming these: displaying the graph as a spanning tree, to ensure planarity, with extra leave
    corecore