574 research outputs found

    OnlynessIsLoneliness (OIL)

    Get PDF
    Our work is based on the debugging process of real ontologies that have been developed by domain experts, who are not necessarily too familiar with DL, and hence can misuse DL constructors and misunderstand the semantics of some OWL expressions, leading to unwanted unsatisfiable classes. Our patterns were first found during the debugging process of a medium-sized OWL ontology (165 classes) developed by a domain expert in the area of hydrology [9]. The first version of this ontology had a total of 114 unsatisfiable classes. The information provided by the debugging systems used ([3], [5]) on (root) unsatisfiable classes was not easily understandable by domain experts to find the reasons for their unsatisfiability. And in several occasions during the debugging process the generation of justifications for unsatisfiability took several hours, what made these tools hard to use, confirming the results described in [8]. Using this debugging process and several other real ontologies debugging one, we found out that in several occasions domain experts were just changing axioms from the original ontology in a somehow random manner, even changing the intended meaning of the definitions instead of correcting errors in their formalisatio

    SPARQL-DL queries for antipattern detection

    Full text link
    Ontology antipatterns are structures that reflect ontology modelling problems, they lead to inconsistencies, bad reasoning performance or bad formalisation of domain knowledge. Antipatterns normally appear in ontologies developed by those who are not experts in ontology engineering. Based on our experience in ontology design, we have created a catalogue of such antipatterns in the past, and in this paper we describe how we can use SPARQL-DL to detect them. We conduct some experiments to detect them in a large OWL ontology corpus obtained from the Watson ontology search portal. Our results show that each antipattern needs a specialised detection method

    Problem-based learning supported by semantic techniques

    Get PDF
    Problem-based learning has been applied over the last three decades to a diverse range of learning environments. In this educational approach, different problems are posed to the learners so that they can develop different solutions while learning about the problem domain. When applied to conceptual modelling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behaviour of a dynamic system. The learner?s task then is to bridge the gap between their initial model, as their first attempt to represent the system, and the target models that provide solutions to that problem. We propose the use of semantic technologies and resources to help in bridging that gap by providing links to terminology and formal definitions, and matching techniques to allow learners to benefit from existing models

    Completing the Is-a Structure in Description Logics Ontologies

    Full text link
    corecore