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Abstract

Building an error-free and high-quality ontology in OWL (Web Ontology Language)—

the latest standard ontology language endorsed by the World Wide Web Consortium—is

not an easy task for domain experts, who usually have limited knowledge of OWL and

logic. One sign of an erroneous ontology is the occurrence of undesired inferences (or

entailments), often caused by interactions among (apparently innocuous) axioms within

the ontology. This suggests the need for a tool that allows developers to inspect why such

an entailment follows from the ontology in order to debug and repair it.

This thesis aims to address the above problem by advancing knowledge and techniques

in generating explanations for entailments in OWL ontologies. We build on earlier work

on identifying minimal subsets of the ontology from which an entailment can be drawn—

known technically as justifications. Our main focus is on planning (at a logical level) an

explanation that links a justification (premises) to its entailment (conclusion); we also

consider how best to express the explanation in English. Among other innovations, we

propose a method for assessing the understandability of explanations, so that the easiest

can be selected from a set of alternatives.

Our findings make a theoretical contribution to Natural Language Generation and Know-

ledge Representation. They could also play a practical role in improving the explanation

facilities in ontology development tools, considering especially the requirements of users

who are not expert in OWL.
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Chapter 1

Introduction

In computer science, an ontology is defined as an engineering artifact that introduces

vocabulary describing the relationships between concepts and objects in some domain of

interest, and explicitly specifies the intended meaning of that vocabulary [Hor08]. An

ontology is often encoded into a machine-processable form by using a formal logic-based

language called an ontology language. The latest standard ontology language is OWL (Web

Ontology Language), endorsed by the W3C (World Wide Web Consortium) in 2004. Since

then OWL has become widespread in many domains. A number of important ontologies

have been built in OWL to standardize the representation of knowledge in different fields;

examples are the gene ontology [ABB+00] in bio-informatics, the NCI (National Cancer

Institute) Thesaurus [GFH+03], and the SNOMED ontology [SCC97] in health-care.

Building a high-quality ontology, such as one of those mentioned above, is not an easy

task, especially for people with limited knowledge of OWL and logic [Pul96, ADS+07].

In addition to obstacles caused by the opacity of OWL standard syntaxes1 [ST04], and

difficulties in understanding the logic-based semantics of OWL axioms [RDH+04], there

remains the more subtle problem of undesired inferences (or entailments), often caused

by interactions among innocuous-looking axioms in the ontology. The difference between

axioms and entailments is that whereas axioms are statements asserted by a user into

1The primary OWL syntax is RDF/XML (Resource Description Framework/eXtensible Markup Lan-
guage), which is an XML syntax for encoding RDF graphs in a serialisation format [RDF04].

5
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Table 1.1: An example of explanations generated by the explanation system for the input
entailment-justification pair

In
p

u
t

Entailment: Person vMovie (Every person is a movie)
Justification:
1. GoodMovie ≡ ∀hasRating.FourStarRating
(A good movie is anything that has only four stars as ratings)
2. Domain(hasRating,Movie)
(Anything that has a rating is a movie)
3. GoodMovie v StarRatedMovie
(Every good movie is a star-rated movie)
4. StarRatedMovie vMovie
(Every star-rated movie is a movie)

O
u

tp
u

t

Explanation:
The statement “Every person is a movie” follows because the ontology implies that
“Everything is a movie” (a).
Statement (a) follows because:

- anything that has as rating something is a movie (from axiom 2), and
- everything that has no rating at all is a movie (b).

Statement (b) follows because:
- everything that has no rating at all is a good movie (c), and
- every good movie is a movie (d).

Statement (c) follows because axiom 1 in the justification actually means that “a good
movie is anything that has no rating at all, or has only four stars as ratings”.
Statement (d) follows because:

- every good movie is a star rated movie (from axiom 3), and
- every star rated movie is a movie (from axiom 4).

an ontology, entailments are statements that logically follow from axioms. Since OWL

provides a highly expressive set of axioms, it is quite common for apparently innocuous

OWL axioms, when combined together, to lead to absurd conclusions such as “Everything

is a person”, “Nothing is a person”, or indeed “Every person is a movie”. Any such

entailment signals that the ontology needs to be debugged.

When debugging an undesired entailment, many users, especially those with limited know-

ledge of OWL and logic, will need more information in order to make the necessary cor-

rections: they need to understand why the undesired entailment was drawn, before they

can start to repair it. In such cases, providing a natural language explanation of why

the entailment follows from the ontology, such as the one in Table 1.1 for the (obviously

absurd) entailment “Every person is a movie”, would be of great help to users. Automated

reasoners [TH06, SPG+07], as will be explained in Chapter 2, can compute entailments

efficiently, but provide no useful information that helps generate such an explanation.

Earlier work on identifying minimal subsets of the ontology from which an entailment

can be drawn—known technically as justifications2 [Kal06]—help pinpoint which axioms

2The minimality requirement here means that if any axiom is removed from a justification, the entail-
ment will no longer be inferable.
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in the ontology are responsible for the entailment, and hence, provide a good basis for

explaining it. However, since there may be multiple justifications for an entailment, it is

unknown which of several justifications provides the best basis for explaining it.

Providing a justification for an entailment, understanding how to get from the justification

(premises) to the entailment (conclusion) is not always easy, especially when the size of the

justification is large. Additionally, Horridge et al. [HPS09b, Hor11] showed that there exist

naturally occurring justifications from OWL ontologies that are so difficult that even OWL

experts are unable to understand without further explanation; the justification shown in

Table 1.1 is an example of such cases. To help users with understanding a justification,

they proposed a method for computing intermediate statements (or lemmas) representing

steps in inferring the entailment from the justification. However, this method introduces

lemmas only in some fixed subsumption forms, and in a somewhat random manner, so it is

not guaranteed to provide lemmas that facilitate human understanding. Moreover, among

various possible lemmas that can be introduced into a justification, it is still unknown

which one provides the best subdivision of the inference into multiple steps.

1.1 Research Problem and Methodological Approach

The scope of this thesis is restricted to explanations for non-trivial subsumption entail-

ments between two class names—i.e., entailments of the forms > v A (Everything is an

A), A v ⊥ (Nothing is an A), and A v B (Every A is a B), where A and B are class

names—as they are the main inference types in description logics3. It aims to address the

following three research questions:

1. How can we find deduction patterns that are suitable for single inference steps in an

explanation (considering both frequency and level of understandability)?

2. Given a set of alternative multi-step explanations, how can we provide an empir-

ically grounded criterion for deciding which is most suitable—i.e., which would be

understood best by our target users, assumed to be non-logicians?

3. Having determined the logical structure of an explanation, how can we most clearly

3Explanations for other entailment types are topics for future work.
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express it in English through appropriate ordering, verbalisation, and extra elucid-

ation?

In order to address the first question, an empirical study is conducted to thoroughly ex-

amine justifications for entailments computed from large a corpus of published real world

OWL ontologies. The main focus of this study is on determining frequently occurring

deduction patterns in the corpus, and more importantly, how to formulate deduction rules

as generic representatives of basic inferences in OWL, especially those that lead to a con-

tradiction or an undesired subsumption, from these patterns. Another study is conducted

to empirically assess the level of understandability of the rules to non-logicians. These

rules are then employed to generate lemmas for a justification. Lemmas introduced in this

way are user-oriented as they subdivide the inference into steps that are neither too trivial

nor too complex to be understood by most users.

Given a justification and a set of deduction rules, there may exist multiple ways to intro-

duce lemmas into the justification, and so multiple explanations, some of which may be

easier to follow than others. Hence, the capability of assessing the understandability of

explanations so that the easiest can be selected from a set of alternatives would be of great

help to end-users. Additionally, when multiple justifications for an entailment are found,

this would enable the sorting of explanations in order of decreasing understandability,

which is also useful for end-users. To address this problem (which is raised in the second

research question), a model capable of predicting the understandability of a multi-step

explanation is proposed. This model is based on assessment of understandability of our

rules—which are in fact single-step inferences in OWL.

To address the third question, we first investigate how best to express a single-step infer-

ence in English—in other words, identifying which of various possible verbalisations for a

deduction rule is most understandable. This involves the identification of best verbalisa-

tions for OWL axioms, and more importantly, the determination of the best ordering for

premises in the rule as well as the arguments within each premise. We rely on existing

theoretical insights from the psychology of reasoning to identify the best verbalisations

for most rules. When prior work provides no guidance, we use an empirical test to find

out which verbalisations are understood best by non-logicians. For rules that are relat-

ively difficult to understand (identified through one of our prior studies), we seek suitable
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Figure 1.1: The underlying proof tree of the explanation in Table 1.1. The labels ‘RTop’,
‘RObjAll’, etc. refer to deduction rules named ‘Top’, ‘ObjAll’ etc. listed in Table 4.3. ‘FI’
values represent understandability indexes (or Facility Indexes), indicating how easy it is
to understand the rules, with values ranging from 0.0 (hardest) to 1.0 (easiest).

strategies for further elucidating the inference. The strategies are then compared empir-

ically to determine the most suitable for each rule.

Our aim in answering the three above-mentioned research questions is to develop a NLG

(Natural Language Generation) system capable of generating accessible explanations, in

English, of why an entailment follows from an OWL ontology. This system takes as input

an entailment, and outputs a number of English explanations, one for each justification of

the entailment. To produce such explanations, the system starts from justifications, which

can be computed efficiently by a number of available algorithms [KPHS07, Sun09]. It then

constructs proof trees for each justification in which the root node is the entailment, the

terminal nodes are the axioms in the justification, and other nodes are lemmas. If the

deduction rules result in multiple proof trees for a justification, only the most understand-

able is selected. If there are multiple justifications for the entailment, the selected proof

trees are sorted in order of decreasing understandability. Finally, the system plans and

generates an English explanation from each proof tree. The architecture of the system is

summarised in Figure 1.2. Its output explanation is more accessible than one based on the

justification alone in two ways: (1) it replaces a single complex inference with a number

of simpler inference steps, and (2) inference steps are expressed in English, and further

elucidated when necessary.

As an example, Table 1.1 shows an explanation that our system generates for the entail-

ment “Every person is a movie” based on the associated justification in the table. The

underlying proof tree is shown in Figure 1.1. The key to understanding this explanation
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Figure 1.2: Architecture of the explanation system

lies in the inference step from axiom 1 to statement (c), which is an example of a diffi-

cult step in need of “further elucidation”. Such an explanation can help identify which

axiom or axioms in the ontology are problematic, and hence, need to be corrected. In

this example, we can identify the problematic axiom which causes the absurd entailment

by tracing from the entailment to a sequence of absurd lemmas, including “Everything is

a movie”, “Everything that has no rating at all is a movie”, and “Everything that has

no rating at all is a good movie”, finally reaching the mistaken axiom “A good movie is

anything that has only four stars as ratings”.

1.2 Contributions

In summary, this thesis aims to advance knowledge and techniques in generating explan-

ations for entailments in OWL ontologies, by addressing the three research questions

mentioned above. In doing this, it makes the following contributions:

1. It provides a list of frequently occurring deduction patterns in published real world

OWL ontologies, and a list of deduction rules as generic representatives of basic

OWL inferences at the logical level, especially inferences that lead to a contradiction

or an undesired subsumption.

2. It proposes a method of computing user-oriented lemmas for a justification to sub-

divide the original inference into multiple inference steps, each of which is neither

too trivial nor too complex to be understood by most users, by using the set of

deduction rules.
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3. It implements an algorithm for constructing proof trees (or explanation plans) from

a justification, and carries out a thorough evaluation which shows that the algorithm

works relatively well in computing proof trees from justifications with ten or fewer

axioms in published real world OWL ontologies.

4. It proposes the innovation of using empirical studies of understandability to guide

the selection of which inference steps stand in need of further elucidation, and which

proof tree would be understood best by users. Specifically, it proposes a method

for empirically measuring the understandability of deduction rules (single-step in-

ferences in OWL) to people who are not OWL experts. Additionally, it proposes

an empirically grounded model capable of predicting the understandability of proof

trees (multi-step inferences in OWL), and a methodology for extending and refining

the model. These findings are definite advances over previous work, and employ a

clear and rigorous methodology that could be applied to cover a wider range of OWL

inferences, and could be generalised to any other application in which the aim is to

generate understandable logical explanations.

5. It implements an NLG system that can automatically generate English explanations

for subsumption entailments in consistent OWL ontologies.

1.3 Plan of the Thesis

We begin by providing the necessary background on reasoning in description logic and the

computation of justifications for entailments of ontologies (Chapter 2). This is followed

by a review of prior work on automatic generation of explanations for entailments and

explanations for mathematical theorems (Chapter 3).

Thereafter, the components of our own explanation generator are described: deduction

rules based on a corpus study of justifications in published real world OWL ontologies

(Chapter 4); an algorithm for constructing candidate proof trees (Chapter 5); and map-

pings of deduction rules (single-step inferences) to English templates for explanations

(Chapter 6).

The components mentioned above provide a means of generating many candidate explana-

tions, but not of determining which is most suitable; this issue is addressed by the next two
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Chapter 2

Background

This chapter introduces key ideas and concepts that are used in the rest of this thesis. In

addition, it provides an insight into the execution of commonly used reasoning algorithms

for description logics, and algorithms for computing justifications of OWL ontologies.

The purpose is to point out that those algorithms, although helpful and efficient, do not

provide a basis for generating accessible explanations for entailments of OWL ontologies.

Justifications and laconic justifications for entailments provide a good basis for generating

such explanations; however, further investigations are required to help with understanding

a justification, and to identify which of several justifications of an entailment provides the

best basis for an explanation.

2.1 OWL Ontology and Description Logics

2.1.1 OWL Ontology

The term ‘ontology’ originally refers to a philosophical discipline which studies the nature

and organisation of existence. It is then adopted in computer science as an engineering

artifact that introduces vocabulary describing the relationships between concepts and ob-

jects in some domain of interest, and explicitly specifies the intended meaning of that

vocabulary [Hor08]. Specifically, it provides a set of definitions for relevant concepts of

13
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the domain, a set of objects as instances of the concepts, and a set of binary relationships

between two objects, or an object and a value. The concepts, objects, and two types

of binary relationships are referred to as classes, individuals, object properties, and data

properties, respectively. For example, an ontology may consist of a class named ‘Insecti-

vore’, described as a sub-class of ‘Carnivore’ with a distinguishing feature of eating only

insects. It may also include an individual named ‘Keroppi’ which has four legs and is an

instance of the class ‘Insectivore’. In this example, ‘eats’ is an object property, and ‘has

leg number’ is a data property.

An ontology is often encoded into a machine-processable form by using a formal logic-

based language called an ontology language. The logical foundation provides a unique

and unambiguous interpretation of the semantics of an ontology, for both humans and

machines. Additionally, it allows reasoning with an ontology to infer implicit knowledge

about classes, individuals, and properties in the form of logical statements called en-

tailments. Each ontology language provides a set of constructors that combine classes,

individuals, and properties into logical statements (called axioms) or expressions for spe-

cifying an ontology. A commonly used constructor is v, which specifies the subsumption

relationship between two classes, or even two complex class expressions. The more diverse

the set of constructors, the more expressive the ontology language.

The latest standard ontology language is OWL (Web Ontology Language) [OWL12a],

endorsed by the W3C (World Wide Web Consortium) in 2004. It provides a powerful set of

constructors allowing one to build up highly expressive ontologies. A number of important

ontologies have been built in OWL to standardize the representation of knowledge in

different fields; examples are the gene ontology [ABB+00] in bio-informatics, the NCI

(National Cancer Institute) Thesaurus [GFH+03], and the SNOMED ontology [SCC97] in

health-care.

2.1.2 Description Logics

Description logics are decidable fragments of first-order predicate logic that are usually

used in knowledge representation [BCM+03]. The decidability requirement here refers

to a computational property of reasoning—that is, logical inferences in description logics

are guaranteed to be computable within finite time. This, however, does not imply that
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Table 2.1: OWL constructors for complex expressions, where ‘a’ and ‘b’ are individual
names, ‘C’ and ‘D’ are class expressions, ‘Ro’ is an object property name, ‘Rd’ is a data
property name, ‘Dr’ is a data range, ‘Dt’ is a data type, ‘l’ is a literal, and ‘n’ is a
non-negative integer

ID OWL Semantics
Constructor

1. C uD[u . . .] The set of individuals that are instances of both C and D
2. C tD[t . . .] The set of individuals that are instances C or D
3. ¬C The set of individuals that are not instances of C
4. One(a, b[, . . .]) One of the individuals a, b
5. ∃Ro.C The set of individuals connected by Ro to an instance of C
6. ∀Ro.C The set of individuals connected by Ro to only instances of C
7. ∃Ro.{a} The set of individuals connected by Ro to individual a
8. ∃Ro.Self The set of individuals connected by Ro to themselves
9. ≥ nRo.C The set of individuals connected by Ro to at least n instances of C
10. ≤ nRo.C The set of individuals connected by Ro to at most n instances of C
11. = nRo.C The set of individuals connected by Ro to exactly n instances of C
12. ∃Rd.Dr The set of individuals connected by Rd to a Dr value
13. ∀Rd.Dr The set of individuals connected by Rd to only Dr values
14. ∃Rd.{l} The set of individuals connected by Rd to a literal l
15. ≥ nRd.Dr The set of individuals connected by Rd to at least n Dr values
16. ≤ nRd.Dr The set of individuals connected by Rd to at most n Dr values
17. = nRd.Dr The set of individuals connected by Rd to exactly n Dr values
18. Inv(Ro) The inverse property of Ro

every inference can be computed within a reasonable time period. The time needed to

compute an inference depends on the computational complexity of reasoning algorithms,

which in turn depends on the expressiveness of the description logic. In fact, there is

always a trade-off between the expressiveness of a description logic and the computational

complexity of its reasoning algorithms.

Because of the decidability property, description logics are often used as the logical found-

ation of ontology languages. OWL [OWL04b], for instance, is underpinned by the de-

scription logic SHOIN [HPSvH03], and the latest OWL (i.e., OWL 2 [OWL12a]) is

underpinned by the description logic SROIQ [HKS06], which is slightly more expressive

than SHOIN . In the next two sub-sections, the syntax and semantics of SROIQ, and

more importantly, how they are linked to constructors supported in OWL, are discussed.

2.1.3 Syntax

Description logics, including SROIQ, have a vocabulary that contains the names of

classes, individuals, and properties. The sets of class, individual, and property names

are denoted by NC , NI , and NR, respectively. Each name represents an atomic or named
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entity. There are two additional class names, denoted by ⊥ (Nothing) and > (Thing),

that represent the empty class and the class of all individuals.

Description logics also support the construction of anonymous entities, often based on the

construction of complex expressions. Constructors for complex expressions supported in

OWL, including 17 constructors for class expressions and 1 for object property expressions,

are listed in Table 2.1, with English glosses explaining their semantics. No anonymous

data properties are supported in OWL.

Axioms provided by SROIQ are classified into three categories namely RBox, TBox,

and ABox [HKS06]. The RBox (often denoted by R) includes axioms that introduce a

relationship between two properties such as isBrotherOf v isSiblingOf (“is brother of”

is a sub-property of “is sibling of”). The TBox (or T ) includes axioms that specify a rela-

tionship between two classes such as Dolphin vMammal (Every dolphin is a mammal).

The ABox (or A), on the other hand, includes axioms that assert the existence of indi-

viduals in the domain such as Fish(nemo) (Nemo is a fish) and isFriendOf(nemo, dory)

(Nemo is a friend of Dory). Constructors for RBox, TBox, and ABox axioms supported

in OWL are listed in Table 2.2, with English sentences explaining their semantics.

2.1.4 Formal Semantics

As with first-order predicate logic, each description logic has a model-theoretic formal

semantics, and is specified using the notion of interpretations. An interpretation of a

description logic, often denoted by I, can be understood as a potential ‘world’ created

by a pair (∆I , ·I), in which ∆I is the domain (i.e., the entirety of individuals), and ·I is

the interpretation function that maps the vocabulary to the domain [Rud11]—specifically,

each individual name in NI is mapped to an element in the domain, each class name in

NC to a sub-set of the domain, and each property name R in NR to a (possibly empty)

sub-set of ∆I ×∆I .

Given the interpretation of a named entity as above, the interpretations of other classes

and class expressions in OWL can be extended in a natural way as follows (reproduced

from [Hor11]):

� >I = ∆I
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Table 2.2: OWL constructors for axioms, where ‘a’ and ‘b’ are individual names, ‘A’ is a class name, ‘C’ and ‘D’ are class expressions, ‘Ro’ and ‘So’
are object property names, ‘Rd’ and ‘Sd’ are data property names, ‘Dr’ is a data range, ‘Dt’ is a data type, and ‘l’ is a literal

ID Type OWL Constructor Semantics
1.

RBox

Ro v So If an individual x is connected by Ro to an individual y then x is connected by So to y.
2. Ro ≡ So[≡ . . .] Ro and So are the same object property.
3. Dis(Ro, So[, . . .]) There are no individual connected to an individual by both Ro and So.
4. Invs(Ro, So) If an individual x is connected by Ro to an individual y then y is connected by So to x, and vice versa.
5. Fun(Ro) Each individual is connected by Ro to at most one individual.
6. InvFun(Ro) For each individual x, there is at most one individual y connected by Ro to x.
7. Ref(Ro) Each individual is connected by Ro to itself.
8. Irr(Ro) No individual is connected by Ro to itself.
9. Sym(Ro) If an individual x is connected by Ro to an individual y then y is connected by Ro to x.
10. Asym(Ro) If an individual x is connected by Ro to an individual y then y cannot be connected by Ro to x.
11. Tra(Ro) If an individual x is connected by Ro to an individual y that is connected by Ro to an individual z,

then x is also connected by Ro to z.
12. Rd v Sd If an individual x is connected by Rd to a literal l then x is connected by Sd to l.
13. Rd ≡ Sd[≡ . . .] Rd and Sd are the same data property.
14. Dis(Rd, Sd[, . . .]) There are no individual connected to a literal by both Rd and Sd.
15. Fun(Rd) Each individual is connected by Rd to at most one literal.
16.

TBox

C v D All instances of C are instances of D.
17. C ≡ D[≡ . . .] All instances of C are instances of D, and vice versa.
18. Dis(C,D[, . . .]) No instance of C is an instance of D.
19. DisUni(A,C,D[, . . .]) Each instance of A is an instance of either C or D but not both, and vice versa.
20. Dom(Ro, C) Only instances of C are connected by Ro to an individual.
21. Rng(Ro, C) Each individual can only be connected by Ro to instances of C.
22. Dom(Rd, C) Only instances of C are connected by Rd to a literal.
23. Rng(Rd, Dr) Each individual can only be connected by Rd to Dr values.
24.

ABox

C(a) Individual a is an instance of C.
25. Ro(a, b) Individual a is connected by Ro to individual b.
26. ¬Ro(a, b) Individual a cannot be connected by Ro to individual b.
27. Sam(a, b[, . . .]) a and b are the same individual.
28. Dif(a, b[, . . .]) a and b are different individuals.
29. Rd(a, l ? Dt) Individual a is connected by Rd to a literal l of type Dt.
30. ¬Rd(a, l ? Dt) Individual a cannot be connected by Rd to a Dt value of l.
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� ⊥I = ∅

� {a, b}I = {aI , bI}

� (¬C)I = ∆I \ CI

� (C uD)I = CI ∩DI

� (C tD)I = CI ∪DI

� (∃Ro.C)I = {a ∈ ∆I | ∃b ∈ ∆I .(a, b) ∈ RIo ∧ b ∈ CI}

� (∀Ro.C)I = {a ∈ ∆I | ∀b ∈ ∆I .(a, b) ∈ RIo → b ∈ CI}

� (∃Ro.Self)I = {a ∈ ∆I | (a, a) ∈ RIo }

� (≥ nRo)
I =

{
a ∈ ∆I

∣∣ |{b ∈ ∆I | (a, b) ∈ RIo }| ≥ n
}

� (≤ nRo)
I =

{
a ∈ ∆I

∣∣ |{b ∈ ∆I | (a, b) ∈ RIo }| ≤ n
}

The interpretations of OWL axioms (denoted by I |= α where α is an arbitrary axiom)

can also be extended as follows (reproduced from [Hor11]):

� I |= C v D if CI ⊆ DI

� I |= C ≡ D if CI ⊆ DI and DI ⊆ II

� I |= Dis(Ro, So) if RIo ∩ SIo = ∅

� I |= Sym(Ro) if ∀a, b, (a, b) ∈ RIo implies (b, a) ∈ RIo

� I |= Tra(Ro) if ∀a, b, c, (a, b) ∈ RIo and (b, c) ∈ RIo implies (a, c) ∈ RIo

� I |= C(a) if aI ∈ CI

� I |= Ro(a, b) if (aI , bI) ∈ RIo

2.2 Reasoning in Description Logics

2.2.1 Reasoning Tasks

As mentioned before, it is possible to reason with an ontology to produce entailments. In

theory, there should be no limitation on reasoning tasks that can be performed; in practice,
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description logics support only certain standard reasoning tasks. Regarding inferences for

classes, they support the following four tasks:

Satisfiability checking Check if the definition of a class is satisfiable (i.e., can contain

one or more individuals), or unsatisfiable (i.e., cannot contain any individual)

Subsumption checking Check if one class is more general than (i.e., subsumes) another

class

Equivalence checking Check if the definitions of two classes are semantically equivalent

Disjointness checking Check if two classes are disjoint with each other

Among these tasks, satisfiability checking is the key because other tasks can be reduced

to it. Assume that C and D are two class expressions, C v D if and only if (C u ¬D) is

unsatisfiable. Similarly, C ≡ D if and only if both (Cu¬D) and (¬CuD) are unsatisfiable.

For disjointness checking, C and D are disjoint if and only if (C uD) is unsatisfiable.

For inferences with ABox assertions, description logics support two additional reasoning

tasks as follows:

Instance checking Check if an individual can be entailed as an instance of a class

Consistency checking Check if the assertions in ABox are consistent with respect to

all the definitions in RBox and TBox

Instance checking can be reduced to consistency checking: assume that a is an individual

name then C(a) is entailed from an ontology O if and only if (O∪{¬C(a)}) is inconsistent.

Satisfiability checking can also be reduced to consistency checking: the class expression C

is satisfiable if and only if {C(a)} is consistent, where a is an arbitrary individual name.

This means that all standard reasoning tasks are reducible to consistency checking, so an

efficient consistency checking algorithm is sufficient to ensure the efficiency of reasoning

in a description logic. It should be noted that to be able to reduce all standard reasoning

tasks to satisfiability as well as consistency checking, the description logic needs to support

both conjunction and negation of any arbitrary class expression.

To perform the above-mentioned reasoning tasks in description logics, three main kinds of

reasoning algorithms have been proposed and used so far, namely structural subsumption
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algorithm, tableau-based algorithm, and resolution-based algorithm. These algorithms are

described in detail in the next three sub-sections.

2.2.2 Structural Subsumption Algorithms

Structural subsumption algorithms [BS01] are designed to check for subsumption between

two class expressions. They are often used in inexpressive description logics in which

subsumption checking is not reducible to satisfiability or consistency checking. Their

execution consists of two phases: normalisation and comparison. In the first phase, the

class expressions are transformed into normal forms; in the second phase, the syntactic

structure of the normal forms are recursively compared to check for subsumption. Let’s

examine how such an algorithm [BCM+03] determines subsumption between two class

expressions in FL− [BL84], an inexpressive description logic that does not support the

negation or disjunction operator. In the normalisation phase, both class expressions are

converted into the following normal forms (reproduced from [BCM+03]):

A1 u . . . uAm u ∀Ro1.C1 u . . . u ∀Ron.Cn, and

B1 u . . . uBk u ∀So1.D1 u . . . u ∀Sol.Dl

where A1, . . . , Am and B1, . . . , Bk are class names, Ro1, . . . , Ron, So1, . . . , Sol are object

property names, C1, . . . , Cn and D1, . . . , Dn are arbitrary class expressions. In the

comparison phase, the first normal form is subsumed by the second one, and so the first

class expression is subsumed by the second one, if and only if the following two conditions

hold [BCM+03]:

1. for all i, 1 ≤ i ≤ k, there exists j, 1 ≤ j ≤ m such that Bi = Aj

2. for all i, 1 ≤ i ≤ l, there exists j, 1 ≤ j ≤ n such that Soi = Roj and Cj v Di

It is not difficult to see that it is nearly impossible to extend this algorithm for more

expressive description logics such as ALC [SS91], which fully supports negation, disjunc-

tion, and existential restriction (i.e., ∃R.C). For such description logics, tableau-based

and resolution-based algorithms are used to perform reasoning.
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Table 2.3: Transformation rules for consistency checking in tableau-based algorithms (re-
produced from [Hor11])

Rule Condition and Action

u − rule If (C uD)(x) ∈ A, but C(x) 6∈ A and D(x) 6∈ A
then create A′ = A ∪ {C(x), D(x)}.

t − rule If (C tD)(x) ∈ A, but C(x) 6∈ A and D(x) 6∈ A
then create A′ = A ∪ {C(x)}, A′′ := A ∪ {D(x)}.

∃ − rule If (∃R.C)(x) ∈ A, but R(x, y) 6∈ A and C(y) 6∈ A for some y
then create A′ = A ∪ {C(y), R(x, y)}.

∀ − rule If (∀R.C)(x) ∈ A, and R(x, y) ∈ A, but C(y) 6∈ A
then create A′ = A ∪ {C(y)}.

2.2.3 Tableau-Based Algorithms

Tableau-based algorithms [BS01] are refutation-based algorithms designed to perform reas-

oning in expressive description logics. They have been employed in many automated

reasoners for OWL ontologies; examples are FaCT++ [TH06], HermiT [MSH07], Pel-

let [SPG+07], RACER [HM01], and fuzzyDL [fuz]. The first tableau-based algorithm

was introduced by Schmidt-Schauß and Smolka [SS91] for checking satisfiability of a

class expression in ALC. It was then extended to cover more expressive description lo-

gics [BS99, HS99], and perform consistency checking [HM00]. Since other reasoning tasks

are reducible to consistency checking, they are also supported by tableau-based algorithms.

The main idea behind tableau-based algorithms is illustrated here through an example

taken from [BCM+03]—that is, examining whether (∃Ro.A) u (∃Ro.B) is subsumed by

∃Ro.(A u B). Firstly, the subsumption problem is reduced to an equivalent satisfiabil-

ity problem—that is, checking whether the class expression C = (∃Ro.A) u (∃Ro.B) u

¬(∃Ro.(A u B)) is unsatisfiable. This is done by applying double negation elimination

(i.e., ¬¬C is equivalent to C), and De Morgan’s rules (i.e., ¬(C uD) = (¬C t ¬D), and

¬(C tD) = (¬C u¬D)). Next, the class expression is transformed to an equivalent nega-

tion normal form in which negations only occur immediately in front of class names. The

negation normal form of C in this example is C0 = (∃Ro.A) u (∃Ro.B) u ∀Ro.(¬A t ¬B).

Now the algorithms check whether C0 is unsatisfiable.

In order to check for the satisfiability of C0, the algorithm tries to check whether the ABox

A0 = {C0(a)} is consistent, where a is an arbitrary individual name. The algorithm starts

with A0, and applies transformation rules shown in Table 2.3. After applying a rule, one



Table 2.4: Applications of tableau-based transformation rules in the example

A0 = {(∃R.A)(a), (∃R.B)(a), (∀R.(¬A t ¬B))(a)}

A1 = A0 ∪ {R(a, x), A(x)}
<apply ∃-rule on (∃R.A)(a)>

A2 = A1 ∪ {R(a, y), B(y)}
<apply ∃-rule on (∃R.B)(a)>

A3 = A2 ∪ {(¬A t ¬B)(x), (¬A t ¬B)(y)}
<apply ∀-rule on (∀R.(¬A t ¬B))(a)>

A4 = A3 ∪ {¬A(x)}
<apply t-rule on (¬A t ¬B)(x)>

A5 = A4 ∪ {¬A(y)}

= A0 ∪ {R(a, x), R(a, y),

A(x),¬A(x) , B(y),¬A(y)}

<apply t-rule on (¬A t ¬B)(y)>

contradiction

A′
5 = A4 ∪ {¬B(y)}

= A0 ∪ {R(a, x), R(a, y),

A(x),¬A(x) , B(y),¬B(y) }

<apply t-rule on (¬A t ¬B)(y)>

contradiction

A′4 = A3 ∪ {¬B(x)}
<apply t-rule on (¬A t ¬B)(x)>

A′′
5 = A′

4 ∪ {¬A(y)}

= A0 ∪ {R(a, x), R(a, y),

A(x),¬A(y), B(y),¬B(x)}

<apply t-rule on (¬A t ¬B)(y)>

A′′′
5 = A′

4 ∪ {¬B(y)}

= A0 ∪ {R(a, x), R(a, y),

A(x),¬B(x), B(y),¬B(y) }

<apply t-rule on (¬A t ¬B)(y)>

contradiction
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Table 2.5: Translation (;) of description logic axioms into first-order clauses (reproduced
from [Mot09]); underlined literals are those the algorithm selects to be unified in the next
steps

> v Q1 tQ2 ; Q1(x) ∨Q2(x) (1)

Q1 v ∀S.¬A ; ¬Q1(x) ∨ ¬S(x, y) ∨ ¬A(y) (2)

Q2 v ∃R.B ; ¬Q2(x) ∨R(x, f(x)) (3)

Q2 v ∃R.B ; ¬Q2(x) ∨B(f(x)) (4)

B v C ; ¬B(x) ∨ C(x) (5)

∃R.C v D ; D(x) ∨ ¬R(x, y) ∨ ¬C(y) (6)

S(a, b) ; S(a, b) (7)

A(b) ; A(b) (8)

¬D(a) ; ¬D(a) (9)

or more new ABoxes will be created, and the algorithm will recursively apply the rules

on the new ABoxes. The algorithm stops when either there are no rules that can be

applied, or obvious contradictions are found in the ABoxes. The resulting ABoxes are

called complete ABoxes. Among the set of complete ABoxes, if there exists at least one

that does not contain any obvious contradiction, then the algorithm concludes that A0 is

consistent, and so C0 is satisfiable. Otherwise, A0 is inconsistent, and C0 is unsatisfiable.

Table 2.4 shows all the applications of transformation rules on A0 in our example. The

algorithm stops with four complete ABoxes, one of which is consistent. Therefore, the

algorithm concludes that C0 is satisfiable, and so (∃Ro.A) u (∃Ro.B) is not subsumed by

∃Ro.(A uB). Among the transformation rules in Table 2.3, those for disjunction and at-

most restriction are non-deterministic because they may result in multiple new ABoxes

from a given ABox A. In such cases, as shown in the example, A is consistent if and only

if at least one of the new ABoxes is consistent.

2.2.4 Resolution-Based Algorithms

Resolution [BG01] is a refutation-based theorem proving method for checking the satis-

fiability of a set of first-order clauses. It systematically and exhaustively applies a set

of inference rules to the clauses in order to search for a contradiction. The output of

this searching is a resolution proof showing step by step the application of the rules. If a

contradiction is found, then the input clause set is unsatisfiable; otherwise, it is satisfiable.

Resolution-based algorithms use resolution to check for satisfiability of a concept or con-

sistency of an ABox in expressive description logics. Since resolution is only applicable
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Table 2.6: Resolution of first-order clauses in Table 2.5 (reproduced from [Mot09]); each
R(i + j) is a resolution of two clauses at the indexes (i) and (j), and underlined literals
are those the algorithm selects to be unified in the next steps

D(x) ∨ ¬Q2(x) ∨ ¬C(f(x)) R(3 + 6) (10)

D(x) ∨ ¬Q2(x) ∨ ¬B(f(x)) R(10 + 5) (11)

D(x) ∨ ¬Q2(x) R(11 + 4) (12)

D(x) ∨Q1(x) R(12 + 1) (13)

¬Q1(a) ∨ ¬A(b) R(2 + 7) (14)

D(a) ∨ ¬A(b) R(13 + 14) (15)

¬A(b) R(9 + 15) (16)

� R(8 + 16) (17)

to first-order clauses, these algorithms usually consist of two phases: translation and res-

olution. First, all description logic axioms are translated into semantically equivalent

first-order clauses, then resolution algorithms are used to perform satisfiability or con-

sistency checking. One important advantage of these algorithms is that standard resolu-

tion provers, such as Bliksem [Bli], SPASS [WDF+09], and Otter [Ott], can be re-used.

However, the translation phase adds extra overhead to their efficiency. Resolution-based

algorithms have been used in several automated reasoners for OWL ontologies such as

KAON2 [KAO13, HMS04], and MSPASS [MSP].

The underlying idea of resolution-based algorithms is illustrated here through an example

taken from [Mot09]—that is, examining whether an ontology O = {∃S.A v ∃R.B,B v

C,∃R.C v D,S(a, b), A(b)} entails D(a). Recall that O |= D(a) if and only if (O ∪

{¬D(a)}) is inconsistent. In the translation phase, the first axiom is structurally trans-

formed into > v (∀S.¬A) t (∃R.B) then into a set of axioms {> v Q1 t Q2, Q1 v

∀S.¬A,Q2 v ∃R.B)}; thereafter, the whole ontology is translated into first-order clauses

as shown in Table 2.5.

In the resolution phase, the first-order clauses are resolved to obtain new clauses. The

resolutions are recursively applied on the clauses until either a contradiction is found or

no further resolutions can be applied. All the resolutions in our example are shown in

Table 2.6. The algorithm derives an empty clause, suggesting that there is a contradiction

within the set O ∪ {¬D(a)}. In other words, the ontology entails D(a).
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Figure 2.1: A justification for an entailment of an ontology

1. . . .

2. . . .

3. . . .

4. . . .

5. . . .

6. . . .

7. . . .

8. . . .

9. . . .

10. . . .

Ontology

2. Domain(hasRating,Movie)

5. GoodMovie v StarRatedMovie

6. StarRatedMovie v Movie

9. GoodMovie ≡
∀hasRating.FourStars

Justification

Person v Movie

Entailment|=

2.3 Justifications for Entailments

2.3.1 Justifications as Explanations

A justification for an entailment of an ontology is defined as any minimal subset of the

ontology from which the entailment can be drawn [Kal06]. The minimality requirement

here means that if any axiom is removed from the justification, the entailment will no

longer be inferable. Figure 2.1 shows how a justification for an entailment is linked to

axioms in the ontology. It should be noted that there may be multiple justifications for a

given entailment from an ontology.

Justifications are useful for understanding as well as diagnosing and repairing an undesir-

able entailment [Kal06]. Such an entailment signals that something has gone wrong, and

that the ontology needs to be debugged. Before starting to repair the ontology, it is ne-

cessary to find out the reasons why that entailment was drawn in order to identify which

axiom or axioms need to be corrected. Without the justification support, a manual ex-

amination of the entire ontology is required. In the case of very large ontologies, such

as SNOMED [SCC97] which contains over 500,000 axioms, such an examination is very

difficult and time consuming.

Our corpus-based study on justifications for entailments from real world OWL ontologies

(reported in Chapter 4) shows that the average ontology size (i.e., the average number

of axioms) of our corpus is 1,131 whereas the average justification size for subsumption

entailments is 8. This study also shows variations in justification size from 1 up to 192
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axioms, with 69.4% of justifications (or 153,808 justifications) consisting of ten or fewer

axioms. Additionally, the multiplicity property of justifications for an entailment enables

the exploration of different reasons for the entailment to follow.

2.3.2 Computing Justifications

Given the above-mentioned benefits of justifications, a number of algorithms have been

proposed to compute justifications for an entailment [BH95, SC03, Kal06, BPnS07, SQJH08,

JQH09, Hor11]. These algorithms are known technically as axiom pinpointing algorithms.

This sub-section provides an insight into these algorithms, and shows that even though

they can determine the sets of premises for an entailment efficiently, their implementation

does not provide useful information for explaining it.

Generally, existing axiom pinpointing algorithms are classified into two main categories,

namely black-box (or reasoner-independent), and glass-box (or reasoner-dependent) [PSK05].

A black-box algorithm uses an automated reasoner as an external subroutine which provides

answers for queries of whether an entailment follows from a set of axioms. These answers

are taken as inputs for computing justifications for the entailment. A glass-box algorithm,

on the other hand, modifies the internal reasoning algorithm of a reasoner to enable the

computation of justifications. Compared with glass-box algorithms, black-box algorithms

are simpler to implement as they rely on available reasoners [Kal06], but they usually

suffer higher computational complexity due to a number of calls to a reasoner [Stu08].

Recall that there may be multiple justifications for an entailment of an ontology. For com-

puting all possible justifications for an entailment, the approach in earlier work is to first

develop an algorithm for computing a single justification, then develop another algorithm

that uses the former one as a sub-routine to compute all remaining justifications. Since

each algorithm can be either glass-box or black-box, an algorithm for computing all justi-

fications of an entailment often falls into one of the three possible categories [Hor11]: pure

glass-box algorithms, pure black-box algorithms, and hybrid black-box glass-box algorithms.

Pure Glass-Box Algorithms

A pure glass-box algorithm [Hor11] is a glass-box algorithm that computes all justifications

of an entailment by using only glass-box sub-routines for computing individual justifica-

tions. Existing algorithms of this type include those of Schlobach et al. [SC03, SHCH07],
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Meyer et al. [MLBP06], and Lam et al. [LSPV08] for the description logic ALC, those of

Baader et al. [BPnS07, BS08] for the description logic EL+, and that of Kalyanpur [Kal06]

for the description logic SHOIN .

These algorithms follow Baader and Hollunder’s idea of ‘tracing’ and ‘labelling’ the execu-

tion of a tableau-based algorithm [BH95]. According to this idea, by tracing the execution

of a tableau-based algorithm, and labelling each literal asserted into an ABox after ap-

plying a transformation rule (as explained in Section 2.2.3) with information of how it

is generated, the labels of assertions in a contradictory complete ABox can be used to

compute a single justification. By checking all contradictory complete ABoxes, all justi-

fications of the entailment can be computed.

Pure Black-Box Algorithms

A pure black-box algorithm [Hor11] is a black-box algorithm that computes all justific-

ations of an entailment by using only back-box sub-routines for computing individual

justifications. As opposed to pure glass-box algorithms, pure black-box algorithms re-

quire two separate algorithms, one for computing a single justification, and the one for

computing all justifications.

In a basic algorithm to compute a justification J for an entailment α from an ontology

O [Hor11], the computation starts with a sub-set S of O. If S does not entail α (i.e.,

S 6|= α), the algorithm keeps moving new axioms from O to S until S entails α (this phase

is called expansion); otherwise, the expansion phase is skipped. The result of this phase is

a set of axioms S that is a super-set of J . Thereafter, axioms are gradually removed from

S until S does not entail α if removing any further axiom (this phase is called contraction).

The set of axioms remained in S is a justification for α (i.e., J ≡ S). The two phases of

this algorithm are depicted in Figure 2.2.

To find all justifications for an entailment from an ontology O, Kalyanpur et al. [KPHS07]

proposed an algorithm that is based on Reiter’s Hitting Set Tree algorithm [Rei87]. In

this algorithm, a random justification J is first computed by using the above-mentioned

algorithm, then each axiom α in J is removed individually from O resulting in a new

ontology O′ = O \ {α}. The algorithm then computes a new justification J ′ for the

entailment from O′; in other words, it searches for a new justification J ′ from O that

does not include the axiom α. This process is systematically iterated until all remaining
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Figure 2.2: The basic algorithm for computing a single justification J for an entailment
α from an ontology O; initially, S ⊆ O

Expansion phase:

O S

Insert axioms from O into S until S |= α

Contraction phase:

S

Remove axioms from S until S 6|= α if removing

any more axiom

Output: J ≡ S

justifications are found.

Hybrid Black-Box Glass-Box Algorithms

In a hybrid black-box glass-box algorithm [Hor11], individual justifications are computed

with a pure glass-box algorithm, and all justifications with a pure black-box one. Existing

hybrid black-box glass-box algorithms include those of Kalyanpur [Kal06, KPHS07], and

Suntisrivaraporn [Sun09].

2.3.3 Laconic justifications

Axioms in an ontology reflect developers’ intuitions about a domain, and are usually

manually asserted. They can be very long, and conjoin several complex expressions. Since

axioms in a justification are directly taken from asserted axioms in the ontology, some

of them may contain parts that are unnecessary for the entailment to follow [HPS08b,

Hor11]. The presentation of such parts in an justification may cause distractions for readers

when they try to understand the inference. Additionally, when repairing an undesirable

entailment, people tend to remove one or more entire axioms that they believe to be

incorrect. If these axioms contain unnecessary parts, removing them would cause the

ontology to be over-repaired (i.e., removing more information than necessary) [HPS08b,
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Table 2.7: Examples of laconic justifications

Type Example Justification Laconic Justification
⊥-superfluity Entailment: Person vMovie Entailment: Person vMovie

Justification: Justification:
1. GoodMovie ≡ ∀hasRating.FourStars 1’. ∀hasRating.⊥ v GoodMovie
2. Domain(hasRating,Movie) 2. Domain(hasRating,Movie)
3. GoodMovie v StarRatedMovie 3. GoodMovie v StarRatedMovie
4. StarRatedMovie vMovie 4. StarRatedMovie vMovie

>-superfluity Entailment: A v B Entailment: A v B
Justification: Justification:
1. A v C uD 1’. A v C
2. C v B 2. C v B

Weakening Entailment: A v B Entailment: A v B
Justification: Justification:
1. A v≥ 4Ro.C 1’. A v≥ 1Ro.C
2. ∃Ro.C v B 2. ∃Ro.C v B

Hor11].

To solve this problem, Horridge et al. have defined a new class of fine-grained justifications

called laconic justifications. A laconic justification [HPS08b, Hor11] is a justification in

which no axioms contain any superfluous parts. The first example in Table 2.7 shows a

laconic justification of the justification in Table 1.1. In this example, the first axiom in

the original justification, which says “A good movie is anything that has only four stars

as ratings” is transformed to a new axiom, which says “Everything that has no rating at

all is a good movie”, because only this piece of information is required for the entailment.

This transformation is in fact caused by the replacement of the superfluous class name

‘FourStarRating’ by ‘⊥’—this replacement is named technically ⊥-superfluity [Hor11].

Other axioms in the original justification are unchanged because they contain no super-

fluous parts.

In addition to ⊥-superfluity, Horridge et al. [Hor11] also support two additional types of

replacement called >-superfluity and weakening. In >-superfluity, the superfluous class

name is replaced by the class name ‘>’—e.g., the replacement of ‘D’ by ‘>’ in the second

example in Table 2.7. In weakening, the cardinality restrictions are weakened by either

increasing or decreasing the cardinality values—e.g., the decrease of the cardinality value

‘4’ to ‘1’ in the last example in Table 2.7.
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2.4 Discussion and Conclusions

To generate an explanation for an entailment computed by an automated reasoner, an

ad-hoc solution is to adjust the implementation of the internal reasoning algorithm by in-

serting print-statements or sophisticated codes at appropriate places so that the outputs

can be used to form an explanation [MB95]. This approach is, however, as inappropriate

for explanation purposes, even for inexpressive algorithms such as structural subsump-

tion [MB95].

Although explanations should be independent of the implementation of a reasoning al-

gorithm, there exists a thought that they have to be tightly bound to the main steps in the

execution of the reasoning algorithm in order to be useful for end-users [McG96, BFH+99].

However, it can be seen from the descriptions of three kinds of reasoning algorithms that

their underlying ideas are not intuitive for human understanding. Among these three

kinds, structural subsumption algorithms are the most intuitive; however, they are lim-

ited to only some inexpressive description logics.

Tableau-based and resolution-based algorithms existing for OWL are much less intuitive.

In tableau-based algorithms, unintuitive transformations such as De Morgan’s rules are

applied to reduce a subsumption checking problem to an equivalent consistency checking

problem. Such transformations may cause the loss of reference to the original problem.

Additionally, transformation rules used in the later stage, such as those listed in Table 2.3,

are refutation-based and not for human understanding. In resolution-based algorithms,

the translation of description logics axioms to first-order clauses, and the resolution of

first-order clauses make them even less intuitive than tableau-based algorithms.

The above analyses indicate that instead of providing explanations that are tightly bound

to either the implementation or the execution of a reasoning algorithm, a better approach is

to build up a reasoner-independent explanation system or, more generally, a reconstructive

explanation system—a stand-alone system in which additional knowledge and methods can

be added to produce reasoner-independent and user-oriented explanations—as suggested

by Wick and Thompson for building an explanation facility in expert systems [WT92].

Similar to reasoning algorithms, algorithms for computing justifications are refutation-

based, and do not provide useful information for generating reasoner-independent and user-
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oriented explanations. Their outputs, justifications and laconic justifications, however,

provide a good basis for such explanations. A justification provides a set of premises for an

entailment, and is found to be helpful for understanding as well as debugging undesirable

entailments [Kal06]. A laconic justification provides a more precise set of premises by

eliminating all unnecessary parts in axioms. However, as discussed before, understanding

how to get from a set of premises to a conclusion is not always easy. Additionally, Horridge

et al.’s study [HPS09b, Hor11] shows that the transformation from an axiom in the original

justification to one in the laconic justification can be very difficult to understand, even for

OWL experts. Therefore, investigations how to generate explanations from justifications

and/or laconic justifications are necessary.

In conclusion, there is a need for a reconstructive explanation system that can generate

reasoner-independent and user-oriented explanations for entailments of OWL ontologies.

Justifications and laconic justifications (but not the computation of them) provide a good

basis for such explanations, but investigations how to generate such explanations are

necessary. Moreover, it is unknown which of several justifications and laconic justifications

for an entailment provide the best basis for explaining the entailment.
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Chapter 3

Related Work

This chapter describes prior work in explaining description logic-based reasoning and

mathematical theorems. Most of these work follow the reconstructive paradigm in gener-

ating explanations for reasoning (discussed in Section 2.4). The purpose of this chapter is

to point out that the introduction of lemmas representing steps in inferring an entailment

from a justification can help with understanding the entailment, and a number of ideas

and methods suggested by earlier work on explaining mathematical theorems can help

to improve the quality of explanations. However, investigations are required to identify

which inference patterns are suitable for single inference steps in an explanation, as well

as which possible lemmas provides the best subdivision of an inference into multiple steps.

3.1 Explaining Reasoning in Description Logics

3.1.1 Reasoning-Based Explanations

The first notable explanation facility for description logic-based reasoning was developed

by McGuinness [McG96] in CLASSIC [BBMR89]—a knowledge representation system

that is underpinned by an inexpressive description logic (described in [BMPS+91]), and

is equipped with a structural subsumption algorithm (described in Section 2.2.2). In this

early work, explanations for reasoning are thought to have to be tightly correlated with the

33
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Table 3.1: Nine examples of deductions rules used in McGuinness’s system (reproduced
from [McG96]), with ‘Prim’ means primitives, ‘Ref ’ means reflexivity, ‘Trans’ means
transitivity, ‘AtLst’ means at least, ‘Ro’ is an object property name, ‘C’, ‘D’, and ‘E’ are
class expressions, α̃ and θ̃ are sets of class names. According to the Prim rule, a class
expression is subsumed by another class expression if the set of class names in the first
expression is a superset of that of the second one—for instance, Lady u Y oung < Lady
because {Lady} ⊂ {Lady, Y oung}.

Type Rule Name Deduction Rule

Normalisation AllNothing ∀Ro.⊥ ≡≤ 0Ro

AtLst0 ≥ 0Ro.> ≡ >

AllThing ∀Ro.> ≡ >

Comparison AtLst n > m
→ (≥ nRo) v (≥ mRo)

All C v D
→ ∀Ro.C v ∀Ro.D

Prim α̃ ⊆ θ̃
→ (prim θ̃) < (prim α̃)

Description Logics Trans C v D, D v E
→ C v E

Ref C v C

Thing C v >

execution of the reasoning algorithm [McG96]. They are provided in the form of proofs, or

fragments of proofs, that explain in a declarative way how the reasoning algorithm proves

an inference.

McGuinness focuses only on proofs for subsumption inferences. These proofs are generated

from a set of inference rules [Bor92] that correspond to steps in either the normalisation

or comparison phases of the structural subsumption algorithm. This rule set also includes

rules corresponding to fundamental inferences in description logics. Table 3.1 shows nine

inference rules, three for each type, used in McGuinness’s system. The Prim (i.e., prim-

itives) rule is for the comparison phase, and refers to subsumption between two class

expressions. Recall that in the normalisation phase, class expressions are normalised into

the form of conjunctions of class names. According to the Prim rule, a class expression is

subsumed by another if the set of class names in the first expression is a superset of that of

the second one. For instance, Lady u Y oung < Lady because {Lady} ⊂ {Lady, Y oung}.

It can be seen that many inference rules in Table 3.1 are trivial, such as the normalisa-

tion rules, Prim (i.e., primitives), Ref (i.e., reflexivity), and Thing. This may result



3.1. Explaining Reasoning in Description Logics 35

Table 3.2: An example of a proof generated by McGuinness’s explanation system (repro-
duced from [McG96]) with each line justified by the name of the deduction rule used to
deduce it and the line numbers of the associated premises

1. ≥ 3hasGrape v≥ 2hasGrape AtLst
2. (≥ 3hasGrape) u (primGoodWine) v≥ 2hasGrape AndL, 1
3. (primGoodWine) v (primWine) Prim
4. (≥ 3hasGrape) u (primGoodWine) v (primWine) AndL, 3
5. A ≡ (≥ 3hasGrape) u (primGoodWine) Told
6. A v (primWine) Eq, 4, 5
7. Wine ≡ > u (primWine) AndEq
8. A v (u(primWine)) Eq, 7, 6
9. A v≥ 2hasGrape Eq, 5, 2
10. A v (≥ 2hasGrape) u (primWine) AndR, 9, 8

in long proofs with many trivial steps. In such proofs, the main line of reasoning is

usually not visible to the readers. As an example, Table 3.2 shows a proof construc-

ted by McGuinness’s system to explain why (≥ 3hasGrape) u (prim Good Wine) v (≥

2hasGrape) u (prim Wine) (i.e., why the set of good wines that are made from three or

more grape types is subsumed by the set of wines that are made from two or more grape

types). In this proof, the applications of rules Eq (i.e., equivalence) and AndEq (i.e.,

equivalence with a conjunction expression) are trivial, and should be removed.

Based on the resulting proofs, McGuinness’s strategy to explain an entailment of the form

C v D, where C and D are class expressions, is as follows: first find two descriptions

C1 u . . . u Cm equivalent to C and D1 u . . . u Dn equivalent to D, then find some Cj

(1 ≤ j ≤ m) such that Cj is subsumed by every Di (1 ≤ i ≤ n). From the proof in

Table 3.2, for instance, the following explanation is generated:1

A v (primWine) because Prim(θ̃ = {Wine,Good}, α̃ = {Wine})

A v (≥ 2hasGrape) because AtLst(n = 3,m = 2, π = hasGrape)

Although the above output provides only a logical foundation (but not the final presenta-

tion) of the explanation, it explains the subsumption in the example in a relatively natural

way. In the generation of such an output, the decisions on which inference steps in the

input proof should be removed are mostly based on the author’s intuition. More im-

portantly, the proposed approach is tightly coupled with the execution of the structural

1In the first statement, (prim Good Wine) v (primWine) because {Wine} ⊆ {Wine,Good} (accord-
ing to the rule Prim in Table 3.1).
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Table 3.3: The tableau proof generated by Borgida et al.’s sys-
tem (reproduced from [BFH00]) to explain the subsumption
∃hasFriend.> u ∀hasFriend.¬(∃hasChild.¬Doctor t ∃hasChild.Lawyer)) v
∃hasFriend.∀hasChild.(Rich t Doctor); the modal logic-based inference rules as-
sociated with each step are shown on the left

∃hasFriend.> u ∀hasFriend.¬((∃hasChild.¬Doctor) t (∃hasChild.Lawyer))
` ∃hasFriend.(∀hasChild.(Rich tDoctor))

l∧ (1)
∃hasFriend.>,∀hasFriend.¬((∃hasChild.¬Doctor) t (∃hasChild.Lawyer))

` ∃hasFriend.(∀hasChild.(Rich tDoctor))
l♦ (2)

>,¬((∃hasChild.¬Doctor) t (∃hasChild.Lawyer))
` ∀hasChild.(Rich tDoctor)

l¬∨ (3)
>,¬(∃hasChild.¬Doctor),¬(∃hasChild.Lawyer)

` ∀hasChild.(Rich tDoctor)
r� (4)

¬¬Doctor,¬Lawyer,` Rich tDoctor
l¬¬ (5)

Doctor,¬Lawyer,` Rich tDoctor
r∨ (6)

Doctor,¬Lawyer,` Rich tDoctor
= (7)

TRUE

subsumption algorithm, and thus is limited to only inferences that can be computed by

this algorithm.

Borgida et al. [BFH00] follow the thought of coupling explanations with the execution

of the reasoning algorithm, but rely on a tableau-based algorithm for ALC [SS91]—a

much more expressive description logic than the one in CLASSIC. They produce tableau

proofs that explain how the tableau-based algorithm proves subsumption between two class

expressions. To generate such proofs, they first modify the implementation of the tableau-

based algorithm to make the transformation of C v D to (C u ¬D) v ⊥ traceable, then

construct a sequent calculus—i.e., a set of inference rules based on the multi-modal pro-

positional logic K(m) in which each rule corresponds to one or more steps in the execution

of the modified tableau-based algorithm—to construct tableau proofs. Resulting proofs

thus consist of a number of inference steps (each of which associates with a modal logic-

based inference rule) that are parallel to main steps in the execution of the tableau-based

algorithm. A key advantage of this approach is that the transformation from subsumption

to unsatisfiability is hidden, so the original subsumption problem is preserved throughout.

Table 3.3 shows an example of a tableau proof generated by their system.

As pointed out by the authors [BFH00], tableau proofs, such as the one in Table 3.3,
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Table 3.4: The explanation generated by Borgida et al.’s system (reproduced
from [BFH00]) based on the tableau proof in Table 3.3

On the lhs, ∃hasFriend.> can be strengthened with ∀-restrictions on role hasFriend to yield
∃hasFriend.(> u ¬((∃hasChild.¬Doctor) t (∃hasChild.Lawyer))). The subsumption can
now be proven by showing that ∃-restrictions for role hasFriend subsume. To prove
∃hasFriend.X v ∃hasFriend.Y , it is sufficient to prove X v Y . So in this case we are reduced
to showing > u ¬((∃hasChild.¬Doctor) t (∃hasChild.Lawyer)) v ∀hasChild.(Rich tDoctor).

On the lhs, apply de Morgan’s laws to propagate in negation, to get (∀hasChild.¬¬Doctor).
To prove ∀hasChild.X v ∀hasChild.Y , it it sufficient to show X v Y . So in this case
we are reduced to showing ¬¬Doctor v (Rich tDoctor).

Double negation elimination on the lhs leaves Doctor.

The subsumption now follows because the description Doctor is subsumed by Doctor, and the
rhs is an expansion of Doctor, since it is a disjunction.

still include irrelevant steps for explanation purposes—e.g., the steps associating with the

rules l∧ (which replaces conjunctions on the antecedent side with commas), and l¬¬ (which

eliminates double negation on the antecedent side) in Table 3.3. Additionally, the modal

logic-based inference rules, unlike McGuinness’s deduction rules, are hard to understand—

e.g., the rule r� in Table 3.3 which extracts class expressions from universal quantifications

on both antecedent and succedent sides. Therefore, Borgida et al. simplify such proofs

(by removing irrelevant proof fragments), and construct explanation rules—i.e., simpler

variants of the proposed modal logic-based rules—to present in surface explanations. Fi-

nally, “English templates” are used to generate surface explanations. As an example, the

surface explanation this system generates from the tableau proof in Table 3.3 is shown in

Table 3.4. This explanation is nevertheless still long and very technical. Moreover, the

correlation with the execution of the tableau-based algorithm makes it more suitable for

“proof checking” rather than “proof understanding” for the readers [HPS09a].

Borgida et al.’s approach [BFH00] is applied and implemented in the ontology editor

OntoTrack [LN04]. On the basis of Borgida et al.’s work [BFH00], Kwong [Kwo05] in-

vestigates generating accessible explanations for subsumption entailments in ALC [SS91].

Tableau proofs are taken as inputs to generate such explanations. The explanation

Kwong’s system generates for the tableau proof in Table 3.3 is shown in Figure 3.1. More

recently, Borgida et al.’s work [BFH00] has been extended to explain subsumption entail-

ments in DL-Lite [CDGL+05] family of description logics [BCRM08].
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Figure 3.1: The explanation generated by Kwong’s system (taken from [Kwo05]) for the
tableau proof in Table 3.3

3.1.2 Justification-Based Explanations

Justifications for entailments [Kal06] are the current dominant form of explanations for en-

tailments of ontologies [Hor11]. They are conceptually simpler than reasoning-based proofs

and explanations, and are directly linked to axioms that are asserted by developers. They

are independent of both the implementation and execution of reasoning algorithms—i.e,

follow the reconstructive paradigm—so no understanding of reasoning algorithms or proof

calculi is required to understand them. With the proposal of effective algorithms for

computing justifications, finding justifications for entailments has become a key explan-

ation facility in many ontology development tools, including Protégé [KMR04, HPS08a],

Swoop [KPS+06, Kal06], TopBraid Composer [Top], and the RaDON plug-in of the NeOn

Toolkit [JHQ+09].

However, as discussed in Section 2.4, understanding how to get from a justification to an

entailment is not always easy. Horridge et al. [HPS09b, Hor11] propose the computation

of lemmas representing steps in inferring an entailment from a justification to guide users

on understanding the inference. More precisely, they propose the construction of a proof,
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Figure 3.2: Schematic of a justification oriented proof (taken from [Hor11])

called a justification oriented proof, in which axioms in the justification are premises of

the proof, lemmas are intermediate nodes, and the entailment is the root node. Unlike

McGuinness’s [McG96] and Borgida’s [BFH00] proofs, justification oriented proofs are

neither coupled with the execution of any reasoning algorithm, nor reliant on any proof

calculus or deduction rules—i.e., follow the reconstructive paradigm. Every lemma in these

proofs is an entailment drawn from a subset of premises and earlier lemmas—this subset is

in fact a justification of the lemma. Figure 3.2 shows a schematic of a justification oriented

proof. In this proof, the sets of axioms {1, 2, 3}, {3, 4, 5}, and {6, 7, 8} are justifications

for the lemmas 7 and 8, and the entailment η, respectively.

The understandability of such a proof depends upon the appropriateness of its lemmas;

the more appropriate the lemmas, the more understandable the proof. This analysis leads

to a research question of which lemmas most facilitate human understanding. Horridge

et al. [HBPS11, Hor11] address this question by proposing a framework that can compute

helpful lemmas to construct a justification oriented proof. This framework utilises the

computation of the deductive closure of a set of axioms (i.e., the set of all entailments plus

the original axioms) to compute candidate lemmas. Specifically, for a given entailment

η and a justification J , this framework first computes the deductive closure of subsets of

axioms in J . Since the deductive closure of a set of axioms is theoretically infinite, only

entailments of the form C v D are computed, where C and D are class names or class

expressions of fixed forms such as ∃Ro.C, ∀Ro.C, ≤ nRo.C, ≥ nRo.C, ∃Ro.{a} etc.

From the computed deductive closure, all justifications for the entailment η are computed.

The cognitive difficulty of these justifications is also assessed by means of a cognitive

complexity model [HBPS11, Hor11] (this model will be described in detail in Section 7.1).

Among the resulting justifications, only the easiest justification J ′ is considered. J ′ is

returned if it is easier than J ; otherwise, J is returned. This process is called lemmatising
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Figure 3.3: The justification oriented proof generated by Horridge’s system (taken
from [Hor11]) for the entailment Person v ⊥, with axioms at the terminal nodes (in
bold) are axioms in the input justification

a justification. For the example proof in Figure 3.2, this process returns the justification

J ′ = {6, 7, 8}.

The above-mentioned process is recursively repeated on axioms in J ′ until a complete proof

is constructed. As an example, Figure 3.3 shows an justification oriented proof generated

by Horridge at al.’s system to explain why the entailment Person v ⊥ follows from the

justification J = {RRated ≡ (∃hasScript.ThrillerScript) t (∀hasV iolenceLevel.High),

RRated v CatMovie, CatMovie vMovie, and Dom(hasV iolenceLevel,Movie)}.

As can be seen from Figure 3.3, justification oriented proofs appear closer to the way

people do reasoning, more concise and readable than reasoning-based proofs. Moreover,

the proof construction framework is generic as it relies on neither a proof calculus nor

a set of deduction rules, so is capable of producing proofs for a number of justifications

(even though the computational overhead may also be large due to the large number of

calls to automated reasoners). However, the way this framework selects lemmas does not

guarantee to produce the best proofs for human understanding. It selects only lemmas of

some fixed class subsumption forms, regardless of the type of the original inference. Our

corpus-based study (reported in Chapter 4) shows that many justifications include pairs

of property-related axioms such as {Rp v Sp, Sp v Tp}, and {Tra(Rp), Invs(Rp, Sp)}. In

such cases, none of the class subsumption lemmas would be helpful, but property-related

lemmas such as Rp v Tp and Tra(Sp) would be.
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The proposed cognitive complexity model [HBPS11, Hor11], as well as the way it is used

in the proof construction framework, also has shortcomings. As will be explained in

Section 7.1, this model [HBPS11] is biased towards measuring structural complexity of a

justification rather than its cognitive difficulty. In the framework, this model is used locally

to measure the difficulty of candidate justifications at each inference step, but neither the

difficulty of the inference step itself, nor the difficulty of the overall proof, is measured.

As a result, the output proof may not facilitate human understanding.

Finally, justification oriented proofs alone are not sufficient for users, especially non-

expert users. As mentioned before, there exist naturally occurring inferences in OWL

that are difficult to understand. An example of such inferences is the one to infer

∀hasV iolenceLevel.⊥ v RRated fromRRated ≡ (∃hasScript.ThrillerScript)t(∀hasV iolenceLevel.High)

in Figure 3.3. Our empirical study (reported in Section 7.2) shows that only 4% of parti-

cipants could understand even a simplified version of this inference. A user study conduc-

ted by Horridge et al. [HPS09b, Hor11] also shows that many OWL experts have trouble

in understanding justifications containing this inference. Such an inference should be

identified, and further elucidation should be provided to help end-users, both experts and

non-experts, understand it correctly.

3.2 Explaining Mathematical Theorems

The reconstructive paradigm [WT92] has also been applied in presenting and explain-

ing mathematical proofs. Many researchers investigate transforming machined-generated

proofs for mathematical theorems, in the form of resolution proofs [Pfe87, Lin90, And80,

Mil84], into natural deduction2 proofs [Gen35].

In Lingenfelder’s work [Lin90], for instance, resolution proofs are first transformed into

refutation graphs, then natural deduction proofs. Thereafter, natural deduction proofs

are restructured to make them more readable for users. Specifically, given a natural

deduction proof, trivial sub-proofs are replaced by trivial arguments, and non-trivial sub-

proofs are replaced by lemmas. These lemmas are explained in separate proofs that are

often presented before the main proof. Shared proofs are allowed to explain lemmas

2Natural deduction is a formalism in which logical reasoning is expressed by a set of inference rules that
reflect the natural way of reasoning.
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Figure 3.4: An example of a natural deduction proof generated by Lingenfelder’s system
(taken from [Lin90])

that repeatedly occur in the original proof. Hence, the resulting proofs are more concise

and easier to follow than the original proofs. An example of a natural deduction proof

generated by Lingenfelder’s system is shown in Figure 3.4.

Based on natural deduction proofs for mathematical theorems, several NLG systems have

been built to translate them into natural language explanations; prominent examples

being EXPOUND [Che76], MUMBLE [McD83], and THINKER [EP93]. The EXPOUND

system [Che76] takes as inputs a natural deduction proof and lexical information of all

predicates within the proof, and outputs an explanation in English. To generate such an

explanation, the system first constructs a graph representing the inferential relationships

between lines within the proof—each node in this graph consists of the identifier of a line,

and the links show the inferential relationships between the lines. Based on the graph,

it plans and generates an English explanation of how each line in the original proof is

obtained from previous lines. When planning for the explanation, nodes in the graph are

grouped to outline paragraphs, and trivial lines are ignored (but the decision of which

lines should be ignored is based on the author’s intuition). The generation of the English

explanation is by means of “English templates”. The formulation of an English template

for a line depends entirely on the local properties of the line—i.e., its formula, the inference
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rule used, and the premise lines in the discourse.

MUMBLE [McD81] is a general purpose system aiming to provide natural language inter-

face for expert systems. It accepts as inputs various formats, including natural deduction

proofs for mathematical theorems, and is capable of generating English explanations from

these proofs [McD83]. As in the EXPOUND system [EP93], this system explains a natural

deduction proof by showing how each line in the proof is related to earlier lines. However,

the MUMBLE system enhances the output explanations by relying on the contextual in-

formation of each line—e.g., the choices of English text for earlier lines, and the difficulty

of the associated inference step (again judged by the author’s intuition)—to determine

whether and how to translate it into English. Various NLG techniques, such as the pro-

nominalisation of subsequent references, and the use of parentheses to cancel ambiguities,

are also applied to make the output explanations more concise and coherent.

THINKER [EP93] is the first system that explores the generation of multiple English

explanations from a natural deduction proof at different levels of abstraction and styles in

order to serve for a wide range of users. It provides four distinct dimensions for users to

decide what the output explanation will look like; they are: (1) the approach for the entire

explanation (top-down, bottom-up, or mixture of the two), (2) the level of abstraction for

the entire explanation (ranging from complete to a high-level overview), (3) the level of

abstraction for explanations of individual inference steps (explaining only the inference

rules, the inference rules plus the connectives, or complete explanations), and (4) when

to produce the explanation (during or after the construction of the proof). The difference

between the two options of the last dimension is in fact the style of the explanation—i.e.,

either it shows how the proof is constructed or it guides the readers to understand the

proof.

One of the key drawbacks of the above-mentioned systems is that they rely on natural

deduction proofs which in turn rely on inferences rules in the natural deduction calculus.

Therefore, the resulting explanations often convey inference steps at too low a level of

detail. Additionally, the decisions on which steps should be ignored are mostly based on

the authors’ intuition without having been empirically tested. Coscoy [Cos97] develops a

similar system but relies on proofs of the Calculus of Inductive Constructions—a family

of λ-calculi. However, this system also suffers similar problems.
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Figure 3.5: The proof generated by Huang’s system (taken from [Hua94]) from the natural
deduction proof in Figure 3.4

Huang [Hua94] extends Lingenfelder’s work by reconstructing natural deduction proofs

to produce new proofs at a higher level of abstraction called assertion level. According

to the author, at the assertion level, inference steps within a proof progress through the

applications of either a given premise, or a predefined theorem. An example of such a

theorem is “subset” [Hua94] in the set theory, which is encoded as: U ⊂ F ↔ ∀x x ∈

U → x ∈ F (U is a subset of F if and only if all instances of U are also instances of F ).3

In this way, resulting proofs are more concise, and resemble those found in mathematical

textbooks. Figure 3.5 shows the natural deduction proof reconstructed by Huang’s system

from the proof in Figure 3.4 (generated by Lingenfelder’s system).

To produce such a proof, Huang [Hua94] constructs a set of domain-specific compound in-

ference rules called assertion level inference rules. The associated natural deduction proof

of each assertion level rule—called the natural expansion of the rule—is also constructed.

For a given input proof fed by Lingenfelder’s system, all occurrences of natural expansions

are searched and replaced by the associated assertion level rules, producing a new proof

at the assertion level. This proof (in Figure 3.5) is shorter and more accessible than the

input (in Figure 3.4).

Based on a assertion level proof, Huang [Hua94] develops a NLG system named PRO-

VERB capable of generating an English explanation for the proof. This system employs

a three-stage pipeline architecture [HF97], including macro-planning, micro-planning, and

realisation. In these stages, sophisticated text planning techniques—such as hierarchical

planning [Hov88, MP89, Dal92, HF97] (to split an explanation for a proof into a num-

3To prove the same inference requires a six-line natural deduction proof [Hua94].
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Table 3.5: The explanation generated by Huang’s system (reproduced from [HF97]) for
the theorem: “Let F be a group, let U be a subgroup of F , and let 1 and 1U be unit
elements of F and U . Then 1U equals 1.”

Let F be a group, let U be a subgroup of F, and let 1 and 1U be unit elements of F and U .

Because 1U is an unit element of U , 1U ∈ U . Therefore, there is x such that x ∈ U .

Let u1 be such an x. Since u1 ∈ U and 1U is a unit element of U , u1 ∗ 1U = u1. Since F is a
group, F is a semigroup. Since U is a subgroup of F , U ⊂ F . Because U ⊂ F and 1U ∈ U ,
1U ∈ F . Similarly, because u1 ∈ U and U ⊂ F , u1 ∈ F . Then, 1U is a solution of u1 ∗ x = u1.

Because u1 ∈ F and 1 is an unit element of F , u1 ∗ 1 = u1. Since 1 is an unit element of F ,
1 ∈ F . Then, 1 is a solution of u1 ∗ x = u1. Therefore, 1U equals 1. This conclusion is
independent of the choice of u1.

ber of explanations for sub-proofs within the original one), local navigation [HF97] (to

group and present all lines about a particular object before turning to new objects), and

text structure [Met92] (to bridge the gap between “what is to be said” and “how it is to

be said”)—and other NLG techniques—such as paraphrasing and aggregation—are ap-

plied to improve the fluency of explanations. As an example, Table 3.5 shows an English

explanation generated by the PROVERB system.

Horacek [Hor99] argues that in many cases Huang’s proofs still contain trivial inference

steps while provide inadequate explanations for complex inference steps. Hence, he pro-

poses various kinds of enhancements. In particular, each assertion level rule that includes

implicit applications of modus tollens—a rule of inference in propositional logic which

infers ¬P from P → Q and ¬Q, and is found to be not easy for human understand-

ing [JLB91]—is replaced by a new rule in which the last application of modus tollens

is made explicit to the readers. This is done by first expanding the rule to a natural

deduction proof, based on which the new rule is formulated.

Figure 3.6 shows an instance of such a formulation: the original complex rule (marked as

(1) in the figure) is first expanded to the natural deduction proof (marked as (3)), from

which the new rule (marked as (2)) is formulated. Consequently, the inference of ¬(aRb)

from (bRc) and ¬(aRc) for a transitive relation R is explained more clearly as follows:

“¬(aRc) implies ¬(aRb) or ¬(bRc). Thus, (bRc) yields ¬(aRb)” [Hor99]. However, the

identification of both complex rules and their replacement rules are based on the author’s

intuition. Another enhancement is the proposal of presentation rules [Hor98] to omit

trivial inference steps as well as group multiple related steps in the input proof. As a

result, proofs and explanations generated by the PROVERB system are improved, but as
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Figure 3.6: Reconstruction of a complex assertion level inference rule in Huang’s work
(taken from [Hor99])

pointed out by the author, are still far from satisfactory.

More recently, Fiedler [Fie05] develops a proof explanation system called P.rex, which

operates in a “user-adaptive” paradigm. This system stores information about the math-

ematical knowledge and skills in user models, one for each user. In this way, it can retrieve

the information of a particular user, and choose an appropriate level of abstraction for

explanations presented to this user. Another distinctive feature of this system is that it al-

lows users to interact with the system, and ask questions about the input proof in order to

refine their understanding of the proof. Decisions on how to react to a user are also based

on the knowledge and skills of the user. To model the mathematical knowledge and skills of

a user, the P.rex system employs ACT-R (Adaptive Control of Thought-Rational) [AL98],

a theory on cognitive architecture which divides knowledge in the world into two types:

declarative knowledge (i.e., things or facts that we aware we know and can be memorised)

and procedural knowledge (i.e., rules that we follow but we are not conscious of). However,

the above-mentioned problems in presenting and explaining mathematical proofs have not

been solved by this system.

3.3 Discussion and Conclusions

Explanations provided by McGuinness’s [McG96] and Borgida et al.’s [BFH00] systems

are reasoning-based, so are more suitable for ‘checking’ than ‘understanding’ the reason-

ing [Hor11]. In addition, understanding these explanations requires some knowledge of

reasoning algorithms; therefore, they are more suitable for system developers rather than

ordinary ontology developers.

Justification oriented proofs [Hor11] follow the reconstructive paradigm (discussed in Sec-
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tion 2.4). They go beyond the advantages of justifications by introducing lemmas repres-

enting steps in inferring an entailment from a justification. They appear to be closer to the

way people do reasoning, more concise and readable than reasoning-based explanations.

However, further investigations are required to ensure the computation of good proofs and

explanations that are helpful for non-expert users in understanding undesired entailments

as well as debugging them. In particular, it is unknown which of various possible lemmas

provides the best subdivision of the original inference into multiple steps, which inference

steps are difficult to understand, and how to explain these inferences in a way that facil-

itates human understanding. Additionally, when explaining an undesired entailment, it

is unknown how to make sources of errors best visible for end-users, as well as provide

suggestions to repair them.

Research on presenting and explaining proofs for mathematical theorems suggests a num-

ber of ideas and techniques for planning and generating readable and user-oriented ex-

planations. Specifically, proofs should be converted into a higher level of abstraction in

which obvious inference steps are omitted, and the line of reasoning is made visible, before

generating explanations. Moreover, different levels of abstraction and styles of explanation

should be defined to serve a wide audience. Micro-planning techniques in NLG such as text

structure [Met92, HF97] and aggregation rules [HF97] should be applied to improve the

fluency of explanations. Investigations into whether (and how) these ideas and techniques

can be applied to explaining entailments of OWL ontologies is, therefore, necessary.
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Chapter 4

Construction of Deduction Rules

For our purposes, a deduction rule is a pattern comprising a set of premises and a con-

clusion (that can be drawn from the premises), abstracted so that they contain no entity

names (except the two class names > and ⊥), only variables. This chapter describes the

construction of a set of deduction rules as generic representatives of basic inferences in

OWL. These rules are based on deduction patterns computed from a large corpus of pub-

lished real world OWL ontologies. Section 4.1 introduces the corpus, and explains why

it is suitable for examining inferences in OWL. Sections 4.2 and 4.3 describe the compu-

tation of entailment-justification pairs and deduction patterns. Finally, the derivation of

deduction rules from these patterns is reported in Section 4.4.

4.1 Ontology Corpus

417 published real world OWL ontologies were originally collected. They were non-empty,

distinct, consistent (i.e., the assertions in their ABox were consistent with respect to all

the definitions in their RBox and TBox), and parsable (i.e., containing no syntax errors)

OWL ontologies collected from three different sources. Specifically, 190 ontologies were

collected from the TONES repository [TON], 132 from the Ontology Design Patterns

repository [Ontb], and remaining 95 from the Swoogle search engine [DFJ+04]. It should

49
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be noted that these ontologies might nevertheless still contain other types of mistakes and

semantic errors such as unsatisfiable classes (e.g., “Nothing is a movie”).

The TONES repository [TON] is a database of OWL ontologies designed for use by sys-

tem developers, especially in testing automated reasoners. Many ontologies in this data-

base are biomedical ontologies collected from the NCBO BioPortal repository [RMKM08,

NSW+09]—a repository of actively used ontologies in the biomedical community. Cur-

rently, the repository consists of 219 ontologies with a wide range of topics, expressiveness,

and authoring styles. However, 29 of them are either empty, inconsistent, not parsable

due to syntax errors, import ontologies that no longer exist, or duplicate other ontologies.

None of these were included.

Ontology Design Patterns [Onta], a semantic web portal that consists of patterns often

used in modelling ontologies, provides a database of real world OWL ontologies that

are built by applying published ontology patterns [Ontb]. 204 ontologies were originally

collected from this database; however, only 132 of them met our criteria, and so were

selected.

Unlike TONES and Ontology Design Patterns, Swoogle [DFJ+04] is a search engine that

allows people to search for RDF-based documents available on the Web. Using the tool,

150 published OWL ontologies were collected; but only 115 of them met our criteria, and

so were selected.1

Since we were interested in subsumption inferences existing in OWL ontologies, only on-

tologies that had at least one non-trivial subsumption entailment were selected. The

Pellet reasoner [SPG+07] was used to check whether an ontology had a non-trivial sub-

sumption entailment. Details of the computation of subsumption entailments from each

ontology will be described shortly in Section 4.2. As a result, 179 ontologies having at

least one non-trivial subsumption entailment were selected as a corpus for our empirical

study. Key features of this corpus that made it suitable for our purposes are as follows:

Large size It contains 179 ontologies, each of which has one or more non-trivial sub-

sumption entailments. These ontologies contain over 200,000 axioms—large enough

to assess commonly occurring inference patterns from OWL ontologies.

1The full list of ontologies in the corpus and their details can be found at http://mcs.open.ac.uk/

nlg/SWAT/index.html.

http://mcs.open.ac.uk/nlg/SWAT/index.html
http://mcs.open.ac.uk/nlg/SWAT/index.html
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Real world human-built It is composed mostly of real-world human-built ontologies,

so reflecting the interests and habits of our target users.

Diverse in topic It covers a wide range of topics, ranging from biomedicine (such as the

gene ontology), health care (such as the SNOMED ontology), to more familiar topics

such as university, economy, country, etc.

Diverse in size and expressivity It contains ontologies of size 3 to 36,605 axioms, and

the average size is 1,131. Their expressivity ranges from lightweight EL+ + to highly

expressive SHOIN , and even SROIQ.

Diverse in authoring style It is authored by a wide range of human developers. Both

named classes and deeply nested complex class expressions are used in most ontolo-

gies.

4.2 Collecting Justifications for Entailments

4.2.1 Method

The scope of this thesis is restricted to subsumption entailments belonging to the following

three categories: (1) > v A, (2) A v ⊥, and (3) A v B, where A and B are class names.

This classification is useful for the examination of OWL inferences because it separates

definitely undesirable entailments from uncertain ones. The first two categories indicate

two types of problematic classes: (1) classes defined to be semantically equivalent to >

(e.g., “Everything is a movie”), and (2) classes that are unsatisfiable (e.g., “Nothing is a

person”). For the third category, the judgement of whether an entailment is undesirable

must be based on domain knowledge. The entailment Person v Movie (“Every person

is a movie”), for instance, is undesirable whereas the the entailment Person vMammal

(“Every person is a mammal”) is not.

We developed a Java-based program to compute entailments and justifications from the

corpus. In this program, the OWL-API package [HB09]—an open source application pro-

gramming interface for OWL 2—was employed to parse the structure of OWL ontologies

and axioms; the Pellet reasoner [SPG+07] was employed to compute all subsumption en-

tailments from an ontology (including those that were already in the ontology); finally,
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Table 4.1: Results of the computation of subsumption entailments and justifications with
ten or fewer axioms, where ‘A’ and ‘B’ are class names

Entailment Entailment Justification Ontology Pattern
Type Number Frequency Frequency Number

> v A 6 (0.0%) 28 (0.0%) 6 (3.5%) 9 (0.2%)
A v ⊥ 572 (1.1%) 1,930 (1.3%) 32 (18.7%) 484 (8.2%)
A v B 51,505 (98.9%) 151,850 (98.7%) 167 (97.7%) 5,415 (91.6%)

TOTAL 52,083 (100.0%) 153,808 (100.0%) 171 (100.0%) 5,908 (100.0%)

Horridge’s program that implemented the algorithms described in [KPHS07] was employed

to compute all justifications for an entailment. Our program sequentially computed all

subsumption entailments and all their justifications from each ontology in the corpus.

Since both the computation of all subsumption entailments from an ontology and all

justifications for an entailment were not guaranteed to be terminated within a reasonable

time [KPHS07], especially for large ontologies, we set up a time out of ten minutes for each

computation. Our program was deployed and run on a super-computer with a 64-bit Java

virtual machine installed in order to maximise the number of entailments and justifications

collected from the corpus.

4.2.2 Results

From the corpus, over 52,000 subsumption entailments of the three above-mentioned cat-

egories and approximately 222,000 non-empty and non-trivial justifications were collected.

The size of the collected justifications varied from 1 up to 192 axioms, but 153,808 (or

69.4%) of them contained ten or fewer axioms. As a first attempt to examine inferences

in OWL, this empirical study focused only on these justifications2. Details of these justi-

fications are summarised in Table 4.1 (“Justification Frequency”, “Ontology Frequency”,

and “Pattern Number” in this table will be explained in Section 4.3). This table shows

that there was a very limited coverage of category 1 (> v A), a reasonable coverage of

category 2 (A v ⊥), and an overwhelming preponderance of category 3 (A v B).

2The analysis of larger justifications is a topic for future work.
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Table 4.2: Example entailment-justification pairs and their deduction patterns

ID Entailment and Justification Pattern
1 Entailment: Entailment:

WaterBody v PlanetaryStructure C0 v C1

Justification: Justification:
1.PlanetaryStructure ≡ EarthRealm 1.C1 ≡ C2

2.WaterBody ≡ BodyOfWater 2.C0 ≡ C3

3.BodyOfWater v EarthRealm 3.C3 v C2

2 Entailment: Entailment:
DrySeasonDuration v Occurrence C0 v C1

Justification: Justification:
1.Event ≡ Duration 1.C3 ≡ C2

2.Event ≡ Occurrence 2.C3 ≡ C1

3.DrySeasonDuration v Duration 3.C0 v C2

3 Entailment: Entailment:
LongWaveRadiation v ElectromagWave C0 v C1

Justification: Justification:
1.ElectromagRadiation ≡ ElectromagWave 1.C2 ≡ C1

2.InfraredRadiation ≡ LongWaveRadiation 2.C3 ≡ C0

3.InfraredRadiation v ElectromagRadiation 3.C3 v C2

4 Entailment: Entailment:
PurkinjeF iber v CardiacMuscle C0 v C1

Justification: Justification:
1.Myocardium ≡ CardiacMuscle 1.C2 ≡ C1

2.ConductiveF ibre ≡ PurkinjeF iber 2.C3 ≡ C0

3.ConductiveF ibre ≡Myocardium u ∃function.Conduction 3.C3 ≡ C2 u ∃R0.C4

4.3 Collecting Deduction Patterns

Justifications for OWL entailments can be very diverse, for four reasons. First, they differ

in material—i.e., names of entities. Secondly, they can differ in size—i.e., the number

of axioms. Although justification size is usually small compared with ontology size, a

justification may contain dozens of axioms, or even more. Justifications computed from

our corpus, for instance, have sizes varying from 1 up to 192 axioms. Thirdly, justifications

can differ in the logical structure of axioms—i.e., containing different axioms. Finally, even

when justifications have similar axioms, their argument arrangements in axioms may differ.

The first three justifications in Table 4.2, for instance, have similar axioms but different

argument arrangements (C1C2 − C0C3 − C3C2 in case 1, C3C2 − C3C1 − C0C2 in case 2,

and C2C1 − C3C0 − C3C2 in case 3). Among these justifications, 1 and 2 are indeed two

distinct justifications, but 1 and 3 are similar due to the commutative property of ≡.

Recall that justifications provide a basis for generating explanations. However, given

the diversity of justifications, there might be some doubt as to whether it is possible

to find a generic set of rules to map them to rhetorical patterns in natural language.
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On closer inspection, we nevertheless found that although many entailment-justification

pairs looked different, they were actually structurally equivalent, and hence, should be

mapped into a common deduction pattern—a pattern comprising a set of premises and a

conclusion (that could be drawn from the premises), abstracted so that they contained no

entity names (except the two class names > and ⊥), only variables. In fact, our empirical

study (reported here) showed that entailment-justification pairs computed from our corpus

conformed to a smaller number of deduction patterns, and some deduction patterns were

more frequent than others.

4.3.1 Structural Equivalence Relation

A justification can be considered as a minimal ontology. To the best of our knowledge,

there has been no complete work on identifying the structural equivalence relation between

two arbitrary justifications in OWL, and more generally, between two arbitrary OWL

ontologies. The OWL 2 Structural Specification [OWL12c] defines a number of conditions

to check whether any two objects in OWL (i.e., named entities, complex class and property

expressions, and axioms) are structural equivalent. According to this specification, two

class expressions, for instance, are structurally equivalent if they are composed of the

same number and types of constructors, and the same named entities as arguments. This

means that the difference in material is taken into account here. Hence, the class expression

(Personu∃loves(CattDog)) is determined as structurally equivalent to ((∃loves(Dog t

Cat)) u Person), but not to (Person u ∃loves(Cat tRabbit)).

Instead of the above-mentioned conditions, what are required here are looser conditions

in which only the logical structure of expressions and axioms are taken into account, but

not the named entities in their arguments, so that the three class expressions above can

be determined as structurally equivalent. Horridge [Hor11] has recently provided a formal

definition of syntactic isomorphism (i.e., structural equivalence) relation between any two

δ-transformed SHOIQ axioms3 based on a renaming method—that is, two axioms, α′

and α′′, are isomorphic if there is an injective renaming of each name in the signature of

α′ into a name in the signature of α′′. The underlying idea of this method is to check

3δ-transformed SHOIQ axioms are those obtained after exhaustively applying the rewriting rules
of the structural transformation δ [PG86, Hor11] on a set of SHOIQ axioms S. The purpose of this
transformation is to eliminate nested structures within axioms in S, and convert S into an equi-consistent
and equi-satisfiable set S ′ which consists of only “small and flat” axioms [Hor11].
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whether the two axioms conform to a common logical structure. If there exists such a

common structure, then the two axioms are structurally equivalent; otherwise, they are

not.

The above-mentioned naming method alone, however, only works at the axiom level, and

is not enough for identifying the structural equality between two entailment-justification

pairs. Unlike an individual axiom, an entailment-justification pair as a whole forms a

structure in which arguments (named entities) in both the entailment and the justifica-

tion are interconnected. To check whether two entailment-justification pairs are structur-

ally equivalent, not only the structural equivalence between individual axioms, but more

importantly, the equivalence between arguments’ internal interconnections need to be ex-

amined. The latter examination is in fact a generic and quite tricky problem. Building

a graph representing both the logical structure and arguments’ interconnections of each

entailment-justification pair, then checking whether the two graphs are isomorphic is a

possible solution, but its implementation is non-trivial, even for a much less expressive

language than OWL [Sch88].

4.3.2 Method

Identifying the structural equivalence between any two entailment-justification pairs was

not the main focus of our work. What we were interested here was a method for comput-

ing deduction patterns from entailment-justification pairs which was capable of mapping

structural equivalent pairs into a common pattern. Our solution for this problem was to

first compute a canonical form of each entailment-justification pair as its deduction pat-

tern, then compare and collate the resulting deduction patterns to obtain a list of distinct

deduction patterns.

The computation of canonical forms was done by substituting names of entities (i.e.

classes, individuals, properties, datatypes, and literals) by alpha-numeric identifiers. Spe-

cifically, class names (except > and ⊥) were replaced by C0, C1, . . . , those of individuals by

i0, i1, . . . , those of object properties by Ro0, Ro1, . . . , those of data properties by Rd0, Rd1,

. . . , those of datatypes by Dt0, Dt1, . . . , and those of literal values by l0, l1, . . . Table 4.2

shows some example deduction patterns for the associated entailment-justification pairs

presented in the table.
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The above substitution method had a limitation: it did not guarantee to always produce

a single canonical form for structurally equivalent entailment-justification pairs, for two

reasons. Firstly, OWL provides a number of commutative constructors not only for axioms

(such as ≡, Dis, Invs), but also for class expressions (such as u and t). In such con-

structors, the arguments’ order has no effect on the semantics, but its side effect is that it

may result in a number of variants in logical structure of an axiom or expression, and so

of a deduction pattern. For example, the deduction pattern 3 in Table 4.2 is a variant of

pattern 1 caused by the occurrence of ≡. Secondly, different orders in which entity names

are substituted often result in different deduction patterns. For example, if the substitu-

tion of entity names in case 1 in Table 4.2 follows the order of “entailment-2-3-1” (instead

of “entailment-1-2-3” as in the table) then the following deduction pattern—which looks

different but is structurally equivalent to the one in the table—will be returned:

Entailment:
C0 v C1

Justification:
1. C1 ≡ C3

2. C0 ≡ C2

3. C2 v C3

To avoid duplications when computing deduction patterns, top-down alphabetical order

was used every time there was an ordering option. In particular, two sorting heuristics—

one for ordering axioms within a justification, and one for ordering arguments in a com-

mutative constructor—were applied before and while performing the substitution of entity

names. Given an entailment-justification pair, axioms in the justification were first sorted

by their logical structure. This was done by converting the axioms into functional style

strings [OWL12c] in which only constructors of all types were retained, then sorting the

axioms based on the alphabetic order of these strings. Based on the entailment and the

sorted justification, the deduction pattern was constructed, starting from the entailment.

The substitution of entity names was done by recursively parsing OWL constructors nested

in each axiom. For each constructor, all of its arguments were analysed. If an argument was

atomic, then it was replaced by an appropriate alpha-numeric identifier. Otherwise, it was

recursively parsed. In this process, whenever a commutative constructor was encountered,

its arguments were sorted by their logical structure before analysed. The result of this
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process was a deduction pattern stored in a hash table in the form of a string. The pattern

would be collated if a similar deduction pattern was found in the table. This collation was

based on string matching.

The proposed method was nevertheless incomplete due to a limitation of the sorting heur-

istics: it would not provide a unique sorting if two or more axioms in the justification

had the same logical structure. Consequently, the program might fail to produce a single

pattern for two or more structural equivalent entailment-justification pairs. Examples of

cases that might fail are the four cases in Table 4.2 because their justifications contain

two ≡ axioms. The deduction patterns of cases 1 and 3 are indeed structurally equival-

ent, and should be amalgamated. Therefore, after the computation of deduction patterns

completed, we manually checked the resulting patterns in order to handcraft the failed

cases—i.e., manually grouping structurally equivalent patterns that had not been collated

yet. We started the manual handcraft from the most frequent patterns to the least frequent

ones (i.e., having frequency of 1) in order to minimise the number of failed cases.

The result of the above computation was a list of distinct deduction patterns ranked by

frequency. For each pattern, two types of frequencies were measured: (a) occurrences of

the pattern across all ontologies (called justification frequency), and (b) the number of

ontologies in which the pattern occurred at least once (called ontology frequency) (as in

Table 4.1). Among the two measurements, ontology frequency was a more stable measure

since it was relatively unaffected by the ontology size—i.e., a deduction pattern might

occur in very few ontologies, but had a high justification frequency because these ontologies

were very large. Therefore, it was used as the main frequency measurement of a deduction

pattern.

4.3.3 Results

5,908 distinct deduction patterns were obtained in this way. Table A.1 in the Appendix A

shows frequently occurring patterns of each entailment category computed from our cor-

pus, sorted by ontology frequency then justification frequency. All nine patterns for > v A

entailments (where A is a class name) are shown in this table. For other entailment cat-

egories, ten patterns are shown, with the first three patterns being the most frequent

ones. These patterns are relatively simple and quite similar to each other. Therefore, the
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subsequent patterns were randomly selected in order to show the structural diversity of

deduction patterns.

4.4 Collecting Deduction Rules

4.4.1 Method

From the computed deduction patterns, we manually formulated deduction rules that

could serve as generic representatives of inference steps in an explanation. This required

that these rules were simple and frequent. These requirements were used as our criteria in

formulating the rules.

For simplicity, we required that deduction rules (a) contained no parts within their

premises that were redundant with the conclusion, and (b) could not be divided into

simpler deduction rules that were easier to understand. To achieve (a), the laconic prop-

erty for deduction rules—that is, any premise within a rule should not contain informa-

tion that is unnecessary for the entailment to hold—was considered. This property was

based on Horridge’s claim that superfluous parts in a justification might distract human

understanding, and should be eliminated [HPS10, Hor11]. Therefore, we formulated two

types of deduction rules, namely single-premise and multiple-premise. Single-premise rules

were those that consisted of exactly one premise, and merely unpacked part of the mean-

ing of the premise—the part that actually contributed to the entailment. On the other

hand, multiple-premise rules were those that contained multiple premises, and none of the

premises consisted of unnecessary information4.

In assessing (b), we relied partly on intuition. As a rough guide, we assumed that a

deduction rule ought to convey a reasonable and understandable amount of information

so that the resulting explanation would not be too detailed or too brief. We assumed that

any rule with over four premises would be too long to be understandable for most people,

thus ought to be subdivided into simpler rules5.

For frequency, we considered (a) the frequency of equivalent entailment-justification pairs

4An alternative approach was to formulate only multiple-premise deduction rules in which either some
or all information from each premise was used to arrive at the conclusion. This approach would, however,
result in a large number of structural variants of a rule due to the structural variety of the premises.

5The issue of understandability of deduction rules is re-examined in Chapter 7, which describes an
empirical test of understandability of our deduction rules.
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in the corpus, and (b) the frequency of more complex entailment-justification pairs that

contained a deduction rule as a part. We manually examined the frequent deduction

patterns computed from the corpus to find those that satisfied these criteria. Single-

premise rules were formulated every time a premise in a deduction pattern contained a

redundant part. The single-rule {X ≡ Y u Z} → X v Y (‘ObjInt-1’), for example, was

formulated while examining the deduction pattern {C0 v C2 ∧ C2 ≡ C1} → C0 v C1.

For multiple-premise rules, simple and frequent deduction patterns were first selected as

deduction rules. An example of rules of this type is {X v Y ∧Y v Z} → X v Z (‘SubCls-

SubCls-1’), derived directly from the deduction pattern {C0 v C2∧C2 v C1} → C0 v C1.

This rule corresponded to the well-known syllogism that from “Every X is a Y ” and

“Every Y is a Z”, we could infer “Every X is a Z”, where X, Y , and Z were either

arbitrary class names or complex class expressions.

Subsequently, further multiple-premise rules that occurred often as parts of more com-

plex deduction patterns, but were not computed as separate patterns because of certain

limitations of the reasoning algorithm6, were added. For example, rule {X v ∀R0.Y ∧

Invs(Ro, So)} → ∃So.X v Y (‘ObjAll-ObjInv’) was derived while examining the following

deduction pattern:

Entailment:
C0 v ⊥
Justification:
1. C0 v ∃r0.C1

2. Invs(r0, r1)
3. Dis(C0, C2)
4. C1 v ∀r1.C2

The formulation of deduction rules was stopped when we collected enough rules to obtain

an interesting range of explanations—in other words, covering most of the entailment-

justification pairs studied from the corpus (i.e., at least 50%, preferably more).

6Reasoning services for OWL typically compute only some kinds of entailment, such as A v B, A ≡ B,
and i ∈ A statements where A and B are class names and i is an individual name, and ignore others.
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4.4.2 Results

So far, 57 deduction rules were obtained in this way, as listed in Table 4.3, each with

a unique name. Among these rules, 11 of them (rules 1 to 11 in the table) were single-

premise, and the remaining 46 were multiple-premise. For each rule, its basic form was first

derived; thereafter, its extended forms were derived where possible, as shown in Table 4.3.

These forms were in fact structural variants of the original rule—i.e., they had slightly

different structures, but retained the key inference in the original rule7. For example,

the simplest form of rule ‘ObjInt-1’ (rule 2 in Table 4.3) was {X ≡ Y u Z} → X v

Y—e.g., from Woman v Person u Female, it would follow that Woman v Person.

Based on this inference, the following extended form could be derived: X ≡ ∃Ro.(Y u

Z)→ X v ∃Ro.Y—e.g., from DolphinLover ≡ ∃loves.(Mammal u Fish), it follows that

DolphinLover v ∃loves.Mammal.

Two-premise rules were the main kind of our multiple-premise rules (40 out of 46, or

87.0%) as they were minimum rules in which a new piece of information (presented in the

entailment) was unpacked from the combination of multiple premises. In rule ‘SubCls-

DisCls’ (rule 15 in Table 4.3), for instance, the conclusion X v ⊥ was inferred from

the combination of two premises: X v Y and Dis(X,Y ). If any of these premises was

omitted, the conclusion would no longer be inferable. Some of our two-premise rules

were directly derived from the two-premise deduction patterns computed from the corpus,

such as rules ‘DatMin-DatRng’, ‘DatVal-DatRng’, and ‘SubCls-SubCls-1’ (rules 13, 14,

and 39 in Table 4.3). Other two-premise rules were formulated from the analysis of the

composition of larger deduction patterns, as described in the previous sub-section.

There were similarities between some of our rules and those defined in OWL 2 RL [OWL12b],

a sub-language of OWL designed to support rule-based reasoning technologies. For ex-

ample, rule ‘ObjDom-SubCls’ ({Dom(Ro, X)∧X v Y } → Dom(Ro, Y )) was exactly the

same as rule ‘scm-dom1’ in the OWL 2 RL ({T (?P, rdfs : domain, ?C1) ∧ T (?C1, rdfs :

subClassOf, ?C2)} → T (?P, rdfs : domain, ?C2) where P is an object property name).

However, OWL 2 RL rules were designed to provide a useful basis for practical imple-

mentation of rule-based reasoning in OWL 2 RL, so many them were not suitable for

7An alternative approach was to consider the extended forms of a deduction rule as separate rules in
their own right. However, we believed that the understandability of the extended forms would be similar
to that of the original rule, so measuring their difficult level would be unnecessary. Therefore, considering
them as the extensions of the original rule would be a better way.
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explanation purposes. For example, rule ‘prp-trp’ in the OWL 2 RL—which says that

from T (?P, rdf : type, owl : TransitiveProperty) (P is transitive), T (?x, ?P, ?y) (x is con-

nected by P to y), and T (?y, ?P, ?z) (y is connected by P to z), it follows that T (?x, ?P, ?z)

(x is connected by P to z) where P is an object property name, x, y, and z are individual

names—was designed at the individual level, but what we needed here was a more general

rule that worked at the class level such as rule ‘ObjSom-ObjSom-ObjTra’ in Table 4.3

({X v ∃Ro.Y ∧ Y v ∃Ro.Z ∧ Tra(Ro)} → X v ∃Ro.Z), or even a more compact rule

such as ‘ObjSom-ObjTra’ in Table 4.3 ({X v ∃Ro.(∃RoY ) ∧ Tra(Ro)} → X v ∃Ro.Y ).

Therefore, we decided not to use OWL 2 RL rules, and formulated our own rules that

were more suitable for explanation purposes.

In order to produce concise (i.e., having a small number of inference steps) explanations

for entailments, deduction rules with three premises were also derived. It was true that

three-premise rules were often harder to understand than two-premise rules, and that

there might exist ways to subdivide them into multiple steps. For instance, instead of

formulating rule ‘DisCls-SubCls-SubCls’ (rule 52 in Table 4.3) which yielded Dis(U, V )

from three premises including Dis(X,Y ), U v X, and V v Y , one could first group the

first two premises to yield Dis(U, Y ), then combined this statement with the third premise

to yield the entailment. Similarly, instead of formulating rule ‘SubCls-SubCls-DisCls’ (rule

53 in Table 4.3) which derivedX v ⊥ fromX v Y , X v Z, and Dis(Y,Z), one could group

the first and last premises to first yield Dis(X,Z), then combined this statement with the

second premise to yield the entailment. However, we believed that such subdivisions were

unnecessary as they added little or no help for human understanding, but lengthened the

resulting proofs. Of course, this initial belief was based on our intuition, and an empirical

test of understandability of the deduction rules would be necessary—if it turned out that

a rule was too difficult for people to follow, then it would be necessary to subdivide it into

simpler rules8. However, at this step, our intuition-based judgement of the added value of

lemmas was used as a criterion to decide whether to formulate a three-premise deduction

rule.

A total of five three-premise deduction rules were derived in this way (rules 52 to 56 in

Table 4.3). These rules were either collected from the three-premise deduction patterns

computed from the corpus (such as rule ‘SubCls-SubCls-DisCls’), or formulated from the

8In fact, a study was later conducted to empirically measure the understandability of our deduction
rules. It will be reported in detail in Chapter 7.
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analysis of more complex deduction patterns (such as rule ‘SubObj-ObjInv-ObjInv’). The

only four-premise rule ‘ObjVal-ObjVal-DifInd-ObjFun’ (rule 57 in Table 4.3) was a special

case. It was similar to rule ‘DatVal-DatVal-DatFun’, but was applied on an object property

(instead of a data property as in rule ‘DatVal-DatVal-DatFun’), so required four premises.

4.4.3 Coverage of the Rule Set

To assess the efficiency of the collected rule set, it is necessary to measure its coverage in the

construction of proof trees from an entailment-justification pair—that is, from how many

justifications for entailments from real world OWL ontologies it can construct at least a

proof tree. We tested the rule set through the ontology corpus described in Section 4.1, but

restricted to only justifications of size ten or less. The algorithm described in Chapter 5

was employed to construct proof trees. Details of the set-up of this test are discussed in

Section 5.3.

The result of this test is summarised in Table 5.1. The test showed that our rule set was

generic enough to generate proof trees, and so explanations, for 75.6% (or 116,318) of

the input justification-entailment pairs. Among over 37,000 cases failed, over 97 percent

of them were caused by the limited coverage of the rule set. Even so, these results have

confirmed that our rule set covers most of the basic inferences that frequently occur in

published real world OWL ontologies, so is efficient for the generation of explanations for

subsumption entailments of OWL ontologies.

4.5 Conclusions and Future Work

We have performed an extensive corpus study (over 150,000 justifications from 171 onto-

logies) for a well-defined set of entailment types (three categories), and shown that we can

find a surprisingly small set of simple deduction rules that covers most of them. Because

they are simple, these rules are good candidates for understandable inference steps; be-

cause there are not many of them, we can investigate them within the practical limitations

of a PhD project while still obtaining quite good coverage.

Part of the future work is to extend the current rule set to cover more inferences in OWL.

Additionally, deduction rules at a higher level of abstraction such as those that group a
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Table 4.3: Deduction rules collected through our empirical study

Size ID Name Deduction Rule Extended Forms
1 1 EquCls X ≡ Y [≡ . . .]

→ X v Y
2 ObjInt-1 X ≡ Y1 u . . . u Yn u Z1 u . . . u Zm, n ≥ 1,m ≥ 1 X ≡ ∃Ro.(Y1 u . . . u Yn u Z1 u . . . u Zm), n ≥ 1,m ≥ 1

→ X v Y1 u . . . u Yn → X v ∃Ro.(Y1 u . . . u Yn)
3 ObjInt-2 X v Y1 u . . . u Yn u Z1 u . . . u Zm, n ≥ 1,m ≥ 1 X v ∃Ro.(Y1 u . . . u Yn u Z1 u . . . u Zm), n ≥ 1,m ≥ 1

→ X v Y1 u . . . u Yn → X v ∃Ro.(Y1 u . . . u Yn)
4 ObjUni-1 X ≡ Y1 t . . . t Yn t Z1 t . . . t Zm, n ≥ 1,m ≥ 1 X ≡ ∃Ro.(Y1 t . . . t Yn t Z1 t . . . t Zm), n ≥ 1,m ≥ 1

→ Y1 t . . . t Yn v X → ∃Ro.(Y1 t . . . t Yn) v X
5 ObjUni-2 Y1 t . . . t Yn t Z1 t . . . t Zm v X, n ≥ 1,m ≥ 1 ∃Ro.(Y1 t . . . t Yn t Z1 t . . . t Zm) v X, n ≥ 1,m ≥ 1

→ Y1 t . . . t Yn v X → ∃Ro.(Y1 t . . . t Yn) v X
6 ObjExt X v= n1Ro.Y , n1 ≥ n2 ≥ 0 X v= nRo.Y , n ≥ 0

→ X v≥ n2Ro.Y → X v≤ nRo.Y

X v≥ n1Ro.Y , n1 ≥ n2 ≥ 0
→ X v≥ n2Ro.Y

7 ObjAll X ≡ ∀Ro.Y
→ ∀Ro.⊥ v X

8 Top > v X
→ Y v X

9 Bot X v ⊥
→ X v Y

10 ObjCom-1 X v ¬X
→ X v ⊥

11 ObjCom-2 ¬X v Y
→ > v X t Y

2 12 DatSom-DatRng X v ∃Rd.Dr0 X v ∃Ro.(∃Rd.Dr0)
∧ Rng(Rd, Dr1), Dr0 & Dr1 are disjoint ∧ Rng(Rd, Dr1), Dr0 & Dr1 are disjoint
→ X v ⊥ → X v ⊥

13 DatMin-DatRng X v≥ nRd.Dr0, n > 0 X v ∃Ro.(∃Rd.Dr), n > 0
∧ Rng(Rd, Dr1), Dr0 & Dr1 are disjoint ∧ Rng(Rd, Dr1), Dr0 & Dr1 are disjoint
→ X v ⊥ → X v ⊥

14 DatVal-DatRng X v ∃Rd.{l0 ? Dt}) X v ∃Ro.(∃Rd.{l0 ? Dt})
∧ Rng(Rd, Dr), Dt & Dr are disjoint ∧ Rng(Rd, Dr), Dt & Dr are disjoint
→ X v ⊥ → X v ⊥

15 SubCls-DisCls X v Y
∧ Dis(X, Y [, . . .])
→ X v ⊥

16 Top-DisCls > v Y
∧ Dis(X, Y [, . . .])
→ X v ⊥

17 ObjMin-ObjMax X v≥ n1Ro.Y X v= n1Ro.Y
∧ X v≤ n2Ro.Y , 0 ≤ n2 < n1 ∧ X v≤ n2Ro.Y , 0 ≤ n2 < n1
→ X v ⊥ → X v ⊥

18 ObjMin-ObjFun X v≥ nRo.Y , n > 1 X v= nRo.Y , n > 1
∧ Fun(Ro) ∧ Fun(Ro)
→ X v ⊥ → X v ⊥

19 DatMin-DatFun X v≥ nRd.Dr , n > 1 X v= nRd.Y , n > 1
∧ Fun(Rd) ∧ Fun(Rd)
→ X v ⊥ → X v ⊥

20 ObjSom-Bot-1 X v ∃Ro.Y X v≥ nRo.Y , n > 0
∧ Y v ⊥ ∧ Y v ⊥
→ X v ⊥ → X v ⊥

X v= nRo.Y , n > 0
∧ Y v ⊥
→ X v ⊥

Continued on Next Page. . .
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21 ObjSom-Bot-2 X v ∃Ro.(Y u Z[u . . .]) X v≥ nRo.(Y u Z[u . . .]), n > 0
∧ Y v ⊥ ∧ Y v ⊥
→ X v ⊥ → X v ⊥

X v= nRo.(Y u Z[u . . .]), n > 0
∧ Y v ⊥
→ X v ⊥

22 ObjInt-DisCls X v ∃Ro.(Y1 u . . . u Ym), m ≥ 2 X v≥ nRo.(Y1 u . . . u Ym), n > 0,m ≥ 2
∧ Dis(Y1, . . . , Ym[, . . .]) ∧ Dis(Y1, . . . , Ym[, . . .])
→ X v ⊥ → X v ⊥

X v= nRo.(Y1 u . . . u Ym), n > 0,m ≥ 2
∧ Dis(Y1, . . . , Ym[, . . .])
→ X v ⊥

23 SubCls-ObjCom-1 X v Y
∧ X v ¬Y
→ X v ⊥

24 SubCls-ObjCom-2 X v Y
∧ ¬X v Y
→ > v Y

25 ObjDom-ObjAll Dom(Ro, X) ∃Ro.> v X
∧ ∀Ro.⊥ v X ∧ ∀Ro.⊥ v X
→ > v X → > v X

26 SubObj-SubObj Ro v So
∧ So v To
→ Ro v To

27 ObjTra-ObjInv Tra(Ro)
∧ Invs(Ro, So)
→ Tra(So)

28 ObjDom-SubCls Dom(Ro, X)
∧ X v Y
→ Dom(Ro, Y )

29 ObjDom-SubObj Dom(Ro, X)
∧ So v Ro
→ Dom(So, X)

30 ObjRng-ObjInv Rng(Ro, X)
∧ Invs(Ro, So)
→ Dom(So, X)

31 ObjRng-ObjSym Rng(Ro, X)
∧ Sym(Ro)
→ Dom(Ro, X)

32 ObjRng-SubCls Rng(Ro, X)
∧ X v Y
→ Rng(Ro, Y )

33 ObjRng-SubObj Rng(Ro, X)
∧ So v Ro
→ Rng(So, X)

34 ObjDom-ObjInv Dom(Ro, X)
∧ Invs(Ro, So)
→ Rng(So, X)

35 ObjDom-ObjSym Dom(Ro, X)
∧ Sym(Ro)
→ Rng(Ro, X)

36 ObjSom-ObjDom X v ∃Ro.Z X v≥ Ro.Z, n > 0
∧ Dom(Ro, Y ) ∧ Dom(Ro, Y )
→ X v Y → X v Y

X v= nRo.Z, n > 0
Continued on Next Page. . .
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∧ Dom(Ro, Y )
→ X v Y

37 DatSom-DatDom X v ∃Rd.Dr X v≥ Rd.Dr , n > 0
∧ Dom(Rd, Y ) ∧ Dom(Rd, Y )
→ X v Y → X v Y

X v= nRd.Dr , n > 0
∧ Dom(Rd, Y )
→ X v Y

38 ObjSom-ObjRng X v ∃Ro.Y X v≥ Ro.Y , n > 0
∧ Rng(Ro, Z) ∧ Rng(Ro, Z)
→ X v ∃Ro.(Y u Z) → X v≥ nRo.(Y u Z)

X v= nRo.Y , n > 0
∧ Rng(Ro, Z)
→ X v= nRo.(Y u Z)

39 SubCls-SubCls-1 X v Y X v Y
∧ Y v Z ∧ Y v Z
→ X v Z → X v Z

40 SubCls-SubCls-2 X v Y
∧ X v Z
→ X v (Y u Z)

41 ObjSom-ObjMin X v ∃Ro.Y X v≥ nRo.Y , n > 0
∧ ≥ 1Ro.Y v Z ∧ ∃Ro.Y v Z
→ X v Z → X v Z

X v= nRo.Y , n > 0
∧ ∃Ro.Y v Z
→ X v Z

42 DatSom-DatMin X v ∃Rd.Dr X v≥ nRd.Dr , n > 0
∧ ≥ 1Rd.Dr v Z ∧ ∃Rd.Dr v Z
→ X v Z → X v Z

X v= nRd.Dr , n > 0
∧ ∃Rd.Dr v Z
→ X v Z

43 ObjSom-SubCls X v ∃Ro.Y X v≥ nRo.Y , n ≥ 0
∧ Y v Z ∧ Y v Z
→ X v ∃Ro.Z → X v≥ nRo.Z

X v= nRo.Y , n ≥ 0
∧ Y v Z
→ X v= nRo.Z

44 ObjSom-SubObj X v ∃Ro.Y X v≥ nRo.Y , n ≥ 0
∧ Ro v So ∧ Ro v So
→ X v ∃So.Y → X v≥ nSo.Y

X v= nRo.Y , n ≥ 0
∧ Ro v So
→ X v= nSo.Y

45 ObjUni-SubCls X v (Y t Z)
∧ Y v Z
→ X v Z

46 ObjAll-ObjInv X v ∀Ro.Y
∧ Invs(Ro, So)
→ ∃So.X v Y

47 ObjSom-ObjAll-1 ∃Ro.Y v X
∧ ∀Ro.⊥ v X

Continued on Next Page. . .
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→ ∀Ro.Y v X
49 ObjSom-ObjAll-2 X v ∃Ro.>

∧ X v ∀Ro.Y
→ X v ∃Ro.Y

49 ObjSom-ObjTra X v ∃Ro.(∃RoY ) X v≥ nRo.(≥ nRoY ), n > 0
∧ Tra(Ro) ∧ Tra(Ro)
→ X v ∃Ro.Y → X v≥ nRo.Y

50 ObjDom-Bot Dom(Ro, X)
∧ X v ⊥
→ > v ∀Ro.⊥

51 ObjRng-Bot Rng(Ro, X)
∧ X v ⊥
→ > v ∀Ro.⊥

3 52 DisCls-SubCls- Dis(X,Y)
SubCls ∧ U v X

∧ V v Y
→ Dis(U, V )

53 SubCls-SubCls- X v Y
DisCls ∧ X v Z

∧ Dis(Y, Z)
→ X v ⊥

54 ObjUni-SubCls- X v (U t V )
SubCls ∧ U v Z

∧ V v Z
→ X v Z

55 ObjSom-ObjSom- X v ∃Ro.Y X v≥ nRo.Y , n > 0
ObjTra ∧ Y v ∃Ro.Z ∧ Y v≥ nRo.Z

∧ Tra(Ro) ∧ Tra(Ro)
→ X v ∃Ro.Z → X v≥ nRo.Z

56 DatVal-DatVal- X v ∃Rd.{l0 ? Dt0}
DatFun ∧ X v ∃Rd.{l1 ? Dt1}, Dt0 & Dt1 are disjoint, or l0 6= l1

∧ Fun(Rd)
→ X v ⊥

4 57 ObjVal-ObjVal- X v ∃Ro.{i}
DifInd-ObjFun ∧ X v ∃Ro.{j}

∧ Dif(i, j)
∧ Fun(Ro)
→ X v ⊥
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chain of similar or related rules will be investigated in order to make explanations more

concise, and important inference steps become more visible to end-users.
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Chapter 5

Construction of Proof Trees

This chapter describes the algorithms to construct proof trees from an entailment-justification

pair based on the deduction rules described in Chapter 4. For our purposes, a proof tree is

defined as any tree linking axioms of a justification (terminal nodes) to an entailment (root

node), in such a way that every local tree (i.e., every non-terminal node and its children)

corresponds to a deduction rule. This means that if the entailment and the justification

already correspond to a deduction rule, no further non-terminal nodes (i.e., lemmas) need

to be added. Otherwise, a proof tree needs to be sought. Figure 1.1 shows an example

proof tree generated by our system for the entailment-justification pair in Table 1.1.

Unlike the construction of justification oriented proofs which is based on the compu-

tation of the deductive closure of an axiom set [Hor11], the construction of our proof

trees is through exhaustive search of possible applications of the deduction rules. The

main algorithm ComputeProofTrees(η,J ) to compute proof trees is summarised in

Algorithm 1, where (η,J ) is an input entailment-justification pair. In essence, the al-

gorithm consists of two phases: first, superfluous parts in the justification, if present, are

eliminated resulting in one or more initial trees, then for each initial tree, all complete

proof trees are constructed. Details of these algorithms are described in the next two

sections.

69



70 Chapter 5. Construction of Proof Trees

Algorithm 1 ComputeProofTrees(J , η)

1: ProofListinitial ← ComputeInitialTrees(J , η)
2: for Pinitial ∈ ProofListinitial do
3: ProofListcomplete ← ComputeCompleteProofTrees(Pinitial)
4: ProofListresult.addAll(ProofListcomplete)
5: end for
6: return ProofListresult

Figure 5.1: Examples of initial trees for two types of justifications: (a) justifications
without superfluous parts, and (b) justifications in which axiom 1 contains unnecessary
parts for the entailment. The label ‘RObjAll’ refers to rule ‘ObjAll’ listed in Table 4.3.

5.1 Computing Initial Trees

5.1.1 Method

For our purpose, an initial tree is as an incomplete proof tree in which the root node

is an entailment, the terminal nodes are axioms of a justification, and for each terminal

node that contains unnecessary parts, a non-terminal node that links the root node to

the associated terminal node is added. Such a non-terminal node, if existing, and the

associated terminal nodes form a local tree which corresponds to a single-premise deduction

rule (described in Section 4.4). This means each non-terminal node is a lemma that

unpacks part of the meaning of the associated axiom in the justification—the part that

actually contributes to the entailment. If none of the axioms in the justification contains

superfluous parts, then no non-terminal nodes will be added into the initial tree. As an

example, Figure 5.1 shows two initial trees for two types of justifications, one with and

one without unnecessary parts. Case (b) is the initial tree for the proof tree in Figure 1.1.

To generate initial trees for an arbitrary entailment-justification pair, axioms in the justi-

fication that have superfluous parts need to be identified first. This identification requires

analysis of the contribution of each axiom to the entailment, but not analysis of the struc-

ture and semantics of axioms individually. This is because given an OWL axiom, many

parts of its meaning can be unpacked, and the more complex the axiom, the more parts
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can be unpacked. For instance, from the axiom A ≡ B u C u D, any of the following

parts of its meaning can be unpacked: A v B, A v C, A v D, A v B u C, A v B uD,

A v C uD, and A v B uC uD. Without the analysis of the entailment-justification pair

as a whole, each of these parts needs to be tested to find out the appropriate ones. For

large justifications, the number of such tests increases significantly, and will cause a large

computational overhead.

To avoid the above-mentioned overhead, Horridge et al.’s algorithm [HPS10, Hor11] is em-

ployed to compute laconic justifications. In particular, given an entailment-justification

pair, Horridge et al.’s algorithm is used to compute all laconic justifications for the entail-

ment from the original justification (the original justification is treated as an ontology of

the entailment). As explained in Section 2.3.3, this algorithm returns one or more laconic

justifications for the entailment. If axioms in the original justification contain no super-

fluous parts, the original justification will be returned as a unique laconic justification.

Thereafter, an initial proof tree is constructed from each laconic justification.

To construct an initial tree, a tree in which the root node is the entailment, and all terminal

nodes are axioms in the original justification is initialised. For each axiom in the laconic

justification, the Pellet reasoner [SPG+07] is queried to identify from which axiom in the

original justification this axiom follows. If the two axioms are identical, no lemma will be

added. Otherwise, the axiom in the laconic justification will be used as a lemma, and a

non-terminal node containing this lemma will be added between the root node and the

associated terminal node. The result of this process is a number of initial trees, one from

each laconic justification.

5.1.2 Exceptions

On close inspection we have found that in a number of cases, the elimination of super-

fluous parts according to Horridge et al.’s algorithm [HPS10, Hor11] is not appropriate

for explanation purposes because it produces trivial inference steps. For example, given

a justification including two premises (1) PetOwner v ∃hasPet.Pet (Every pet owner

has a pet) and (2) Dom(hasPet, Person)} (Anything that has as pet something is a per-

son), and an entailment PetOwner v Person (Every pet owner is a person), Horridge et

al.’s algorithm produces the following laconic justification: (1) PetOwner v ∃hasPet.>
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(Every pet owner has as pet something) and (2) Dom(hasPet, Person)} (Anything that

has a pet is a person). In the laconic justification, the filler Pet in axiom 1 is omitted

as it is not required for the entailment. According to our algorithm, an inference step

which unpacks PetOwner v ∃hasPet.> (Every pet owner has as pet something) from

PetOwner v ∃hasPet.Pet (Every pet owner has a pet) will be added to the resulting

initial tree. However, we believe that this inference step is trivial and should be ignored.

Therefore, such an elimination should be skipped. We call such cases exceptions.

The rest of this sub-section describes all of the exceptions we manually collected through

the analysis of our corpus, and how we dealt with them. In this description, C, Ck, D,

and Dk are class names or expressions, Ro and Rok are object property names, Rd and

Rdk are data property names, i and ik are individual names, l and lk are literal values,

where k ≥ 1.

Case 1: Unpacking C v ∃Ro.> from C v ∃Ro.D

As explained in the above example, this unpacking is ignored in order to avoid adding the

trivial step which yields C v ∃Ro.> from C v ∃Ro.D into the initial tree. This means no

single-premise rule is required here. This strategy is also applied to a more general case in

which C v (uMk=1Ck) u (uNp=1∃Rop.>) is unpacked from C v (uMk=1Ck) u (uNp=1∃Rop.Dp),

where M ≥ 1 and N ≥ 1.

A similar strategy is also applied to the following cases:

� Unpacking C v ∃Ro.> from C ≡ ∃Ro.D, and more generally, C v (uMk=1Ck) u

(uNp=1∃Rop.>) from C ≡ (uMk=1Ck) u (uNp=1∃Rop.Dp), where M ≥ 1 and N ≥ 1; this

results in an inference step corresponding to rule ‘EquCls’ (to yield C v ∃Ro.D from

C ≡ ∃Ro.D) in the initial tree.

� Unpacking C v ∃Ro.> from C v C1 u ∃Ro.D, and more generally, C v (uLk=1Ck) u

(uKp=1∃Rop.>) from C v (uMk=1Ck)u(uNp=1∃Rop.Dp), where M ≥ L ≥ 1, N ≥ K ≥ 1,

and M+N > L+K; this results in an inference step corresponding to rule ‘ObjInt-2’

(to yield C v ∃Ro.D from C v C1 u ∃Ro.D) in the initial tree.

� Unpacking C v ∃Ro.> from C ≡ C1 u ∃Ro.D, and more generally, C v (uLk=1Ck) u

(uKp=1∃Rop.>) from C ≡ (uMk=1Ck)u(uNp=1∃Rop.Dp), where M ≥ L ≥ 1, N ≥ K ≥ 1,

and M+N > L+K; this results in an inference step corresponding to rule ‘ObjInt-1’
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(to yield C v ∃Ro.D from C ≡ C1 u ∃Ro.D) in the initial tree.

Case 2: Unpacking C v ∃Ro.> from C v ∃Ro.{i}

In this case, the filler {i} is omitted because it is not necessary for the entailment. This

omission causes the trivial step which yields C v ∃Ro.> from C v ∃Ro.{i} to be added

into the initial tree. To avoid this, the filler {i} is retained, so no single-premise rule

is required here. This strategy is also applied to a more general case in which C v

(uMk=1Ck)u(uNp=1∃Rop.>) is unpacked from C v (uMk=1Ck)u(uNp=1∃Rop.{ip}), where M ≥ 1

and N ≥ 1.

A similar strategy is also applied to the following cases:

� Unpacking C v ∃Ro.> from C ≡ ∃Ro.{i}, and more generally, C v (uMk=1Ck) u

(uNp=1∃Rop.>) from C ≡ (uMk=1Ck)u (uNp=1∃Rop.{ip}), where M ≥ 1 and N ≥ 1; this

results in an inference step corresponding to rule ‘EquCls’ (to yield C v ∃Ro.{i}

from C ≡ ∃Ro.{i}) in the initial tree.

� Unpacking C v ∃Ro.> from C v C1u∃Ro.{i}, and more generally, C v (uLk=1Ck)u

(uKp=1∃Rop.>) from C v (uMk=1Ck) u (uNp=1∃Rop.{ip}), where M ≥ L ≥ 1, N ≥ K ≥

1, and M + N > L + K; this results in an inference step corresponding to rule

‘ObjInt-2’ (to yield C v ∃Ro.{i} from C v C1 u ∃Ro.{i}) in the initial tree.

� Unpacking C v ∃Ro.> from C ≡ C1u∃Ro.{i}, and more generally, C v (uLk=1Ck)u

(uKp=1∃Rop.>) from C ≡ (uMk=1Ck) u (uNp=1∃Rop.{ip}), where M ≥ L ≥ 1, N ≥ K ≥

1, and M + N > L + K; this results in an inference step corresponding to rule

‘ObjInt-1’ (to yield C v ∃Ro.{i} from C ≡ C1 u ∃Ro.{i}) in the initial tree.

Case 3: Unpacking C v≥ nRo.> from C v≥ nRo.D, where n ≥ 0

In this case, the filler D is retained to avoid adding the trivial step which yields C v≥

nRo.> from C v≥ nRo.D to the initial tree. This means no single-premise rule is required

here. This strategy is also applied to a more general case in which C v (uMk=1Ck)u(uNp=1 ≥

npRop.>) is unpacked from C v (uMk=1Ck) u (uNp=1 ≥ npRop.Dp), where M ≥ 1, N ≥ 1,

and np ≥ 0.

A similar strategy is also applied to the following cases:



74 Chapter 5. Construction of Proof Trees

� Unpacking C v≥ n2Ro.> from C v= n1Ro.D, where n1 ≥ n2 ≥ 0, and more

generally, C v (uMk=1Ck) u (uNp=1 ≥ n2pRop.>) from C v (uMk=1Ck) u (uNp=1 =

n1pRop.Dp), where M ≥ 1, N ≥ 1, and n1p ≥ n2p ≥ 0; this results in an inference

step corresponding to rule ‘ObjExt’ (to yield C v≥ n2Ro.D from C v= n1Ro.D) in

the initial tree.

� Unpacking C v≥ n2Ro.> from C ≡= n1Ro.D, where n1 ≥ n2 ≥ 0, and more

generally, C v (uMk=1Ck) u (uNp=1 ≥ n2pRop.>) from C ≡ (uMk=1Ck) u (uNp=1 =

n1pRop.Dp), where M ≥ 1, N ≥ 1, and n1p ≥ n2p ≥ 0; this results in two inference

steps corresponding to rules ‘EquCls’ (to yield C v= n1Ro.D from C ≡= n1Ro.D)

and ‘ObjExt’ (to yield C v≥ n2Ro.D from C v= n1Ro.D) in the initial tree.

� Unpacking C v≥ n2Ro.> from C v C1u = n1Ro.D, where n1 ≥ n2 ≥ 0, and

more generally, C v (uLk=1Ck) u (uKp=1 ≥ n2pRop.>) from C v (uMk=1Ck) u (uNp=1 =

n1pRop.Dp), where M ≥ L ≥ 1, N ≥ K ≥ 1, M + N > L + K, and n1p ≥ n2p ≥ 0;

this results in two inference steps corresponding to rules ‘ObjInt-2’ (to yield C v=

n1Ro.D from C v C1u = n1Ro.D) and ‘ObjExt’ (to yield C v≥ n2Ro.D from

C v= n1Ro.D) in the initial tree.

� Unpacking C v≥ n2Ro.> from C ≡ C1u = n1Ro.D, where n1 ≥ n2 ≥ 0, and

more generally, C v (uLk=1Ck) u (uKp=1 ≥ n2pRop.>) from C ≡ (uMk=1Ck) u (uNp=1 =

n1pRop.Dp), where M ≥ L ≥ 1, N ≥ K ≥ 1, M + N > L + K, and n1p ≥ n2p ≥ 0;

this results in two inference steps corresponding to rules ‘ObjInt-1’ (to yield C v=

n1Ro.D from C ≡ C1u = n1Ro.D) and ‘ObjExt’ (to yield C v≥ n2Ro.D from

C v= n1Ro.D) in the initial tree.

Case 4: Unpacking C v≤ nRo.> from C v≤ nRo.D, where n ≥ 0

In this case, the filler D is retained to avoid adding the trivial step which yields C v≤

nRo.> from C v≤ nRo.D to the initial tree. This means no single-premise rule is required

here. This strategy is also applied to a more general case in which C v (uMk=1Ck)u(uNp=1 ≤

npRop.>) is unpacked from C v (uMk=1Ck) u (uNp=1 ≤ npRop.Dp), where M ≥ 1, N ≥ 1,

and np ≥ 0.

A similar strategy is also applied to the following cases:

� Unpacking C v≤ nRo.> from C v= nRo.D, where n ≥ 0, and more generally,
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C v (uMk=1Ck)u (uNp=1 ≤ npRop.>) from C v (uMk=1Ck)u (uNp=1 = npRop.Dp), where

M ≥ 1, N ≥ 1, and np ≥ 0; this results in one inference step corresponding to rule

‘ObjExt’ (to yield C v≤ nRo.D from C v= nRo.D) in the initial tree.

� Unpacking C v≤ nRo.> from C ≡= nRo.D, where n ≥ 0, and more generally,

C v (uMk=1Ck)u (uNp=1 ≤ npRop.>) from C ≡ (uMk=1Ck)u (uNp=1 = npRop.Dp), where

M ≥ 1, N ≥ 1, and np ≥ 0; this results in two inference steps corresponding to

rules ‘EquCls’ (to yield C v= nRo.D from C ≡= nRo.D) and ‘ObjExt’ (to yield

C v≤ nRo.D from C v= nRo.D) in the initial tree.

� Unpacking C v≤ nRo.> from C v C1u = nRo.D, where n ≥ 0, and more generally,

C v (uLk=1Ck) u (uKp=1 ≤ npRop.>) from C v (uMk=1Ck) u (uNp=1 = npRop.Dp),

where M ≥ L ≥ 1, N ≥ K ≥ 1, M + N > L + K, and np ≥ 0; this results in

two inference steps corresponding to rules ‘ObjInt-2’ (to yield C v= nRo.D from

C v C1u = nRo.D) and ‘ObjExt’ (to yield C v≤ nRo.D from C v= nRo.D) in the

initial tree.

� Unpacking C v≤ nRo.> from C ≡ C1u = nRo.D, where n ≥ 0, and more generally,

C v (uLk=1Ck) u (uKp=1 ≤ npRop.>) from C ≡ (uMk=1Ck) u (uNp=1 = npRop.Dp),

where M ≥ L ≥ 1, N ≥ K ≥ 1, M + N > L + K, and np ≥ 0; this results in

two inference steps corresponding to rules ‘ObjInt-1’ (to yield C v= nRo.D from

C ≡ C1u = nRo.D) and ‘ObjExt’ (to yield C v≤ nRo.D from C v= nRo.D) in the

initial tree.

Case 5: Unpacking C v ∃Rd.Literal from C v ∃Rd.{l} ? Dt

In this case, the filler {l}?Dt is omitted because it is not necessary for the entailment. This

omission causes the trivial step which yields C v ∃Rd.Literal from C v ∃Rd.{l}?Dt to be

added to the initial tree. To avoid this, the filler {l} ? Dt is retained, so no single-premise

rule is required here. This strategy is also applied to a more general case in which C v

(uMk=1Ck) u (uNp=1∃Rdp.Literal) is unpacked from C v (uMk=1Ck) u (uNp=1∃Rdp.{lp} ? Dtp),

where M ≥ 1 and N ≥ 1.

Case 5: Unpacking Ro v Inv(So) from Invs(Ro, So)

Horridge et al.’s algorithm [HPS08b] always transforms the axiom Invs(Ro, So) to Ro v

Inv(So). This causes the trivial inference step which unpacksRo v Inv(So) from Invs(Ro, So)
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Figure 5.2: Two complete proof trees generated for the entailment-justification pair in
Table 1.1; they are constructed from the initial tree (b) in Figure 5.1. In this algorithm,
‘E’ means the entailment.

to be added to the initial tree. To avoid this, the original axiom Invs(Ro, So) is retained,

so no single-premise rule is required in this case.

5.2 Computing Proof Trees

Complete proof trees are constructed from initial trees. For a given initial tree, a proof

tree can be sought by searching for all applications of the deduction rules, where possible,

on the immediate child nodes (either terminal or non-terminal) of the root node, so in-

troducing lemmas and growing the tree bottom-up towards the root node. Exhaustive

search using this method may yield zero (if the initial tree is already complete), one, or

multiple proof trees. In other words, there might be zero, one, or multiple proof trees for

a given entailment-justification pair. For example, from the entailment-justification pair

in Table 1.1, two proof trees can be generated from the basis of the initial tree (b) in

Figure 5.1, and they are shown in Figure 5.2.

The algorithm for computing complete proof trees is summarised in Algorithm 2. It

uses two sub-routines. The first sub-routine ComputeAllPartitions(NodeList) is an

exhaustive search algorithm which computes all possible ways to partition a node list so

that at least one deduction rule is applied in each partition. For instance, given a list of four

nodes [N1, N2, N3, N4], a possible partition of this node list is 〈(N1, N3, Ra), (N2, Rb), N4〉

in which N1 and N3 can be combined to give rise to a conclusion based on rule Ra, and
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N2 can be transformed into a new axiom through rule Rb. Another partition of this node

list is 〈(N1, N3, Ra), (N2, N4, Rc)〉 in which, in addition to the combination of N1 and N3,

N2 and N4 can be combined to give rise a conclusion based on Rc. In such partitions,

the identification of the rule associated with each group, where possible, requires a search

through the rule set. In order to improve the feasibility of this search, factors related

to the logical structure of rules such the number of premises, the types of premises, the

number, types, and distribution of arguments etc. are used to filter inappropriate rules.

Algorithm 2 ComputeCompleteProofTrees(Pinitial)

1: ProofListcomplete ← {}
2: ProofListincomplete ← {Pinitial}
3: ProofList′incomplete

4: while !ProofListincomplete.empty do
5: for Pincomplete ∈ ProofListincomplete do
6: E ← Pincomplete.root
7: NodeList← Pincomplete.root.children
8: ProofList′incomplete ← {}
9: if NodeList = {A} and A→ E conforms to rule R1 then

10: P ′
incomplete ← A copy of Pincomplete

11: ProofListcomplete.add(P ′
incomplete)

12: else
13: PartitionList← ComputeAllPartitions(NodeList)
14: for Partition ∈ PartitionList do
15: Pnew ← ComputeProofByApplyingPartition(Pincomplete, Partition)
16: if Pnew! = null and Pnew = Pincomplete then
17: ProofListcomplete.add(Pincomplete)
18: else if Pnew! = null then
19: ProofList′incomplete.add(Pnew)
20: end if
21: end for
22: end if
23: end for
24: ProofListincomplete ← ProofList′incomplete

25: end while

The second sub-routine ComputeProofByApplyingPartition(Pincomplete, Partition)

is to compute a new proof tree after applying a partition on the input proof tree. As in

the main algorithm, this application is based on the immediate child nodes of the root

node. If these child nodes and the root node already conform to a rule, this means the

proof tree is already complete, so will be updated (with the information of the rule) and

returned. Otherwise, the rules within the partition will be applied on a copy of the input

proof tree, and new lemma nodes will be inserted into the tree. The new proof tree will

be returned as a new incomplete proof tree. If any error occurs in this sub-routine, a null

proof tree will be returned.
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Table 5.1: Results of the feasibility test

Entailment Passed Cases Failed Cases by TOTAL
Type Rule Coverage Time Out

> v A 24 (85.7%) 4 (14.3%) 0 (0.0%) 28 (100%)
A v ⊥ 1,799 (93.2%) 123 (6.4%) 8 (0.4%) 1,930 (100%)
A v B 114,495 (75.4%) 32,954 (21.7%) 4,401 (2.9%) 151,850 (100%)

TOTAL 116,318 (75.6%) 37,490 (21.5%) 4,409 (2.9 %) 153,808 (100%)

5.3 Feasibility of Computing Proof Trees

The exhaustive search algorithm used in the sub-routine ComputeAllPartitions(NodeList)

is a computational limitation of our algorithm, especially for large justifications. The

higher the justification size, the higher the computational overhead, and so the longer

time for the computation. To assess the feasibility of our algorithm, we employed it to

construct proof trees for entailment-justification pairs collected from our ontology corpus

(described in Chapter 4). We restricted to only justifications of size ten or less, and re-

lied on the rule set listed in Table 4.3 to construct proof trees. The time limitation for

computing a single proof tree was set to 60 seconds. The test was deployed and run on

a super-computer with a 64-bit Java virtual machine installed. The purpose of using the

super-computer for this test was to maximise the number of entailment-justification pairs

computed from our ontology corpus.

The result of this test is summarised in Table 5.1. The test showed that our algorithm

was robust enough to generate proof trees, and so explanations, for 75.6% (or 116,318) of

the input justification-entailment pairs. Among over 37,000 cases failed, over 97 percent

of them were caused by the limited coverage of the rule set; only 3 percent of them were

caused by the time out set-up (mainly caused by the exhaustive search algorithm used in

the sub-routine ComputeAllPartitions(NodeList)), and the justification size of these

cases was 10. These results have confirmed that our algorithm performs relatively well

with justifications having ten or fewer axioms. Larger justifications are too difficult to

be understood and used by human developers in practice, so it is fair to say that our

algorithm works well for explanation purpose.
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5.4 Conclusions and Future Work

We have proposed an efficient algorithm to construct proof trees from an entailment-

justification pair based on a set of deduction rules. We have also performed an extensive

test of feasibility of the algorithm (over 150,000 entailment-justification pairs from 171 on-

tologies), and shown that it is robust enough to construct proof trees, and so explanations,

for most cases.

Improving the feasibility of the algorithm on large justifications is not a focus of our

research, and we would be happy for others to plug in better solutions here. Constructing

proof trees at a higher level of abstraction (based on abstract deduction rules) is beyond

the scope of this thesis, but would be investigated as part of future work.
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Chapter 6

Verbalisations for Deduction

Rules

This chapter describes the identification of verbalisations for the premises and entailment

of our deduction rules. Section 6.1 discusses the sources of variability, and factors that

affect the number of verbalisations for a rule. A rule can only be verbalised clearly if

its constituent axioms are verbalised clearly—a task addressed by much existing NLG

research. Hence, in Section 6.2, the state-of-the-art of the ontology verbalisation task is

discussed, followed by the description of our selection of verbalisations for basic axioms

in OWL. Subsequently, the selection of verbalisations for most of our deduction rules is

described in Section 6.3. Finally, Section 6.4 presents an empirical study constructed to

identify the best verbalisations for rules that have multiple candidate verbalisations.

6.1 Diversity of Verbalisations for Deduction Rules

Given a deduction rule, there are always multiple ways to translate it into an English text,

and the number of possible verbalisations depends on several factors. Firstly, it depends

on the number of ways to verbalise the premises and entailment within the rule. Secondly,

it depends on the number of premises. This is because each verbalisation is associated with

81
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Table 6.1: All possible verbalisations for the premises and entailment of the deduction
rule ‘SubCls-DisCls’ in Table 4.3, which unpacks X v ⊥ from two premises (1) X v Y
and (2) Dis(X,Y )

ID Premises Entailment

1 Every X is a Y . Nothing is a X.
No X is a Y .

2 Every X is a Y . Nothing is a X.
Nothing is both a X and a Y .

3 Every X is a Y . Nothing is a X.
No Y is a X.

4 Every X is a Y . Nothing is a X.
Nothing is both a Y and a X.

5 No X is a Y . Nothing is a X.
Every X is a Y .

6 Nothing is both a X and a Y . Nothing is a X.
Every X is a Y .

7 No Y is a X. Nothing is a X.
Every X is a Y .

8 Nothing is both a Y and a X. Nothing is a X.
Every X is a Y .

an ordered sequence of premises; hence, the more premises the more possible orderings (in

the worst case, there are n! orderings for n premises). As a consequence of this analysis,

any rules with more than one premise would have multiple verbalisations. The last but not

least factor is the appearance of commutative OWL constructors such as Dis and u. This

is because each verbalisation is also associated with an ordered sequence of arguments

in axioms. Therefore, “No cat is a dog” and “No dog is a cat”, for instance, are two

different verbalisations. The more commutative constructors a deduction rule has, the

higher number of verbalisations.

As an example, let us work out some possible verbalisations of the premises and entailment

of rule ‘SubCls-DisCls’ in Table 4.3, which unpacks X v ⊥ from two premises: (1) X v Y

and (2) Dis(X,Y ). Assuming that only the following two verbalisations for the axiom

Dis(X,Y ) are considered here: (1) “No X is a Y ” and (2) “Nothing is both an X and a

Y ”. Because of the commutation of this axiom, two additional verbalisations need to be

considered here: (3) “No Y is an X” and (4) “Nothing is both a Y and an X”. Since this

rule has two premises, there are two ways of ordering the premises. All of these factors

lead to a total of 2*2*2 or 8 different verbalisations for the premises and entailment of the

rule, as listed in Table 6.1.
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According to the above analysis, all rules, even those having only one premise, may have

multiple verbalisations. Moreover, the number of all possible verbalisations of a rule is

often non-trivial. A rule with only two premises, such as the one in the example, may result

in eight different verbalisations. Many of our rules consist of three or even four premises,

leading to even higher numbers of verbalisations due to different premise orderings—e.g.,

three-premise rules create 6 premise orderings while four-premise rules create 24 premise

orderings. Since some verbalisations may be easier to understand than others, this raises

a new research problem of identifying the most understandable verbalisation among a set

of alternatives for a rule.

6.2 Verbalisations for OWL Axioms

6.2.1 State of the Art

As mentioned in Chapter 1, the opacity of standard OWL syntaxes, such as RDF/XML [RDF04],

is a source of difficulty in building OWL ontologies [ST04]. This problem was addressed

through graphical tools which offer the use of tabs, trees, wizards, etc. for viewing

and editing OWL ontologies—e.g., TopBraid Composer [Top], Protégé [KMR04], and

Swoop [KPS+06]—and more user-friendly formats such as Functional OWL syntax [OWL12c]

and Manchester OWL syntax [HDG+06, HPS08c].

Dzbor et al. [DMB+06] conducted a empirical study to compare TopBraid Composer and

Protégé, and found that both OWL experts and non-experts experienced difficulties in get-

ting acquainted with these tools, and were not satisfied with them. Functional OWL syn-

tax [OWL12c] provides quasi-English descriptions of OWL constructors such as ClassAs-

sertion(Insectivore, keroppi) (“Keroppi is an insectivore”) and ObjectPropertyDomain(has-

Topping, Pizza) (“Anything that has a topping is a pizza”), which are often unnatural.

However, this syntax helps to show the formal structure of OWL axioms and expressions

clearly, and hence is preferable in some cases.

In Manchester OWL syntax [HDG+06, HPS08c], all information about a particular class,

property, or individual is collected into a single construct (called a frame), and all OWL

constructors are replaced by intuitive English glosses—e.g., axiom constructors Equival-

entClasses, DisjointClasses, and ObjectPropertyDomain are replaced by ‘EquivalentTo’,



84 Chapter 6. Verbalisations for Deduction Rules

‘DisjointWith’, and ‘Domain’; class constructors ObjectIntersectionOf, ObjectUnionOf,

ObjectSomeValuesFrom, and ObjectAllValuesFrom are replaced by ‘and’, ‘or’, ‘some’, and

‘only’—thus it is more concise, easier to read and write than other syntaxes. Although

the heavy use of parentheses in this syntax suggests the need of some knowledge of OWL,

evaluation studies conducted by Horridge et al. [HDG+06] suggest that it has been well

received by non-logicians. Therefore, it has been used as the default OWL syntax in

Protégé [KMR04], and supported in TopBraid Composer [Top].

In addition to the syntax, the lack of understanding of OWL’s underlying logic-based se-

mantics is another source of difficulty in building OWL ontologies. Rector et al. [RDH+04]

identified a list of common logical issues that new users often encounter when they develop

OWL ontologies by using the Manchester OWL syntax, including the followings:

1. Trivial satisfiability of universal restrictions—that ‘only’ (∀) does not imply ‘some’

(∃) because ∀Ro.C subsumes ∀Ro.⊥

2. Confusion about the representation of “some not” (i.e., ∃Ro.(¬C)) and “not some”

(i.e., ¬(∃Ro.C))

3. The difference between the linguistic and logical usage of ‘and’ and ‘or’

4. The effect of range and domain constraints

5. The difference between defined and primitive classes, and the mechanics of converting

one to the other

6. Confusion about OWL’s open world reasoning assumption—i.e., something is false

only if it can be proved to contradict other information specified in the ontology

7. Mistaken use of ∀ rather than existential restrictions ∃ as the default restriction

The main reason for those issues is because the English glosses in Manchester OWL syn-

tax only help to reveal general aspects of the semantics of axioms (but not their com-

plete semantics), and hence are not enough to help inexperienced users. Rector and

colleagues [RDH+04], based on their teaching experience through a series of workshops,

tutorials, and teaching modules, suggested that paraphrasing OWL axioms can help users

understand their precise meanings, and so avoid the above-mentioned issues. They also

suggested a list of English paraphrases for basic OWL constructors. These suggestions
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motivated a number of later efforts in providing more natural representations of axioms

in OWL ontologies—this task is called ontology verbalisation.

Hewlett et al. [HKKHW05] developed an algorithm to verbalise class expressions in OWL

into English text. To improve the readability of the text, a part-of-speech tagger was

used to analyse the structure of property names in order to identify appropriate English

paraphrases for them. Halaschek-Wiener et al. [HWGP+06] then extended Hewlett et al.’s

algorithm to handle individuals. They also conducted an evaluation study which confirmed

that natural language representations of OWL class descriptions were preferred by the par-

ticipants to mathematical notation, Turtle (Terse RDF Triple Language) [BBLPC], OWL

Abstract Syntax [OWL04a], and RDF/XML [RDF04], and this preference was statistic-

ally reliable. Jarrar et al. [JKD06] proposed an approach of verbalising an OWL ontology

into multiple languages. In this approach, the structural templates of OWL statements

were first identified, and verbalisations were generated from pre-defined templates in the

associated language.

A common deficiency of the above-mentioned approaches is that they do not provide a

basis for checking whether the resulting verbalisations are unambiguous for machine inter-

pretability. As a consequence, the resulting verbalisations become a dead-end, and OWL

statements cannot be reproduced from text. To avoid the risk of this ambiguity, Kaljur-

and and Fuchs [KF07] suggested a new approach based on controlled natural languages in

order to enable round-trip ontology authoring [DIF+08].

Generally speaking, a controlled natural language (CNL) (sometimes simply called a “con-

trolled language”) is an engineered subset of a natural language (usually of English) cre-

ated by restricting the grammar, lexicon, and style of the full natural language in order to

reduce or eliminate ambiguity and complexity of the full natural language [Kit03]. Tra-

ditionally, CNLs are classified into two categories, namely human-oriented and machine

oriented [WO98]. Human-oriented CNLs are those designed for being used in technical

documents in order improve human comprehension. A prominent CNL of this type is

AECMA1 Simplified English [AEC04], designed to make aircraft support and mainten-

ance procedures easier to understand by non-native speakers. Machine-oriented CNLs,

on the other hand, are those designed to improve the text consumption by computer

programs. A typical CNL of this type is KANT Controlled English [Mit99], designed to

1AECMA is the French acronym for the European Association of Aerospace Industries.
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improve the automatic translation of technical documents to other languages.2

In knowledge representation, a number of machine-oriented CNLs have been proposed

to provide a means for viewing and editing OWL ontologies in natural language. These

CNLs are often underpinned by a formal logic-based semantics in order to enable backward

mapping from text to OWL, and so allows users to encode an OWL ontology by entering

knowledge in natural language text—this task is called ontology authoring as opposed to

ontology verbalisation. Schwitter [Sch10] and Kuhn [Kuh10] defined four requirements

for an ideal CNL for ontology authoring, including clearness (i.e., having a well-defined

syntax and semantics), naturalness (i.e., producing sentences that are readable and un-

ambiguously understandable for humans), simplicity (i.e., can be efficiently interpreted

by computer programs and easily comprehended by humans), and expressivity (i.e., fully

covering the desired problem domain). These requirements may nevertheless be conflict

in practice, for example, between naturalness and expressivity [Pow12].

Notable examples of CNLs for authoring OWL ontologies are ACE (Attempto Controlled

English) [KF07], SOS (Sydney OWL Syntax) [CSM07], CLOnE (Controlled Language

for Ontology Editing) [FTB+07], Rabbit [HJD08], and more recently OWL Simplified

English [Pow12].3 These CNLs share a common design principle of mapping an OWL

axiom to an English sentence, and vice versa. They also agree on how to realise many OWL

constructors [SKC+08], both for axioms and class expressions—e.g., they all verbalise the

axiom Loch v locatedIn.{scotland} as “Every loch is located in Scotland”; they all use

the phrases “exactly”, “at least”, and “at most” to verbalise the constructors ‘=’, ‘≥’, and

‘≤’. In other cases, the resulting sentences differ in style and/or the expression of certain

OWL constructors and entity names—e.g., property names.

6.2.2 Selection of Verbalisations

As discussed previously, various ways to translate an OWL axiom into an English sentence

have been proposed; notable examples are CNLs such as ACE [KF07], Rabbit [HJD08],

SOS [CSM07], and OWL Simplified English [Pow12]. These CNLs, although different,

agree on how to verbalise many OWL constructors. Rabbit and ACE verbalisations are

empirically tested [HJD08, Kuh13]), and confirmed to be readable, comprehensible, and

2See Kuhn’s latest article [Kuh13] for a complete discussion on the classification of CNLs.
3See Kuhn’s latest article [Kuh13] for the full list of existing CNLs and their details.
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preferred by most of the participants. SOS verbalisations are confirmed to share substan-

tial commonality with those of Rabbit and ACE; most of the differences are in style and

the expression of certain OWL constructors [SKC+08]. OWL Simplified English [Pow12]

is designed to allow only verbalisations that are structurally unambiguous sentences in

English.

Providing the above-mentioned advantages of the four CNLs, we selected verbalisations for

OWL axioms from those produced by these languages. Specifically, for each basic axiom

in OWL, we collected four verbalisations produced by these languages, then selected the

one that we believed to be the most concise and understandable. Many of the selected

verbalisations were those provided by OWL Simplified English [Pow12]. Table 6.2 lists the

selected verbalisations for basic OWL axioms. The original CNLs of these verbalisations

are also presented in the table.

For most cases, only one verbalisation was selected for each axiom. However, two different

verbalisations were selected for the axioms A ≡ B and also Dis(A,B). This was because it

was unclear for us which verbalisation was better. The second verbalisation for Dis(A,B)

(“Nothing is both an A and a B”) was not collected from the CNLs but formulated by

ourselves. To identify the best verbalisation in these cases, we conducted an empirical

study to identify which one was more understandable to the participants. This study will

be described in detail in the subsequent sections of this chapter.

6.3 Verbalisations of Deduction Rules

This section addresses the problem of identifying the most understandable verbalisation

(among a set of alternatives) for a deduction rule. The best solution for this problem is to

test all candidate verbalisations of a rule empirically to identify which one is understood

best by human reasoners. However, the number of rules is non-trivial, and, as explained

previously, the number of all possible verbalisations for a rule is also non-trivial—due to

the practical limitation of this PhD project, only a limited number of cases can be tested.

Therefore, we based on existing theoretical insights from the psychology of reasoning to

limit the number of test cases. In particular, we found that not all verbalisations of a

rule are good for understanding the relevant inference as they present the premises and/or

arguments in a conflicting order, and such verbalisations can be ruled out by relying on
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Table 6.2: Verbalisations of OWL axioms with ‘S’ means the source CNL(s) which produces
the verbalisation, ‘C’ means whether the associated axiom is commutative, ‘OSE’ stands
for “OWL Simplified English”; A and B are class names, Ro and So are object property
names, Rd and Sd are data property names, Dr is a data range, Dt is a data type, and a
and b are individual names

OWL Axiom Verbalisation S C
A v B Every A is a B. OSE, ACE, SOS
A ≡ B 1. An A is anything that is a B. OSE X

2. Every A is a B; every B is an A. ACE
Dis(A,B) 1. No A is a B. OSE, ACE X

2. Nothing is both an A and a B.
Dom(Ro, A) Anything that Ro something is an A. OSE
Rng(Ro, A) Anything that something Ro is an A. OSE
Dom(Rd, A) Anything that Rd some value is an A. OSE
Rng(Rd, Dr) Any value that something Rd is a Dr. OSE
Ro v So If X Ro Y then X So Y. OSE, SOS
Ro ≡ So The properties “Ro” and “So” are equivalent. OSE, Rabbit X
Dis(Ro, So) The properties “Ro”and “So” are disjoint. OSE X
Invs(Ro, So) “X Ro Y” means the same as “Y So X”. OSE X
Fun(Ro) Everything Ro at most one thing. OSE, ACE
InvFun(Ro) If there is something X then at most one thing Ro X. ACE
Ref(Ro) Everything “Ro” itself. ACE, SOS
Irr(Ro) Nothing “Ro” itself. ACE, SOS
Sym(Ro) “X Ro Y” means the same as “Y Ro X”. OSE
Asym(Ro) The property “Ro” is asymmetric. OSE, Rabbit
Tra(Ro) If X Ro Y and Y Ro Z then X Ro Z. SOE, SOS
Rd v Sd If X Rd a value then X Sd that value. OSE, SOS
Rd ≡ Sd The properties “Rd” and “Sd” are equivalent. OSE, Rabbit X
Dis(Rd, Sd) The properties “Rd”and “Sd” are disjoint. OSE X
Fun(Rd) Everything Rd at most one value. OSE, ACE
a ∈ A a is an A. OSE, ACE,

Rabbit, SOS
Ro(a, b) a Ro b. OSE, ACE,

Rabbit, SOS
Rd(a, l ? Dt) a Rd a Dt value of l. OSE
Sam(a, b) a and b are the same individual. OSE, SOS X
Dif(a, b) a and b are different individuals. OSE, SOS X
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these theories.

According to Johnson-Laird and Bara [JLB84, JLB91], in syllogistic inferences (i.e., infer-

ences consist of two premises and a conclusion, each of which is in one of the four following

forms: “All A are B”, “Some A are B”, “No A are B”, and “Some A are not B”, where

A and B are two categorical terms such as ‘human’ and ‘mortal’) as well as three-term

relational inferences (i.e., inferences consist of two premises and a conclusion in which

the premises are in the form of “ARB” and “BRC”, and the conclusion is of the form

“ARC”, where A and B are two categorical terms, and R is a binary relation such as

“is taller than”), the arrangement of arguments within the premises—called the figure of

the premises—affects the form of conclusions that subjects draw, their performance ac-

curacy, and the speed of response on conclusion-production tasks (i.e., the tasks in which

the premises are given, and subjects are asked to formulate the conclusion themselves).

Additionally, the figure “AB-BC” is the easiest one for most people to reason with. Given

two premises whose figure is “AB-BC”, the subjects tend to elicit conclusions that have

the figure of “AC”. Similarly, given two premises whose figure is “BA-CB”, the subjects

tend to elicit conclusions that have the figure of “CA”. These phenomena of deductive

reasoning with syllogisms are called “figural effects”. According to the authors, the figural

effects are due to the fact that human reasoners tend to rearrange the figure to make the

two occurrences of the middle term contiguous (e.g., “AB-BC” in the former case, and

“CB-BA” in the latter). Because of the “first in first out” principle of working memory,

reasoners in the latter case need to recall the first premise while working with the second.

Therefore, the latter case is more difficult than the former.

For modus ponens (i.e., “If P then Q; P ; therefore Q” where P and Q are two propositional

statements) and modus tollens (i.e., “If P then Q; ¬Q; therefore ¬P” where P and Q

are two propositional statements) in which figural effects are not applicable, Girotto et

al. [GMT97] conducted a number of empirical studies based on the conclusion-production

paradigm which confirmed that the premise order affects the subjects’ performance on

modus tollens, but not modus ponens tasks. Specifically, subjects’ performance accuracy

on the inverted modus tollens “¬Q; if P then Q; therefore ¬P” is significantly higher

than that on the traditional modus tollens. On the other hand, subjects’ performance

accuracies on the two modus ponens “If P then Q; P ; therefore Q” and “P ; if P then Q;

therefore Q” are equally high. According to Girotto et al., the participants perform better
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on the inverted modus tollens because they are forced to consider the crucial case of the

failure “¬Q” before working with the conditional statement.

As opposed to the conclusion-production paradigm, the conclusion-evaluation paradigm

is the one in which both the premises and the conclusion of an inference are given, and

the participants are asked whether they can understand this inference. Although this

paradigm is less popular than the former one, it has also been intensively studied in

psychological research areas [MEH04, SB07]. In our work, we are interested in whether

human reasoners can understand a given verbalisation for a rule. More precisely, given

both the premises and the conclusion of a rule, presented in English text, we are interested

in whether the reasoners can understand the relevant inference. This analysis suggests that

the conclusion-evaluation paradigm is more relevant for our purposes.

Morley et al. [MEH04] found that the figure of premises affects the subjects’ performance

accuracy in conclusion-production tasks but not in conclusion-evaluation tasks. According

to the authors, the presented conclusion in the latter tasks guides the inferential process,

but in the former tasks there are no conclusions to guide this process. More recently,

Stupple and Ball [SB07] found that although the figure “AB-BC” has no effects on subjects’

performance accuracy on conclusion-evaluation tasks, it helps to reduce their inspection

times on the premises as well as their processing effort. In order words, presenting the

premises of a conclusion-evaluation task in the figure of “AB-BC” can help to speed up

subject’s reading time as well as reduce their effort.

To identify the most understandable verbalisations for our rules, first the rule set was thor-

oughly examined. In this examination, the premise order, the figure of the premises were

analysed, and the theoretical insights from the psychology of reasoning described above

were employed as the key criteria for identifying the most understandable verbalisations.

When these criteria provided no guidance, we used an empirical test to find out which

verbalisations would be understood best by the participants. This section describes the

manual examination of our rule set. The empirical test and its results are presented in

the subsequent section.
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6.3.1 Selection of Verbalisations

Through our examination, the most understandable verbalisations of 42 (out of 57) de-

duction rules are identified. These rules are listed as 1-42 in Table 6.34. Single-premise

rules are first examined. Among 11 rules of this type, 7 of them contain no commutat-

ive constructors, and so have a unique verbalisation. These rules are listed from 1-7 in

Table 6.3.

For rules that consist of two or more premises, their figures of premises are examined.

Unlike the syllogistic and relational inferences (used in Johnson-Laird and Bara’s exper-

iments [JLB84]) in which premises contain only terms as arguments, our rules consist of

premises that contain a wide variety of arguments, including class names, object property

names, data property names, etc. Thus, the figures for each argument type are computed

and analysed separately.

Rules ‘SubCls-SubCls-1’ and ‘SubObj-SubObj’ (listed at 8 and 9 in Table 6.3) are the

only cases that have only one type of arguments, and the figures of their premises conform

to the standard figure “AB-BC”. Rules 10-12 in Table 6.3 have more than one type of

arguments, but the figures of their class arguments5—their main argument type—conform

to the standard figure. Hence, their best verbalisations can be easily identified.

Rule ‘ObjSom-Bot-1’ (rule 13 in Table 6.3), which infers X v ⊥ from X v ∃Ro.Y and

Y v ⊥ is a special case. The figure of its premises does not conform to the standard

figure. However, there is a similarity between this rule and the modus tollens of which the

best premise order was identified by Girotto et al. [GMT97]. If the premise X v ∃Ro.Y

(“Every X is a Y ”) is presented before Y v ⊥ (“Nothing is a Y ”), the former will cause a

presupposition that instances of both classes X and Y already exist—this contradicts the

latter premise, and may confuse the readers. To cancel this presupposition, the premise

Y v ⊥ needs to be presented first in order to emphasize the non-existence of Y ’s instances

from the start. A similar approach is applied to the rules ‘ObjSom-Bot-1’, ‘ObjDom-Bot’

and ‘ObjRng-Bot’ (rules 14-16 in Table 6.3).

For rules 17-26 in Table 6.3, the figures of their main arguments—class arguments in the

the first two rules and property arguments in the remaining rules—do not conform to the

4The ordering of deduction rules in Table 6.3 are different from that in Table 4.3
5In rule 12 in Table 6.3, Dr is a data range but treated as a class argument in the analysis of the figure

of its premises.
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standard figure. However, these rules are quite similar to the modus ponens discussed

in Girotto et al.’s work [GMT97] in the effect of premise order—that is, both ways of

ordering their premises have little or no effect on understanding the relevant inferences.

Therefore, a common figure of ‘A-AB’ (or ‘Ro − RoSo’ for object property arguments) is

selected. Rule 27 is quite similar to rules 17-26, but the object property Ro is presented

twice in its verbalisation. This axiom is presented first in the best verbalisation of this

rule.

On the contrary, we stipulate presenting Tra(Ro) as the last premise in rules 28 and 29.

The two v axioms in rule 29 are then sorted by their own figure of arguments. In rules 30

and 31 in Table 6.3, we stipulate presenting the axiom containing the constructor t at the

beginning. The other two premises in rule 31 are sorted based on the order of occurrences

of the arguments U and V in the first premise.

In rules 32-42 in Table 6.3, the figures of premises of both types (class and property

arguments), however, do not conform to any of the above-mentioned figures. In fact, it

is impossible to order the arguments in these rules in such a way that yields contiguous

occurrences of the middle terms. Example figures of these rules are “AB-AC”, “AB-

CB”, “AB-AB”, etc. It can be seen that the premises of these rules are independent,

and the order in which they are presented would have no or very little effect on subjects’

performance. Therefore, we pickup the best ones based on our own principle—that is, first

presenting affirmative or simple information, then negative or more complex information.

The best verbalisations for rules 32 to 40 are selected according to this principle. Rules

41 and 42 are extended from rules 39 and 40, respectively, in which the first premises are

replaced by a number of relevant premises, and these premises are sorted in a relevant

way.

6.3.2 Extra Statements for Implicit Information

Among the collected deduction rules, there exist rules in which the conclusion is inferred

from not only the premises but also implicit information in OWL. Specifically, in rules

41, 46, 47, and 48 in Table 6.3, the unsatisfiability in the conclusion is caused by the dis-

jointness between two data types presented in the premises (e.g., the disjointness between

String and Integer data types), but this information is implicit in OWL and not stated
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Table 6.3: Deduction rules and their candidate verbalisations for the premises and entailment; verbalisations selected through the empirical study are
marked with *. In this table, ‘Figure’ means the figure of arguments in the associated verbalisation, ‘C’ means the figure of class arguments, ‘P’ means
the figure of property arguments, and ‘ ’ means no relevant arguments.

ID Name Deduction Rule Verbalisations Figure
1 ObjInt-2 X v Y u Z[u . . .] Every X is both a Y and a Z. None

→ X v Y →Every X is a Y .
2 ObjUni-2 Y t Z[t . . .] v X Everything that is a Y or a Z is an X. None

→ Y v X →Every Y is an X.
3 ObjExt X v= n1Ro.Y Every X Ro exactly n1 Y (s). None

→ X v≥ n2Ro.Y →Every X Ro at least n2 Y (s).
(n1 ≥ n2 > 0)

4 Top > v X Everything is an X. None
→ Y v X →Every Y is an X.

5 Bot X v ⊥ Nothing is an X. None
→ X v Y →Every X is a Y .

6 ObjCom-1 X v ¬X Every X is something that is not an X. None
→ X v ⊥ →Nothing is an X.

7 ObjCom-2 ¬X v Y Everything that is not an X is a Y . None
→ > v X t Y →Everything is an X or a Y .

8 SubCls-SubCls-1 X v Y Every X is a Y . C:XY − Y Z
∧ Y v Z Every Y is a Z. → XZ
→ X v Z →Every X is a Z.

9 SubObj-SubObj Ro v So If X Ro Y then X So Y. P:RoSo − SoTo
∧ So v To If X So Y then X To Y. → RoTo
→ Ro v To →If X Ro Y then X To Y.

10 ObjSom-SubCls X v ∃Ro.Y Every X Ro a Y . C:XY − Y Z
∧ Y v Z Every Y is a Z. → XZ
→ X v ∃Ro.Z →Every X Ro a Z.

11 ObjSom-ObjMin X v ∃Ro.Y Every X Ro a Y . C:XY − Y Z
∧ ≥ 1Ro.Y v Z Everything that Ro at least one Y is a Z. → XZ
→ X v Z →Every X is a Z.

12 DatSom-DatMin X v ∃Rd.Dr Every X Rd a Dr . C:XDr −DrZ
∧ ≥ 1Rd.Dr v Z Everything that Rd at least one Dr is a Z. → XZ
→ X v Z →Every X is a Z.

13 ObjSom-Bot-1 X v ∃Ro.Y Nothing is a Y . C:Y −XY
∧ Y v ⊥ Every X Ro a Y . → X
→ X v ⊥ →Nothing is an X.

14 ObjSom-Bot-2 X v ∃Ro.Y Nothing is a Y . C:Y −XY
∧ Y v ⊥ Every X Ro a Y . → X
→ X v ⊥ →Nothing is an X.

15 ObjDom-Bot Dom(Ro, X) Nothing is a X. C:X −X
∧ X v ⊥ Anything that Ro something is an X. → X
→ > v ∀Ro.⊥ →Everything that Ro nothing at all is an X.

16 ObjRng-Bot Rng(Ro, X) Nothing is a X. C:X −X
∧ X v ⊥ Anything that something Ro is an X. → X
→ > v ∀Ro.⊥ →Everything that Ro nothing at all is an X.

17 ObjDom-SubCls Dom(Ro, X) Anything that Ro something is an X. C:X −XY
∧ X v Y Every X is a Y . → Y
→ Dom(Ro, Y ) →Anything that Ro something is a Y .

18 ObjRng-SubCls Rng(Ro, X) Anything that something Ro is an X. C:X −XY
∧ X v Y Every X is a Y . → Y
→ Rng(Ro, Y ) →Anything that something Ro is a Y .

19 ObjDom-SubObj Dom(Ro, X) Anything that Ro something is an X. P:Ro − SoRo
∧ So v Ro If X So Y then X Ro Y . → So
→ Dom(So, X) →Anything that So something is an X.

Continued on Next Page. . .
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20 ObjRng-SubObj Rng(Ro, X) Anything that something Ro is an X. P:Ro − SoRo
∧ So v Ro If X So Y then X Ro Y . → So
→ Rng(So, X) →Anything that something So is an X.

21 ObjRng-ObjInv Rng(Ro, X) Anything that something Ro is an X. P:Ro − RoSo
∧ Invs(Ro, So) “X Ro Y” means the same as “Y So X”. → So
→ Dom(So, X) →Anything that So something is an X.

22 ObjDom-ObjInv Dom(Ro, X) Anything that Ro something is an X. P:Ro − RoSo
∧ Invs(Ro, So) “X Ro Y” means the same as “Y So X”. → So
→ Rng(So, X) →Anything that something Ro is an X.

23 ObjRng-ObjSym Rng(Ro, X) Anything that something Ro is an X. P:Ro − RoRo
∧ Sym(Ro) “X Ro Y” means the same as “Y Ro X”. → Ro
→ Dom(Ro, X) →Anything that is Ro something is an X.

24 ObjDom-ObjSym Dom(Ro, X) Anything that Ro something is an X. P:Ro − RoRo
∧ Sym(Ro) “X Ro Y” means the same as “Y Ro X”. → Ro
→ Rng(Ro, X) →Anything that something Ro is an X.

25 ObjSom-SubObj X v ∃Ro.Y Every X Ro a Y . P:Ro − RoSo
∧ Ro v So If X Ro Y then X So Y. → So
→ X v ∃So.Y →Every X So a Y .

26 ObjAll-ObjInv X v ∀Ro.Y Every X Ro only Y s. P:Ro − RoSo
∧ Invs(Ro, So) “X Ro Y” means the same as “Y So X”. → So
→ ∃So.X v Y →Everything that So an X is a Y .

27 ObjTra-ObjInv Tra(Ro) If X Ro Y and Y Ro Z then X Ro Z. P:RoRo − RoSo
∧ Invs(Ro, So) “X Ro Y” means the same as “Y So X”. → So
→ Tra(So) →If X So Y and Y So Z then X So Z.

28 ObjSom-ObjTra X v ∃Ro.(∃RoY ) Every X Ro something that Ro a Y . C:RoRo − Ro
∧ Tra(Ro) If X Ro Y and Y Ro Z then X Ro Z. → Ro
→ X v ∃Ro.Y →Every X Ro a Y .

29 ObjSom-ObjSom- X v ∃Ro.Y Every X Ro a Y . C:XY − Y Z −
ObjTra ∧ Y v ∃Ro.Z Every Y Ro a Z. → XZ

∧ Tra(Ro) If X Ro Y and Y Ro Z then X Ro Z.
→ X v ∃Ro.Z →Every X Ro a Z.

30 ObjUni-SubCls X v (Y t Z) Every X is a Y or a Z. C:XY Z − Y Z
∧ Y v Z Every Y is a Z. → XZ
→ X v Z →Every X is a Z.

31 ObjUni-SubCls- X v (U t V ) Every X is a U or a V . C:XY Z − Y W − ZW
SubCls ∧ U v Z Every U is a Z. → XW

∧ V v Z Every V is a Z.
→ X v Z →Every X is a Z.

32 SubCls-SubCls-2 X v Y Every X is a Y . C:XY −XZ
∧ X v Z Every X is a Z. → XY Z
→ X v Y u Z →Every X is both a Y and a Z.

33 ObjMin-ObjMax X v≥ n1Ro.Y Every X Ro at least n1 Y (s). C:XY −XY
∧ X v≤ n2Ro.Y , n2 < n1 Every X Ro at most n2 Y (s). → X⊥
→ X v ⊥ →Nothing is an X.

34 SubCls-ObjCom-1 X v Y Every X is a Y . C:XY −XY
∧ X v ¬Y Every X is not a Y . → X⊥
→ X v ⊥ →Nothing is an X.

35 SubCls-ObjCom-2 X v Y Every X is a Y . C:XY −XY
∧ ¬X v Y Everything that is not an X is a Y . → >X
→ > v Y →Everything is a Y .

36 ObjDom-ObjAll Dom(Ro, X) Anything that Ro something is an X. :>X −⊥X
∧ ∀Ro.⊥ v X Everything that Ro nothing at all is an X. → >X
→ > v X →Everything is an X.

37 ObjSom-ObjAll-1 ∃Ro.Y v X Everything that Ro a Y is an X. C:XY −⊥Y
∧ ∀Ro.⊥ v X Everything that Ro nothing at all is an X. → XY
→ ∀Ro.Y v X →Everything that Ro only Y s is an X.

38 ObjSom-ObjAll-2 X v ∃Ro.> Every X Ro something. C:X>−XY
Continued on Next Page. . .
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∧ X v ∀Ro.Y Every X Ro only Y s. → XY
→ X v ∃Ro.Y →Every X Ro a Y .

39 DatMin-DatFun X v≥ nRd.Dr , n > 1 Every X Rd at least n Drs. C: −XDr
∧ Fun(Rd) Everything Rd at most one value. → X⊥
→ X v ⊥ →Nothing is an X. P:Rd − Rd

→ X⊥
40 ObjMin-ObjFun X v≥ nRo.Y , n > 1 Every X Ro at least n Y (s). C: −XY

∧ Fun(Ro) Everything Ro at most one thing. → X⊥
→ X v ⊥ →Nothing is an X. P:Ro − Ro

→
41 DatVal-DatVal- X v ∃Rd.{l0 ? Dt0} Every X Rd a Dt0 value of l0. C:X −X −

DatFun ∧ X v ∃Rd.{l1 ? Dt1} Every X Rd a Dt1 value of l1. → X⊥
∧ Fun(Rd) Dt0 values are not Dt1 values. P:Rd − Rd − Rd
Dt0 & Dt1 are disjoint or l0 6= l1 Everything Rd at most one value. →
→ X v ⊥ →Nothing is an X.

42 ObjVal-ObjVal- X v ∃Ro.{i} Every X Ro i. C:X −X − −
DifInd-ObjFun ∧ X v ∃Ro.{j} Every X Ro j. → X⊥

∧ Dif(i, j) i and j are different individuals. P:Rd − Rd − − Rd
∧ Fun(Ro) Everything Ro at most one thing. →
→ X v ⊥ →Nothing is an X.

43 ObjAll X ≡ ∀Ro.Y Verbalisation 1: None
→ ∀Ro.⊥ v X An X is anything that Ro only Y s.

→Everything that Ro nothing at all is an X.
Verbalisation 2:
Every X Ro only Y s;
everything that Ro only Y s is an X.
→Everything that Ro nothing at all is an X.

44 DisCls-SubCls- Dis(X,Y) Verbalisation 1: None
SubCls ∧ U v X No X is a Y .

∧ V v Y Every U is an X.
→ Dis(U, V ) Every V is a Y .

→No U is a V .
Verbalisation 2:
Nothing is both an X and a Y .
Every U is a X.
Every V is a Y .
→Nothing is both a U and a V .

45 ObjSom-ObjDom X v ∃Ro.Z Verbalisation 1: None
∧ Dom(Ro, Y ) Every X Ro a Z.
→ X v Y Anything that Ro something is a Y .

→Every X is a Y .
Verbalisation 2:
Anything that Ro something is a Y .
Every X Ro a Z.
→Every X is a Y .

46 DatSom-DatRng X v ∃Rd.Dr0 Verbalisation 1: None
∧ Rng(Rd, Dr1) Every X Rd a Dr0.
Dr0 & Dr1 are disjoint Any value that something Rd is a Dr1.
→ X v ⊥ Dr0 values are not Dr1 values.

→Nothing is an X.
Verbalisation 2:
Any value that something Rd is a Dr1.
Every X Rd a Dr0.
Dr0 values are not Dr1 values.
→Nothing is an X.

47 DatMin-DatRng X v≥ nRd.Dr0, n > 0 Verbalisation 1: None
∧ Rng(Rd, Dr1) Every X Rd at least n Dr0(s).
Dr0 & Dr1 are disjoint Any value that something Rd is a Dr1.

Continued on Next Page. . .
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→ X v ⊥ Dr0 values are not Dr1 values.
→Nothing is an X.
Verbalisation 2:
Any value that something Rd is a Dr1.
Every X Rd at least n Dr0(s).
Dr0 values are not Dr1 values.
→Nothing is an X.

48 DatVal-DatRng X v ∃Rd.{l ? Dt}) Verbalisation 1: None
∧ Rng(Rd, Dr) Every X Rd a Dt value of l.
Dt & Dr are disjoint Any value that something Rd is a Dr .
→ X v ⊥ Dt values are not Dr values.

→Nothing is an X.
Verbalisation 2:
Any value that something Rd is a Dr .
Every X Rd a Dt value of l.
Dt values are not Dr values.
→Nothing is an X.

49 EquCls X ≡ Y Verbalisation 1: None
→ X v Y An X is anything that is a Y .

→Every X is a Y .
Verbalisation 2: (*)
Every X is a Y ; every Y is an X.
→Every X is a Y .

50 ObjInt-1 X ≡ Y u Z Verbalisation 1: None
→ X v Y An X is anything that is both

a Y and a Z.
→Every X is a Y .
Verbalisation 2: (*)
Every X is both a Y and a Z; everything
that is both a Y and a Z is an X.
→Every X is a Y .

51 ObjUni-1 X ≡ Y t Z Verbalisation 1: None
→ X v Y An X is anything that is a Y or a Z.

→Every Y is a X.
Verbalisation 2: (*)
Every X is a Y or a Z;
everything that is a Y or a Z is an X.
→Every Y is a X.

52 SubCls-DisCls X v Y Verbalisation 1:(*) None
∧ Dis(X, Y ) Every X is a Y .
→ X v ⊥ No X is a Y .

→Nothing is an X.
Verbalisation 2:
Every X is a Y .
No Y is an X.
→Nothing is an X.
Verbalisation 3:
Every X is a Y .
Nothing is both an X and a Y .
→Nothing is an X.

53 Top-DisCls > v Y Verbalisation 1:(*) None
∧ Dis(X, Y ) Everything is a Y .
→ X v ⊥ No X is a Y .

→Nothing is an X.
Verbalisation 2:
Everything is a Y .
No Y is an X.
→Nothing is an X.

Continued on Next Page. . .
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Verbalisation 3:
Everything is a Y .
Nothing is both an X and a Y .
→Nothing is an X.

54 SubCls-SubCls- X v Y Verbalisation 1: (*) None
DisCls ∧ X v Z Every X is a Y .

∧ Dis(Y,Z) Every X is a Z.
→ X v ⊥ No Y is a Z.

→Nothing is an X.
Verbalisation 2:
Every X is a Y .
Every X is a Z.
Nothing is both a Y and a Z.
→Nothing is an X.

55 ObjInt-DisCls X v ∃Ro.(Y u Z) Verbalisation 1: (*) None
∧ Dis(Y, Z) Every X Ro something that is both
→ X v ⊥ a Y and a Z.

No Y is a Z.
→Nothing is an X.
Verbalisation 2:
Every X Ro something that is both
a Y and a Z.
Nothing is both a Y and a Z.
→Nothing is an X.

56 DatSom-DatDom X v ∃Rd.Dr Verbalisation 1: (*) None
∧ Dom(Rd, Y ) Every X Rd a Dr .
→ X v Y Anything that Rd some value is a Y .

→Every X is a Y .
Verbalisation 2:
Anything that Rd some value is a Y .
Every X Rd a Dr .
→Every X is a Y .

57 ObjSom-ObjRng X v ∃Ro.Y Verbalisation 1: (*) None
∧ Rng(Ro, Z) Every X Ro a Y .
→ X v ∃Ro.(Y u Z) Anything that something Ro is a Z.

→Every X Ro something that is
both a Y and a Z.
Verbalisation 2:
Anything that something Ro is a Z.
Every X Ro a Y .
→Every X Ro something that is
both a Z and a Y .
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explicitly in the premises. This means that unless the readers are aware of this information

in advance, they cannot understand the unsatisfiability in the conclusion.

To help ordinary users understand those rules more easily, an extra sentence that explicitly

describes the disjointness between the two data types is inserted into the verbalisation of

each rule. This sentence is always inserted after the last premise in the verbalisation.

Given two disjoint data types ‘integer’ and ‘decimal’, for instance, where the data type

‘integer’ is mentioned somewhere before the data type ‘decimal’ in the rule, the extra

sentence to describe this disjointness is “No integer values are decimal values”. If the data

type ‘decimal’ is mentioned before the data type ‘integer’ then the sentence “No decimal

values are integer values” would be inserted.

In fact, even when the two data types in rule 41 in Table 6.3 are not disjoint, there exists

another cause of unsatisfiability in this rule—that is, the difference between two literal

values presented in the rule—and this information is also left implicit to the readers.

However, this information is quite trivial (e.g., 3.2 and 5.1 are different values); thus no

extra statements would be added into the verbalisation of the rule.

6.4 An Empirical Study

As discussed in Section 6.3.1, we could identify the most understandable verbalisations

of 42 (out of 57) rules by relying on existing theoretical insights from the psychology of

reasoning, and only those of the remaining 15 rules, listed as 43-57 in Table 6.3, needed to

be identified empirically. However, on closer inspection we found that only 9 of them would

need to be tested, and testing the remaining rules would bring no or little advantage6.

Horridge et al. [HPS09b, Hor11] proved that the inference in rule 43 is very difficult even

for OWL experts, and the major source of its difficulty does not lie in the verbalisation

of the constructor ≡, but in the trivial satisfiability of the universal restriction in OWL.

Therefore, we excluded this rule from our study.

In rule 44, the main source of multiple verbalisations lies in the commutativity of the

constructor Dis. However, since this constructor appears in both a premise and the con-

clusion, and these axioms should be verbalised similarly, only two candidate verbalisations

6Testing all of these 15 deduction rules empirically would be a better solution. However, due to the
practical limitation of this PhD project, we only tested those that had higher priorities



6.4. An Empirical Study 99

are considered here, as shown in Table 6.3. Since these verbalisations are symmetric, test-

ing them would bring no or little help in verifying how they can affect subjects’ performance

on the rule. Therefore, this rule was also excluded in our study.

Rule 45 is similar to rule 56. They are about the use of the constructor Dom, but the

former is for object properties while the later is for data properties. Rules 46-48 are similar

to each other, and all of them are very close to rule 57 because they are about the use

of the constructor Rng for both object and data properties. Additionally, their main

source of the multiplicity of verbalisations lies in the ordering of the premises—that is, it

is unclear which order of the premises would facilitate human understanding. Therefore,

two representatives of these rules, namely rules 56 and 57, were randomly selected for this

study. In total, we tested the 9 rules from 49-57 in Table 6.3.

6.4.1 Candidate Verbalisations

This sub-section describes the identification of candidate verbalisations for each tested

rule. As discussed in Section 6.3, the number of all possible verbalisations of a rule is

often non-trivial, but we can rule out some inferior verbalisations by analysing the figure

of their premises, in the same way as we did in the manual examination. Particularly,

in rules 49-51, there is only one premise, and their major source of the multiplicity of

verbalisations lies in the multiplicity of verbalisations of the constructor ≡; thus, they all

have exactly two candidate verbalisations, as shown in Table 6.3.

Rules 52-55 have multiple premises, but their optimal orderings can be identified based

on existing theoretical insights from psychology as well as our own principle of presenting

affirmative and simple information first, as shown in Table 6.3. The major source of the

multiplicity of their verbalisations is the commutativity property and the verbalisation

multiplicity property of the constructor Dis. Therefore, each of these rules have 2*2 or

4 candidate verbalisations. However, in rules 52-55, the two verbalisations for the axiom

Dis(X,Y ) “Nothing is both anX and a Y ” and “Nothing is both a Y and anX” make little

or no difference in the rules’ verbalisations; therefore, only three candidate verbalisations

were selected. The two verbalisations “No X is a Y ” and “No Y is an X” in rules 54

and 55 also make little or no difference in the rules’ verbalisations; therefore, only two of

them were selected as candidate verbalisations. As an example, the selection of candidate
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verbalisations for rule 53 which originally has 8 possibilities (as shown in Table 6.1) can

be explained as follows:

Firstly, the verbalisations 5-8 can be eliminated because their premise order-

ings are worse than those of the verbalisations 1-4, according to our principle

of presenting affirmative and simple information first. Among the four remain-

ing verbalisations, 2 and 4 only differ in the arrangement of arguments in the

constructor Dis. However, this difference brings no advantage in the verbal-

isation of the rule; thus, we can further eliminate one of them, for instance, the

verbalisation 4. As a result, only 3 of 8 possibilities were selected as candidate

verbalisations for this rule in our study.

Finally, rules 56 and 57 have two premises, and the premise ordering is the major source

of their multiplicity of verbalisations. Two candidate verbalisations were created for each

of these rules.

6.4.2 Materials

We devised a deduction problem for each candidate verbalisation. In each deduction prob-

lem, the premises of the rule were given, the subjects were asked to answer whether each of

four given statements followed from the premises. Among these statements, the entailment

of the rule was always included, and there might be more than one statements following

from the premises. We awarded a mark of 0.25 for each correctly classified statement

(as either “Follows” or “Does not Follow”), so 1.0 if all four statements were classified

correctly. Both the premises and the four statements were given in English, replacing

individual, class, and property variables by fictional names, nouns, and verbs7 so that

the readers would not be biassed by domain knowledge. We called these problems test

problems. There were 20 test problems corresponding to 20 candidate verbalisations, and

so a total of 20*4 or 80 test questions. For balancing, 41 “Follows” and 39 “Does not

Follow” questions were created.

7Fictional words are nonsense words selected from various sources, such as Lewis Carroll’s Jabber-
wocky poem (http://en.wikipedia.org/wiki/Jabberwocky), creatures’ names in Dungeons and Dragons
(http://en.wikipedia.org/wiki/Category:Dungeons_%26_Dragons_creatures), an automatic generator
(http://www.soybomb.com/tricks/words/), and so on.

http://en.wikipedia.org/wiki/Jabberwocky
http://en.wikipedia.org/wiki/Category:Dungeons_%26_Dragons_creatures
http://www.soybomb.com/tricks/words/
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6.4.3 Method

The study was conducted on CrowdFlower, a crowdsourcing service that allowed customers

to upload tasks to be passed to labour channel partners such as Amazon Mechanical Turk8.

We set up the operation so that the tasks were channelled only to Amazon Mechanical

Turk, and were restricted to subjects from Australia, the United Kingdom, and the United

States since we were aiming to recruit as many (self-reported) native speakers of English

as possible.

To eliminate responses from ‘scammers’ (people who responded casually without consid-

ering the problem seriously), we used CrowdFlower’s quality control service which was

based on gold-standard data: we provided problems called gold units for which the cor-

rect answers were specified, allowing CrowdFlower to filter automatically any subjects

whose performance on gold units fell below a threshold (75%). The management of these

gold units was internal to CrowdFlower, and the order for which these gold units would

be presented varies randomly on subjects. A weakness of this design was that the total

number of problems would be increased.

To limit the total number of problems in our study, we adapted the use of gold units but in

a slightly different way. Instead of creating gold units that resembled the test problems, we

created gold units as part of the test problems. Specifically, we introduced two additional

questions into each test problem called control questions. Our control questions were

designed to resemble test questions but were obvious to any subjects who did the test

seriously (rather than responding casually without reading the problem properly). We

created two types of control questions called non-entailment and trivial questions.

A non-entailment question was one in which the statement was about an object that

was not mentioned in the premises. The correct answer for non-entailment questions was

“Does not follow”, trivially. A trivial question was one in which the statement was actually

a repetition of one of the premises, so the correct answer was, also trivially, “Follows”.

Answers of control questions were not counted in the analysis, but used by CrowdFlower to

filter spam responses—i.e., for a test problem selected as a gold unit, a response would be

accepted only if the answers for both of the control questions were correct. We created a

non-entailment and a trivial control question for each test problem (i.e., 20 non-entailment

8See http://crowdflower.com/ and http://www.mturk.com/ for details.

http://crowdflower.com/
http://www.mturk.com/
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questions and 20 trivial questions in total), so the correct answers of the control questions

were always “Does not Follow” and “Follows”, with question order varying so that the

non-entailment question sometimes preceded the trivial, and sometimes followed it. For

our purpose, 4 of 20 test problems were selected as gold units.

It is important to note that in CrowdFlower subjects are not required to complete all

problems. They can give up whenever they want, and their responses will be accepted so

long as they perform well on gold units. CrowdFlower randomly assigns test problems to

subjects until it collects up to a specified number of valid responses for each problem. In

our study we specifed 50. However, since we were only interested in responses in which

all 20 test problems were answered, we selected only 46 valid responses.

6.4.4 Results

The main aim of the study was to collect frequency data on whether people understood

one verbalisation for a deduction rule better than the others. However, these data would

provide a valid estimate of the understandability of verbalisations only if we could control

for positive response bias: in the extreme case, a subject that always gave the positive

answer (“Follows” rather than “Does not follow”) would get all test questions right, re-

gardless of their difficulty9. We used control questions to address this issue—additional to

the CrowdFlower filtering based on 4 gold units—i.e., we analysed the responses of control

questions in all test problems to check whether a subject was taking the survey seriously.

In the main analysis, the responses of test questions were analysed in two ways. We

analysed the responses of all test questions for a deduction rule in order to identify its best

verbalisation—i.e., the one that was understood best by the subjects. We also analysed the

responses of all test questions for a group of rules in order to identify the best wording for an

OWL axiom. Specifically, we analysed the responses for rules 49-51 in Table 6.3 to identify

the best wording for the axiom constructor ≡, rules 52-55 for the axiom constructor Dis,

and rules 56 and 57 for the best premise ordering for the axiom constructors Dom and

Rng.

Control Questions

9Negative response bias would not need to be controlled: a subject gave the negative answer (“Does
not Follow” rather than “Follows”) because s/he did not understand the inference correctly, or found it
too difficult to understand.
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Figure 6.1: Subjects’ performance on the control problems, sorted decreasingly

Figure 6.1 shows that for the 46 subjects that participated in our study, there was one

subject who answered only 65% of the control questions correctly, suggesting that s/he was

not performing the test seriously, so the corresponding response was accordingly discarded.

Of the 45 remaining subjects, the proportions of correct answers on control questions were

85% and higher, suggesting that they were performing the task seriously.

Response Bias

Table 6.4 shows the absolute frequencies of the responses “Follows” (+F) and “Does not

follow” (−F) for all questions in the study—control as well as test. It also subdivides

these frequencies according to whether the answer was correct (+C) or incorrect (−C).

Thus for example the cell +F+C counts cases in which subjects answered “Follows” when

this was the correct answer, while +F−C counts cases in which they answered “Follows”

when this was incorrect.

Recalling that our study consisted of 20*4 or 80 test questions and 20*2 or 40 control

questions. Among these questions, the correct answer of 41 test questions and 20 con-

trol questions was “Follows”, so the percentage of +F answers for a subject that always

answered correctly would be (41+20)/(80+40)=51%. If subjects had a positive response

bias, we would expect an overall rate higher than this, but in fact we obtained 2504/5400

or 46%, suggesting little or no positive response bias.

Looking at the distribution of incorrect answers, we can also ask whether subjects erred

through being too ready to accept invalid conclusions (+F−C), or too willing to reject con-

clusions that were in reality valid (−F−C). The table shows a clear tendency towards the

latter, with 671 responses in −F−C comparing with an expected value of 2896*1101/5400

or 590 calculated from the overall frequencies. In other words, subjects were more likely
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Table 6.4: Distribution of subject’s responses—i.e., “Follows” (+F) and “Does not Follow”
(−F)—according to their correctness—i.e., “Correct” (+C) and “Incorrect” (−C)—in the
empirical study

+F −F TOTAL

+C 2074 2225 4299

−C 430 671 1101

TOTAL 2504 2896 5400

Table 6.5: Distribution of correct answers on two verbalisations for the deduction rule
‘EquCls’ (rule 49 in Table 6.3); X and Y are class names, statements marked with *
are those following from the premises, and those without a mark do not follow from the
premises

Verbalisation 1 Verbalisation 2
Inference An X is anything Every X is a Y ; TOTAL

that is a Y . every Y is an X.
All Xs are Y s.(*) 39 44 83
All Y s are Xs.(*) 29 44 73
Some but not all Xs are Y s. 40 45 85
Some but not all Y s are Xs. 32 44 76
TOTAL 140 177 317

to err by rejecting a valid conclusion than by accepting an invalid one, a finding confirmed

statistically by the significant association between response (±F) and correctness (±C) on

a 2×2 chi-square test (χ2=29.8, df=1, p<0.0001).

The Best Verbalisations for Deduction Rules

Table 6.5 shows the absolute frequencies of correct answers on two candidate verbalisations

of rule 49 in Table 6.3. It also subdivides these frequencies by statements used to test the

verbalisations. A Wilcoxon Signed Ranks test revealed a statistically reliable difference in

subjects’ performance between the two verbalisations (Z=3.93, p<0.0001), and the second

wording was easier than the first one. This wording is currently used by logicians and in

ACE [KF07].

Table 6.6 shows the absolute frequencies of correct answers on two candidate verbalisations

of rule 50 in Table 6.3. A Wilcoxon Signed Ranks test revealed no reliable difference in sub-

jects’ performance between the two verbalisations (Z=1.34, p=0.18). Similarly, Wilcoxon

Signed Ranks tests showed that there were no reliable differences in subjects’ perform-

ance between two verbalisations in rules 51 (Z=1.36, p=0.17), 54 (Z=1.11, p=0.26), 55

(Z=0.53, p=0.59), 56 (Z=0.56, p=0.57), and 57 (Z=1.10, p=0.27). The absolute frequen-

cies of correct answers of these deductions are shown in Tables 6.7 (rule 51), 6.8 (rule 54),
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Table 6.6: Distribution of correct answers on two verbalisations for the deduction rule
‘ObjInt-1’ (rule 50 in Table 6.3); X and Y are class names, statements marked with *
are those following from the premises, and those without a mark do not follow from the
premises

Verbalisation 1 Verbalisation 2
Inference An X is anything Every X is both a Y and a Z; TOTAL

that is both a Y everything that is both a Y
and a Z. and a Z is an X.

Every X is a Y .(*) 32 41 73
Every Y is an X. 39 35 74
Every X is a Z.(*) 29 41 70
Every Z is an X. 39 34 73
TOTAL 139 151 290

Table 6.7: Distribution of correct answers on two verbalisations for the deduction rule
‘ObjUni-1’ (rule 51 in Table 6.3); X and Y are class names, statements marked with *
are those following from the premises, and those without a mark do not follow from the
premises

Verbalisation 1 Verbalisation 2
Inference An X is anything Every X is a Y or a Z; TOTAL

that is a Y or a Z. everything that is a Y
or a Z is an X.

Every Y is an X.(*) 33 43 76
Every X is a Y . 39 31 70
Every Z is an X.(*) 33 43 76
Every X is a Z. 35 35 70
TOTAL 140 152 292

Table 6.8: Distribution of correct answers on two verbalisations for the deduction rule
‘SubCls-SubCls-DisCls’ (rule 54 in Table 6.3); X and Y are class names, statements
marked with * are those following from the premises, and those without a mark do not
follow from the premises

Verbalisation 1 Verbalisation 2
Inference Every X is a Y. Every X is a Y.

Every X is a Z. Every X is a Z. TOTAL
No Y is a Z. Nothing is both a Y

and a Z.
Nothing is a X.(*) 21 29 50
Every X is both a Y and a Z.(*) 35 31 66
Every Y is something 34 25 59
that is not a Z.(*)
Everything that is 38 37 75
not a Z is a Y.
TOTAL 128 122 250
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Table 6.9: Distribution of correct answers on two verbalisations for the deduction rule
‘ObjInt-DisCls’ (rule 55 in Table 6.3); X and Y are class names, statements marked with
* are those following from the premises, and those without a mark do not follow from the
premises

Verbalisation 1 Verbalisation 2
Inference Every X r0 something Every X r0 something TOTAL

that is both a Y and that is both a Y and
a Z. No Y is a Z. a Z. Nothing is both

a Y and a Z.
Nothing is an X.(*) 12 17 29
Every X r0 nothing at all. 21 18 39
Every Y is something 33 29 62
that is not a Z.(*)
Everything that is 42 42 84
not a Z is a Y .
TOTAL 108 106 214

Table 6.10: Distribution of correct answers on two verbalisations for the deduction rule
‘DatSom-DatDom’ (rule 56 in Table 6.3); X and Y are class names, statements marked
with * are those following from the premises, and those without a mark do not follow from
the premises

Verbalisation 1 Verbalisation 2
Inference Every X Rd a Dr. Anything that Rd TOTAL

Anything that Rd some value is a Y .
some value is a Y . Every X Rd a Dr.

Every X is a Y .(*) 40 40 80
Every Y is an X. 35 34 69
Some but not all Xs are Y s. 41 40 81
Some but not all Y s are Xs. 14 12 26
TOTAL 130 126 256

Table 6.11: Distribution of correct answers on two verbalisations for the deduction rule
‘ObjSom-ObjRng’ (rule 57 in Table 6.3); X and Y are class names, statements marked
with * are those following from the premises, and those without a mark do not follow from
the premises

Verbalisation 1 Verbalisation 2
Inference Every X Ro a Y . Anything that something TOTAL

Anything that something Ro is a Z.
Ro is a Z. Every X Ro a Y .

Every X Ro something 28 27 55
that is both a Y and a Z.(*)
Every X Ro nothing at all. 45 44 89
Every Y is a Z. 16 13 29
Every Z is a Y . 38 37 75
TOTAL 127 121 248



6.4. An Empirical Study 107

Table 6.12: Distribution of correct answers on three verbalisations for the deduction rule
‘SubCls-DisCls’ (rule 52 in Table 6.3); X and Y are class names, statements marked with
* are those following from the premises, and those without a mark do not follow from the
premises

Verbalisation 1 Verbalisation 2 Verbalisation 3
Inference Every X is a Y . Every X is a Y . Every X is a Y . TOTAL

No X is a Y . No Y is a X. Nothing is both
an X and a Y .

Nothing is an X.(*) 26 22 30 78
Nothing is a Y . 38 34 30 102
Every X is something 15 7 11 33
that is not a Y .(*)
Everything that is not 41 45 39 125
an X is a Y .
TOTAL 120 108 110 338

Table 6.13: Distribution of correct answers on three verbalisations for the deduction rule
‘Top-DisCls’ (rule 53 in Table 6.3); X and Y are class names, statements marked with *
are those following from the premises, and those without a mark do not follow from the
premises

Verbalisation 1 Verbalisation 2 verbalisation 3
Inference Everything is a Y. Everything is a Y. Everything is a Y. TOTAL

No X is a Y. Nothing is both No Y is an X.
an X and a Y.

Nothing is an X.(*) 36 33 35 104
Everything is an X. 45 43 43 131
Every X is something 31 29 32 92
that is not a Y.(*)
Everything that is 20 6 18 44
not a Y is an X.(*)
TOTAL 132 111 128 371

6.9 (rule 55), 6.10 (rule 56), and 6.11 (rule 57).

Rules 52 and 53 have three candidate verbalisations. Friedman tests showed that there

were no reliable differences in subjects’ performance between the verbalisations of rule

52 (χ2=4.84, df=2, p>0.05), but there were statistically reliable differences in subjects’

performance between those of rule 53 (χ2=10.16, df=2, p<0.01). Follow-up pairwise com-

parisons using a Wilcoxon Signed Ranks test for rule 53 showed that there were differences

in subjects’ performance between the verbalisations 1 and 2 (Z=2.91, p=0.004), 2 and 3

(Z=2.83, p=0.005), and verbalisation 2 was the worst. This means that the verbalisations

1 and 3 were equally good for this rule. The absolute frequencies of correct answers of

these rules are summarised in Tables 6.12 (rule 52) and 6.13 (rule 53).

The Best Verbalisation for X ≡ Y
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Table 6.14: Distribution of correct answers on two verbalisations of the axiom X ≡ Y
through all test questions of rules 49, 50, and 51 in Table 6.3, with X and Y are any class
names

Verbalisation 1 Verbalisation 2
Deduction Rule An X is anything Every X is a Y ; TOTAL

that is a Y . every Y is an X.
Rule 49 140 177 317
Rule 50 139 151 290
Rule 51 140 152 292
TOTAL 419 480 899

Table 6.15: Distribution of correct answers on two verbalisations of the axiom Dis(X,Y )
through all test questions of rules 52, 53, 54, and 55 in Table 6.3, with X and Y are any
class names

Verbalisation 1 Verbalisation 2
Deduction Rule No X is a Y . Nothing is both TOTAL

an X and a Y .
Rule 52 120 110 230
Rule 53 132 111 243
Rule 54 128 122 250
Rule 55 108 106 214
TOTAL 488 449 937

To identify the best among the two verbalisations “An X is anything that is a Y ” and

“Every X is a Y ; every Y is an X” for the axiom X ≡ Y , we compared the absolute

frequencies of correct answers through all test questions of rules 49-51. These data are

summarised in Table 6.14. A Wilcoxon Signed Ranks test revealed a statistically reliable

difference in subjects’ performance between the two verbalisations (Z=3.66, p<0.0001),

and the second wording was the best.

The Best Verbalisation for Dis(X,Y )

Similarly, to identify the best among the two verbalisations “No X is a Y ” and “Nothing

is both an X and a Y ” for the axiom Dis(X,Y ), we compared the absolute frequencies

of correct answers through all test questions of rules 52-55. These data are summarised

in Table 6.15. A Wilcoxon Signed Ranks test revealed a statistically reliable difference

in subjects’ performance between the two verbalisations (Z=2.67, p=0.008), and the first

wording was the best.

The Best Premise Ordering for Dom(Ro, X) and Rng(Ro, X)

In rules 56 and 57, the main source of the multiplicity of verbalisations lies in the or-

dering of premises, and the axioms Dom(Ro, X) and Rng(Ro, X) function in the same
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Table 6.16: Distribution of correct answers on two premise orderings of the axiom
Dom(Ro, X) (or Rng(Ro, X)) through all test questions of rules 56 and 57 in Table 6.3,
with X is any class name, and Ro is any object property name

Ordering 1 Ordering 2
Deduction Rule v-Dom/Rng Dom/Rng-v TOTAL
Rule 56 130 126 256
Rule 57 127 121 248
TOTAL 257 247 504

way. Therefore, to identify the best ordering of the axiom Dom(Ro, X) (or Rng(Ro, X))

in these rules, we compared the absolute frequencies of correct answers through all of

their test questions. These data are summarised in Table 6.16. However, a Wilcoxon

Signed Ranks test showed no reliable differences in subjects’ performance between the two

orderings (Z=0.97, p=0.33).

6.5 Conclusions and Future Work

We have initiated research on the identification of the most understandable verbalisation

for a deduction rule (or a single-step inference) in OWL. We have conducted a thorough

examination of theoretical insights from the psychology of reasoning and a novel empirical

study on candidate verbalisations for our deduction rules, and shown that for most of

our rules the participants perform equally well on different candidate verbalisations. The

study also shows that overall the verbalisation “Every X is a Y ; every Y is an X” is

the best for explaining the axiom X ≡ Y (probably because it explicitly shows both

subsumption relationships between two classes), the verbalisation “No X is a Y ” is the

best for explaining the axiom Dis(X,Y ) (probably because it is concise), finally the axioms

Dom(Ro, X) and Rng(Ro, X) can be presented first or last in a verbalisation for a rule

(so, we choose to present them last—e.g., we select the verbalisation “Every X Rd a Dr.

Anything that Rd some value is a Y . Therefore, Every X is a Y ” for rule 56 in Table 6.3).

Part of the future work is to find better ways to verbalise property names (both object

and data properties) as well as verbalise axioms that contain one or more property names.

This would help to improve the readability of verbalisations for individual axioms in a

rule. Additionally, we will investigate the elimination of obvious statements—such as ““X

owns Y” means the same as “Y is owned by X””—from the verbalisations of our rules.
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Chapter 7

Understandability of OWL

Inferences

This chapter addresses the problem of assessing the understandability of inferences in

OWL. Section 7.1 discusses earlier work related to this problem. Section 7.2 describes a

method of empirically measuring the understandability of our deduction rules, which are in

fact single-step OWL inferences. Based on this measurement, Section 7.3 then describes

a model for predicting the understandability of an entire proof tree, which is in fact a

multi-step OWL inference. An evaluation of this model is reported in Section 7.4, which

confirms that our model works relatively well in detecting differences in understandability

of two-step OWL inferences.

7.1 Related Work

Several support tools have been proposed to help ontology developers to identify the causes

of class unsatisfiability [KPSH05], and to rewrite potentially problematic axioms [LSPV08].

Two studies have been conducted [KPSH05, LSPV08] to evaluate how developers debug

ontologies with and without the tools. However, these studies focus on how people with

a good understanding of OWL perform debugging, but not on how well they understand

111
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OWL inferences.

In a deduction rule, the conclusion can be viewed as an entailment, and the premises

can be viewed as a justification. Horridge et al. have proposed a model for measuring

the cognitive difficulty of a justification [HBPS11, Hor11]. In this model, they provide

a list of components, each of which has an associated weight. For a given justification,

the model checks for all appearances of these components, sums the weighted numbers

of occurrences of the components, and outputs the result as the justification’s difficulty

score. The choice of the components and their weights is based on the authors’ observations

from an exploratory study [HPS09b, Hor11] and their intuitions. Most of the proposed

components are based on the syntactic analysis of justifications such as the number and

types of premises in a justification, and these syntax-based components are mostly assigned

a high weight. There are also several components for revealing difficult phenomena such

as the trivial satisfaction of universal restriction in OWL1; however, the weights of these

components are often low and are chosen intuitively. Therefore, this model predicts the

difficulty of a justification in a manner that is biassed towards its structural complexity

rather than its cognitive difficulty.

An empirical study has been conducted to evaluate how well the above-mentioned model

predicts the difficulty of justifications. In this study, the authors create a deduction

problem, presented in Manchester OWL Syntax [HDG+06, HPS08c] with alpha-numeric

characters as class, property, and individual names, for testing a justification. In each

problem, a justification and its entailment are given, and subjects are asked whether the

justification implies the entailment. A weakness of this study is that positive response bias

is not controlled—i.e., if subjects had a positive response bias, they would have answered

most questions correctly, regardless of the difficulty of the questions. Additionally, this

study tests the model based only on analysis of subjective understanding (but not analysis

of objective understanding)2.

The above-mentioned complexity model and evaluation study are, in fact, inspired by

those of Newstead et al. [NBH+06], which are proposed for measuring the difficulty of

“Analytical Reasoning” (AR) problems in Graduate Record Examination (GRE) tests.

An AR problem is a deductive reasoning problem in which an initial scenario is given

1That is, if 〈x, y〉 /∈ RI for all y ∈ ∆I then x ∈ (∀R.C)I .
2As will be discussed shortly, our evaluation study for the understandability model controlled for positive

response bias and relied on analysis of both subjective and objective understanding.
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Figure 7.1: The test problem for the deduction rule ‘ObjDom-ObjAll’, which yields > v X
from Dom(Ro, X) and ∀Ro.⊥ v X

along with a number of constraints called rules, and the examinee is asked to determine

a possible solution for the problem among five choices. Like Horridge et al., Newstead et

al. identify a set of difficulty factors and their weights through an intensive pilot study,

and build a preliminary difficulty model based on these factors and weights. After that, a

series of large-scale studies are conducted to validate as well as adjust the model. Leaving

aside the fact that these reasoning problems are different from OWL inferences, a strength

of this work is that response bias of all types is successfully controlled. However, in both

Newstead et al.’s and Horridge et al.’s work, there is no clear explanation of how weights

are assigned, suggesting that the choice might have been based partly on intuition.

7.2 Measuring the Understandability of Deduction Rules

7.2.1 Materials

To measure the understandability of a rule, a deduction problem was devised in which

premises of the rule were given in English, replacing class, individual, and property vari-

ables by fictional nouns, proper nouns, and verbs so that the reader would not be biassed

by domain knowledge, and the subjects were asked whether the entailment of the rule

followed from the premises. The correct answer was always “Follows”.

As in our previous study (described in Section 6.4), we used non-entailment and trivial

control questions to control positive response bias, as opposed to test questions. They

either made statements about objects not mentioned in the set of consistent premises (in
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which case, trivially, the correct answer was “Does not Follow”), or repeated one of the

premises (in which case, also trivially, the correct answer was “Follows”). Each problem

consisted of premises followed by two questions, one test question and one control. For

half the problems, the correct answers were “Follows” and “Follows”; for the other half

“Follows” and “Does not Follow”, with question order varying so that the test question

sometimes preceded the control, and sometimes followed it. The understandability of rule

‘ObjDom-ObjAll’ (rule 17 in Table 7.4), for example, was measured using data gathered

from the deduction problem in Figure 7.1, with the entailment as the second question.

7.2.2 Method

The study was conducted on the crowdsourcing service CrowdFlower. We used the same

set-up as in our previous study (described in Section 6.4). In this study we specified to

collect 50 responses per problem, but since some subjects gave up part-way through, the

number of subjects was over 100.

Of the 57 deduction rules collected, 51 rules were measured. Since the main inferences of

six remaining rules were similar to those of the measured rules—specifically, both ‘DatSom-

DatRng’ and ‘DatMin-DatRng yielded an unsatisfiability based on the effect of the data

property range axiom; both ‘ObjMin-ObjFun’ and ‘DatMin-DatFun’ yielded an unsatis-

fiability based on the functionality of a property; both ‘ObjSom-Bot-1’ and ‘ObjSom-Bot-

2’ yielded an unsatisfiability based on the unsatisfiability of an existential restriction’s

filler; both ‘ObjSom-ObjMin’ and ‘DatSom-DatMin’ yielded a subsumption based on the

semantic equivalence between ∃R and ≥ 1R in object and data properties; both ‘ObjSom-

ObjDom’ and ‘DatSom-DatDom’ yielded a subsumption based on the common effect of

object and data property domain axioms; finally, both ‘Top’ and ‘Bot’ yielded a tauto-

logical subsumption based on the > and ⊥ classes—their understandability was derived

from the associated measured rules.

7.2.3 Control Questions and Response Bias

As in our previous study (described in Section 6.4), we checked subjects’ performance on all

control questions to confirm whether subjects were taking the survey seriously. Figure 7.2

shows that for over 100 participants, all answered around 75% or more of the control
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Figure 7.2: Subjects’ performance on the control questions, sorted decreasingly

Table 7.1: Distribution of subjects’ responses—i.e., “Follows” (+F) and “Does not Follow”
(−F)—according to their correctness—i.e., “Correct” (+C) and “Incorrect” (−C)

+F −F TOTAL

+C 2705 1195 3900

−C 118 912 1030

TOTAL 2823 2107 4930

questions correctly, suggesting that they were performing the task seriously. Among these

subjects, only 2 claimed familiarity with OWL, 44 reported no familiarity, and the others

did not specify (this question was optional).

Table 7.1 shows the absolute frequencies of the responses “Follows” (+F) and “Does not

follow” (−F) for all questions in the study—control as well as test. It also subdivides these

frequencies according to whether the answer was correct (+C) or incorrect (−C).

Recalling that for half the problems the correct answers were +F+F, while for half they are

+F−F, the percentage of +F answers for a subject that always answered correctly would

be 75%. If subjects had a positive response bias we would expect an overall rate higher

than this, but in fact we obtained 2823/4930 or 57.3%, suggesting little or no positive

response bias.

Looking at the distribution of incorrect answers, we can also ask whether subjects erred

through being too ready to accept invalid conclusions (+F−C), or too willing to reject

conclusions that were in reality valid (−F−C). The table shows a clear tendency to-

wards the latter, with 912 responses in −F−C compared with an expected value of 440

(1030*2107/4930) calculated from the overall frequencies. In other words, subjects were

more likely to err by rejecting a valid conclusion than by accepting an invalid one, a find-

ing confirmed statistically by the extremely significant association between response (±F)
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and correctness (±C) on a 2×2 chi-square test (χ2 = 1116.3, df = 1, p < 0.0001).

7.2.4 Facility Indexes

We use the proportion of correct answers for each test question as an index of understand-

ability of the associated rule, which we call its facility index (FI). This index provides our

best estimate of the probability that a person will understand the relevant inference step—

that they will recognise that the conclusion follows from the premises—and accordingly

ranges from 0.0 to 1.0.

Values of the facility indexes for the rules tested in this study are shown in Table 7.4,

ordered from high values to low. In this table, rules ‘SubCls-SubCls-1’ and ‘ObjDom-

ObjAll’ (used in the proof tree in Figure 1.1) are relatively easy, with facility indexes of

0.80 and 0.78. By contrast rule ‘ObjAll’, which yields statement (c) from axiom 1 in the

example, is the most difficult, with a facility index of only 0.04, and hence, evidently a

step in need of further elucidation (this problem is addressed in Chapter 8 in this thesis).

It can also be seen in Table 7.4 that for closely related rules, such as ‘ObjSom-ObjMin’,

‘SubCls-SubCls-1’ and even ‘SubObj-SubObj’, the facility indexes are quite close to each

other (see also ‘ObjDom-Bot’ and ‘ObjRng-Bot’, ‘DatVal-DatVal-DatFun’ and ‘ObjVal-

ObjVal-DifInd-ObjFun’, ‘DatVal-DatRng’ and ‘DatSom-DatRng’)—a result that confirms

the reliability of the values. In general, the subjects found it difficult to understand infer-

ence steps that concluded an unsatisfiability (as in rules ‘DatVal-DatVal-DatFun’, ‘ObjVal-

ObjVal-DifInd-ObjFun’, ‘DatVal-DatRng’, ‘DatSom-DatRng’ etc.), and those related to

the unfamiliar behaviour of the universal restriction in OWL (as in rule ‘ObjAll’).

7.3 Predicting the Understandability of OWL Inferences

This section focuses on the understandability level of an entire proof tree, which can be

viewed as a complex inference in OWL. When a tree has no lemma nodes, it corresponds

to a single-step inference. Otherwise, it corresponds to a multi-step inference, like the

one in Figure 1.1. We propose here a model which can predict the understandability of a

multi-step inference based on the FIs of individual inference steps. Of course there is no

fixed understandability for a given OWL inference as it depends on the readers’ knowledge
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of OWL as well as their deductive reasoning ability. For this reason, it is impossible to

provide an accurate measurement of the understandability of an inference that is correct

for most people. What we expect from this model is the ability to detect the difference in

understandability between any two inferences. For example, if an inference is easier than

another, then we expect that this model will be able to detect this.

To understand a complex inference consisting of multiple steps, it is essential to be able

to understand each individual step within it. Recall that the FI of a rule provides our

best estimate of the probability that a person will understand the relevant inference—

i.e., that a person will recognise that the conclusion follows from the premises—thus

it ranges from 0.00 to 1.00, and the higher this value, obviously, the easier. Given a

proof tree with FIs assigned to each step, a natural method of combining indexes would

be to multiply them, so computing the joint probability of all steps being followed—in

other words, the facility index of the proof tree. As before, the higher this value, the

easier the proof tree. According to this model, the understandability of the proof tree

in Figure 1.1 would be 0.93*0.78*0.80*0.04*0.80 or 0.02, indicating that the proof tree is

very difficult to understand. This prediction is supported by the claim from Horridge et

al.’s study [HPS09b] that this inference is very difficult even for OWL experts.

7.4 Evaluation of the Model

In this section we report an experiment to evaluate the proposed model. This experiment

focused on how well the model could detect differences in understandability between in-

ferences. In this experiment, the use of bins for grouping inferences having close FIs was

adapted from Horridge et al.’s study [HBPS11], but a different experimental protocol and

materials were used. Additionally, not only objective but also subjective understanding

of the participants was measured3.

7.4.1 Materials

The experiment was carried out with 15 proof trees collected from the our corpus (de-

scribed in Chapter 4). Each proof tree was assigned to an understandability bin on the

3All the materials and results of this study can found at http://mcs.open.ac.uk/nlg/SWAT/ESWC2013.
html.

http://mcs.open.ac.uk/nlg/SWAT/ESWC2013.html
http://mcs.open.ac.uk/nlg/SWAT/ESWC2013.html
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Table 7.2: The list of all tested inferences, their predicted FIs, and used deduction rules

ID Tested Inference FI ID Tested Inference FI
1.1 C0 ≡ C1 0.96 2.1 Rng(r0, C1) 0.74

∧ Dom(r0, C0) ∧ Sym(r0)
→ Dom(r0, C1) ∧ C1 v C0
Rules: ‘ObjDom-SubCls’, ‘ObjInt-2’ → Dom(r0, C0)

Rules: ‘ObjRng-ObjSym’, ‘ObjDom-SubCls’
1.2 C0 t C1 v C2 0.90 2.2 C0 v C1 0.72

∧ C0 v C3 ∧ C1 v C2
→ C0 v C2 u C3)) ∧ Rng(r0, C0)
Rules: ‘ObjUni-2’, ‘SubCls-SubCls-2’ → Rng(r0, C2)

Rules: ‘SubCls-SubCls-1’, ‘ObjRng-SubCls’
1.3 C0 v C1 u C2 0.86 2.3 C1 ≡ C2 t C3 0.66

∧ Rng(r0, C0) ∧ C0 v C2
→ Rng(r0, C1) → C0 v C1
Rules: ‘ObjInt-2’, ‘ObjRng-SubCls’ Rules: ‘ObjUni-1’, ‘SubCls-SubCls-1’

3.1 ¬C1 v C2 0.53 4.1 Rng(r0, C1) 0.34
∧ C1 v C0 ∧ Invs(r1, r0)
∧ C2 v C0 ∧ C0 v ∃r1.C2
→ > v C0 → C0 v C1
Rules: ‘ObjCom-2’, ‘ObjUni-SubCls-SubCls’ Rules: ‘ObjRng-ObjInv’, ‘ObjSom-ObjDom’

3.2 r0 v r1 0.48 4.2 C0 v ∃r0.C2 0.32
∧ r1 v r2 ∧ Rng(r0, C1)
∧ Dom(r2, C0) ∧ DisCla(C1, C2)
→ Dom(r0, C0) → C0 v ⊥
Rules: ‘SubObj-SubObj’, ‘ObjExt’ Rules: ‘ObjSom-ObjRng’, ‘ObjInt-DisCls’

3.3 C0 v≥ 1r1.C2 0.45 4.3 C2 v ∀r0.C1 0.26
∧ r1 v r0 ∧ Invs(r0, r1)
∧ ∃r0.C2 v C1 ∧ C0 v ∃r1.C2
→ C0 v C1 → C0 v C1
Rules: ‘ObjSom-SubObj’, ‘ObjSom-ObjMin’ Rules: ‘ObjAll-ObjInv’, ‘SubCls-SubCls-1’

5.1 Fun(d0) 0.18
∧ C0 v ∃d0.{l0} ? DT0))
∧ C0 v ∃d0.{l1} ? DT0)), l1 6= l0
∧ C1 v ObjMinCard(2, r0, C0))
→ C1 v ⊥
Rules: ‘DatVal-DatVal-DatFun’, ‘ObjSom-Bot-1’

5.2 C1 v existsr0.(∃d0.l0 ? DT0) 0.09
∧ Rng(d0, Dt1), DT0andDt1aredisjoint
∧ C0 v ∃r1.C1
→ C0 v ⊥
Rules: ‘DatVal-DatRng’, ‘ObjSom-Bot-1’

5.3 C0 ≡ ∀r0.C1 0.03
∧ Dom(r0, C0)
→ > v C0
Rules: ‘ObjAll’, ‘ObjDom-ObjAll’

basis of the FI predicted by our model. For our purpose, a total of five understandability

bins were constructed over the range from 0.00 to 1.00, each with an interval of 0.204.

For simplicity, only proof trees consisting of exactly two deduction rules (i.e., two-step

inferences) were tested. The test proof trees were selected so that there would be three for

each bin, and they would cover as many rules as possible. In fact, the test proof trees in

this experiment included 25 of 51 rules from Table 7.4. The list of tested inferences, rules

involved, and their predicted FIs is shown in Table 7.2.

For each proof tree, a test problem was devised in which the proof tree was given to

the subjects in the form of a simple explanation in English, and the subjects were asked

whether this explanation was correct. The subject was also asked to rank how difficult

they found the question on a scale from 5 (very easy) to 1 (very difficult). When presenting

the trees, fictional nouns and verbs were used so that the readers would not be biased by

domain knowledge, and labels such as (a), (b) etc. were used to help them locate the

statements quicker. As an example, the test problem for the test inference 5.3 in Table 7.2

4The ranges of the five bins were as follows: (B1) 0.80 < x ≤ 1.00, (B2) 0.60 < x ≤ 0.80, (B3)
0.40 < x ≤ 0.60, (B4) 0.20 < x ≤ 0.40, and (B5) 0 ≤ x ≤ 0.20, respectively. B1 was the easiest, and B5
was the most difficult.
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Figure 7.3: The test problem for the test inference 5.3 in Table 7.2 in which the FI of the
proof tree is 0.03 (0.04 * 0.78)

is shown in Figure 7.3.

Since the correct answers to all test questions were “Yes”, response bias was checked by

including a number of control problems. In this study, control problems were designed

to resemble the test problems, but obvious to subjects who did the test seriously. Two

types of control problems were created: non-entailment and trivial problems. In a non-

entailment problem, the test proof tree included a lemma or a conclusion about an object,

a relationship, or both, that were not mentioned in the premises. The correct answer

for non-entailment problems was “No”, trivially. In order to create such problems, three

possibilities for which the entailment was invalid were examined:

1. First inference step was invalid, second inference step was valid

2. First inference step was valid, second inference step was invalid

3. Both inference steps were invalid

Among the three cases, one would expect fewer mistakes for the third one since they

had two opportunities to detect a mistake in the reasoning. Therefore, either the first or

the second case was used in this study. In these cases, unrelated objects could not be

introduced into a premise as this violated the assumption in a test problem that all given
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Figure 7.4: A non-entailment control problem for which the correct answer is “No”

premises were true; therefore, new objects were only introduced into the lemma in the

first case or the entailment in the second case. An example non-entailment problem in

this study is shown in Figure 7.4.

A trivial problem was one in which the test proof tree included only obviously correct

inference steps, so the correct answer was, also trivially, “Yes”. Making trivial problems

was quite tricky in this study as repetitions of premises could not be merely used as

before. This was because people might get confused about whether a statement explained

an entailment if it merely repeated the entailment. Since people usually reasoned better

with individuals than with general statements, inferences with individuals were used in

trivial control problems. An example of such control problems is shown in Figure 7.5.

There were 15 test problems for which the correct answers were always positive. For

balancing, 15 control problems were created, five of which having positive answers and the

remaining problems having negative answers. This resulted in 20 positive and 10 negative

problems—i.e., 67% positive vs. 33% negative.

7.4.2 Method

Like the previous ones, this study was conducted on the crowdsourcing service Crowd-

Flower with a similar set-up. We specified 80 responses per problem, but since we were
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Figure 7.5: A trivial control problem for which the correct answer is “Yes”

only interested in responses in which all 30 problems were answered, only responses of 59

subjects were selected.

7.4.3 Control Questions and Response Bias

Figure 7.6 shows that among 59 participants, there were 7 who answered fewer than 70% of

the control questions correctly, suggesting that they were not performing the test seriously;

their results were accordingly discarded. Of the 52 subjects remaining, only one claimed

familiarity with OWL, 45 reported no familiarity, and the others did not specify (this

question was optional).

Table 7.3 shows the absolute frequencies of the subjects’ responses “Yes” (+Y) and “No”

(−Y) for all problems in the study—both control and test. It also subdivides these fre-

quencies according to whether the response was correct (+C) or incorrect (−C). Thus for

instance the cell +Y+C counts cases in which subjects answered “Yes” when this was the

correct answer, while +Y−C counts cases in which they answered “Yes” when this was

incorrect.

Recall that for 67% of the problems the correct answers were “Yes”, and for all the

remaining problems they were “No”. If subjects had a positive response bias we would

expect an overall rate much higher than 67%, but in fact we obtained 833/1556 or 54%,
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Figure 7.6: Subjects’ performance on the control problems, sorted decreasingly

Table 7.3: Distribution of subjects’ responses—“Yes” (+Y) and “No” (−Y)—according
to their correctness—“Correct” (+C) and “Incorrect” (−C)

+Y −Y TOTAL

+C 774 458 1232

−C 59 265 324

TOTAL 833 723 1556

suggesting no positive response bias.

As before, the distribution of incorrect answers in Table 7.3 shows that subjects were more

likely to err by rejecting a valid conclusion than by accepting an invalid one (with 265

responses in −Y−C compared with an expected value of 324*723/1556=151 calculated

from the overall frequencies), a finding confirmed statistically by the extremely signific-

ant association between response (±Y) and correctness (±C) on a 2×2 chi-square test

(χ2=205.3, df=1, p<0.0001).

7.4.4 Analysis of Objective Understanding

Figure 7.7 shows the relationship between the predicted FIs and the proportions of cor-

rect answers for test proof trees. The analysis indicated a statistically reliable relationship

between the two values (r=0.88, p<0.0001) (Pearson’s r correlation). For most test proof

trees, the predicted FIs were lower than the actual proportions of correct answers. A

possible explanation was that all of the control questions in this study were two-step infer-

ences whereas those in the previous study were single-step inferences, and the use of more

complex control questions in this study might have caused us to recruit better subjects

than those of the previous one. However, for detecting differences in understandability of

proof trees, the proposed model worked relatively well. Among the 15 test trees, there

were 105 pairs on which difficulty comparisons could be made; of these, 93 comparisons
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Figure 7.7: The predicted FIs vs. the proportions of correct answers

were ordered in difficulty as predicted (i.e., an accuracy of 89%).

We also tested how well our model could detect differences in understandability of proof

trees by analysing the performance of the subjects by bins. For each subject, the number

of correct answers for three test problems in each bin was counted, so obtaining a value of 0

to 3. A Friedman test was applied on the obtained values, which confirmed that there were

statistically reliable differences in subjects’ performance among the five bins (χ2=108.95,

df=4, p<0.0001). Follow-up pairwise comparisons using a Wilcoxon Signed Ranks test

showed that there were differences in performance between any bin pair (p<0.05) except

between 2 and 3. This might be because subjects found problems 3.1 and 3.3 easier than

expected, thus reducing the difference between the two bins.

It is also clear from Figure 7.7 that there were exceptional cases for which the participants

performed much better than we expected, such as proof trees 4.3, 4.1, 3.3, and 3.2. The

changes of verbalisations used in this study might be the main reason for these exceptions.

Proof trees 4.1 and 4.3 were the only two cases which included an Invs(r1, r0) axiom. In

the previous study, this axiom was verbalised as “X r0 Y if and only if Y r1 X” (in rules

‘ObjRng-ObjInv’ and ‘ObjAll-ObjInv’). The FIs we measured for these rules when using

this verbalisation were 0.40 and 0.32 respectively. In this study, the axiom was verbalised

as ““X r0 Y” means the same as “Y r1 X””, which was less technical, for testing trees 4.1

and 4.3; this might explain why the participants performed better on these trees than we

expected. The proportions of correct answers for trees 4.1 and 4.3 were 0.67 and 0.73.

Similarly, proof trees 3.2 and 3.3 were the only two cases which included r0 v r1 axioms.

In the previous study, this axiom was verbalised as “The property r1 is a sub-property of

r0” (in rules ‘ObjDom-SubObj’ and ‘ObjSom-SubObj’). The FIs we measured for these
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Figure 7.8: The predicted FIs vs. the mean subjective difficulty ratings

rules when using this verbalisation were 0.61 and 0.55. In the present study, we used the

less technical verbalisation “If X r0 Y then X r1 Y” for this axiom, which might again

explain why performance on these trees was better than we expected. The proportions of

correct answers for trees 3.2 and 3.3 were 0.63 and 0.75.

7.4.5 Analysis of Subjective Understanding

Figure 7.8 plots the predicted FIs for test proof trees against the mean difficulty ratings

(ranging from 1, very difficult, to 5, very easy) reported by subjects. The correlation

between FIs and difficulty ratings was high (r=0.85) and significant (p<0.0001) (Pearson’s

r correlation).

As in the analysis of objective understanding, we tested how our model can detected

differences in understandability of proof trees by analysing difficulty rankings by bins.

For each subject, the mean value of difficulty rankings for the three questions of each

bin was computed, and so obtained a value of 0 to 5. A Friedman test was applied on

the obtained values, which confirmed that there were statistically reliable differences in

difficulty ranking between the five bins (χ2=88.66, df=4, p<0.0001). Follow-up pairwise

comparisons using a Wilcoxon Signed Ranks test showed that there were statistically

reliable differences in difficulty ranking between any bin pair (p<0.05) except between

bins 3 and 4, for which the results might have been affected (as explained in the previous

subsection) by the more accessible verbalisations used in the present study for the proof

trees 3.2, 3.3, 4.1, and 4.3. Proof tree 5.3 was an exception as it was ranked as easier than

5.2 while our model predicted the opposite direction. This prediction was supported by the

analysis of objective understanding presented previously. This result suggested a failure
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in understanding this proof tree—i.e., the subjects thought that they had understood the

inference correctly but actually they had not.
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Table 7.4: Deduction rules and their facility indexes (FI), with ‘CA’ means the absolute number of correct answers and ‘S’ means the absolute number
of subjects. For brevity, the names of OWL functors are abbreviated.

ID Rule Name Test Pattern Deduction Problem CA S FI

1 EquCls X ≡ Y A hiatea is defined as a milvorn. 49 49 1.00

→ X v Y →Every hiatea is a milvorn.

2 ObjInt-2 X v Y u Z Every ormyrr is both a gargoyle and a harpy. 47 49 0.96

→ X v Y →Every ormyrr is a gargoyle.

3 ObjDom-SubCls Dom(Ro, X) Anything that has a supernatural ability is a bulette. 45 47 0.96

∧ X v Y Every bulette is a manticore.

→ Dom(Ro, Y ) →Anything that has a supernatural ability is a manticore.

4 ObjUni-2 Y t Z v X Everything that is a volodni or a treant is a maradan. 44 46 0.96

→ Y v X →Every volodni is a maradan.

5 SubCls-SubCls-2 X v Y Every bullywug is a grippli. 45 48 0.94

∧ X v Z Every bullywug is a prismatic.

→ X v (Y u Z) →Every bullywug is both a grippli and a prismatic.

6 Top > v X Everything is a kelpie. 43 46 0.93

→ Y v X →Every person is a kelpie.

7 ObjSom-ObjAll-2 X v ∃Ro.> Every locathah eats something. 45 50 0.90

∧ X v ∀Ro.Y Every locathah eats only orogs.

→ X v ∃Ro.Y →Every locathah eats an orog.

8 ObjRng-SubCls Rng(Ro, X) Anything that something lives in is a tarrasque. 44 49 0.90

∧ X v Y Every tarrasque is a kraken.

→ Rng(Ro, Y ) →Anything that something lives in is a kraken.

9 ObjSom-ObjDom X v ∃Ro.Z Anything that is a messenger of something is a landwyrm. 43 50 0.86

∧ Dom(Ro, Y ) Every spellgaunt is a messenger of a gravorg.

→ X v Y →Every spellgaunt is a landwyrm.

10 ObjUni-1 X ≡ Y t Z Every cooshee is a peryton or a banderlog; everything that is a peryton or a banderlog is a cooshee. 41 50 0.82

→ Y v X →Every peryton is a cooshee.

11 ObjSom-ObjMin X v ∃Ro.Y Every varag lives on a seaplane. 40 49 0.82

∧ ≥ 1Ro.Y v Z Everything that lives on at least one seaplane is an urophion.

→ X v Z →Every varag is an urophion.

12 SubCls-SubCls-1 X v Y Every sivak is a draconian. 37 46 0.80

∧ Y v Z Every draconian is a guulvorg.

→ X v Z →Every sivak is a guulvorg.

13 ObjCom-1 X v ¬X Every zezir is something that is not a zezir. 40 50 0.80

Continued on Next Page. . .
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→ X v ⊥ →Nothing is a zezir.

14 SubObj-SubObj Ro v So The property “is a kobold of” is a sub-property of “is a drow of”. 41 52 0.79

∧ So v To The property “is a drow of” is a sub-property of “is a tiefling of”.

→ Ro v To →The property “is a kobold of” is a sub-property of “is a tiefling of”.

15 ObjSom-SubCls X v ∃Ro.Y Every phaerlin is father of a firbolg. 37 47 0.79

∧ Y v Z Every firbolg is a gnoll.

→ X v ∃Ro.Z →Every phaerlin is father of a gnoll.

16 ObjInt-1 X ≡ Y u Z A cyclops is anything that is both a troofer and a gathra. 37 47 0.79

→ X v Y →Every cyclops is a troofer.

17 ObjDom-ObjAll Dom(Ro, X) Everything that has a worship leader is a fomorian. 39 50 0.78

∧ ∀Ro.⊥ v X Everything that has no worship leader at all is a fomorian.

→ > v X →Everything is a fomorian.

18 ObjRng-ObjSym Rng(Ro, X) Anything that something is an abrian of is a grolantor. 36 47 0.77

∧ Sym(Ro) X is an abrian of Y if and only if Y is an abrian of X.

→ Dom(Ro, X) →Anything that is a sibling of something is a grolantor.

19 SubCls-ObjCom-2 X v Y Every oblivion moss is a vegepygmy. 36 47 0.77

∧ ¬X v Y Everything that is not an oblivion moss is a vegepygmy.

→ > v Y →Everything is a vegepygmy.

20 ObjDom-Bot Dom(Ro, X) There does not exist anything that is a grimlock of something. 39 51 0.76

∧ ¬X v Y Everything that is not an oblivion moss is a vegepygmy.

→ > v ∀Ro.⊥ →Everything is not a grimlock.

21 ObjRng-Bot Rng(Ro, X) There does not exist anything that something has as a catter. 37 49 0.76

∧ X v ⊥ Everything that is not an oblivion moss is a vegepygmy.

→ > v ∀Ro.⊥ →Everything has no catter at all.

22 DisCls-SubCls- Dis(X,Y) No plant is an animal. 35 46 0.76

SubCls ∧ U v X Every kalamanthis is a plant.

∧ V v Y Every tendriculos is an animal.

→ Dis(U, V ) →No kalamanthis is a tendriculos.

23 ObjSom-ObjSom- X v ∃Ro.Y Every dero is a tendriculos of a harpy. 38 51 0.75

ObjTra ∧ Y v ∃Ro.Z Every harpy is a tendriculos of a tasloi.

∧ Tra(Ro) If X is a tendriculos of Y and Y is a tendriculos of Z then X is a tendriculos of Z.

→ X v ∃Ro.Z →Every dero is a tendriculos of a tasloi.

24 ObjUni-SubCls- X v (U t V ) Every mongrelfolk is a nilbog or a norker. 35 48 0.73

SubCls ∧ U v Z Every nilbog is a skulk.

∧ V v Z Every norker is a skulk.

Continued on Next Page. . .
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→ X v Z →Every mongrelfolk is a skulk.

25 ObjCom-2 ¬X v Y Everything that is not a spriggan is an orog. 36 50 0.72

→ > v X t Y →Everything is a spriggan or an orog.

26 ObjUni-SubCls X v (Y t Z) Every merfolk is a lizardfolk or a kobold. 35 49 0.71

∧ Y v Z Every lizardfolk is a kobold.

→ X v Z →Every merfolk is a kobold.

27 ObjSom-ObjAll-1 ∃Ro.Y v X Everything that supervises a worg is a stirge. 35 49 0.71

∧ ∀Ro.⊥ v X Everything that supervises nothing at all is a stirge.

→ ∀Ro.Y v X →Everything that supervises only worgs is a stirge.

28 ObjDom-ObjSym Dom(Ro, X) Anything that is an obliviax of something is a kraken. 34 49 0.69

∧ Sym(Ro) X is an obliviax of Y if and only if Y is an obliviax of X.

→ Rng(Ro, X) →Anything that something is an obliviax of is a kraken.

29 ObjSom-ObjTra X v ∃Ro.(∃RoY ) Every draconian is a spriggan of something that is a spriggan of a shifter. 34 50 0.68

∧ Tra(Ro) If X is a spriggan of Y and Y is a spriggan of Z then X is a spriggan of Z.

→ X v ∃Ro.Y →Every draconian is a spriggan of a shifter.

30 ObjSom-ObjRng X v ∃Ro.Y Every mudmaw resembles a jermlaine. 32 50 0.64

∧ Rng(Ro, Z) Anything that something resembles is a corollax.

→ X v ∃Ro.(Y u Z) →Every mudmaw resembles something that is both a jermlaine and a corollax

31 Top-DisCls > v Y Everything is a darfellan. 30 47 0.64

∧ Dis(X,Y ) No grippli is a darfellan.

→ X v ⊥ →Nothing is a grippli.

32 ObjExt X v= n1Ro.Y , n1 ≥ n2 ≥ 0 Every oaken defender has exactly two dry leaves. 29 46 0.63

→ X v≥ n2Ro.Y →Every oaken defender has at least one dry leaf.

33 ObjDom-SubObj Dom(Ro, X) Anything that gyres something is a tiefling. 28 46 0.61

∧ So v Ro The property “raths” is a sub-property of “gyres”.

→ Dom(So, X) →Anything that raths something is a tiefling.

34 SubCls-DisCls X v Y Every aasimar is a sirine. 30 53 0.57

∧ Dis(X,Y ) No aasimar is a sirine.

→ X v ⊥ →Nothing is an aasimar.

35 DisCls-SubCls- Dis(X,Y) Every needleman is a basidirond. 27 48 0.56

SubCls ∧ U v X Every needleman is a battlebriar.

∧ V v Y No basidirond is a battlebriar.

→ Dis(U, V ) →Nothing is a needleman.

36 ObjTra-ObjInv Tra(Ro) If X toves Y and Y toves Z then X toves Z. 27 49 0.55

∧ Invs(Ro, So) X toves Y if and only if Y is toved by X.

Continued on Next Page. . .
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→ Tra(So) →If X is toved by Y and Y is toved by Z then X is toved by Z.

37 ObjSom-SubObj X v ∃Ro.Y Every halfling is an ascomoid of a kenku. 28 51 0.55

∧ Ro v So The property “is an ascomoid of” is a sub-property of “is a basidirond of”.

→ X v ∃So.Y →Every halfling is a basidirond of a kenku.

38 ObjRng-SubObj Rng(Ro, X) Anything that something brilligs is a girallon. 24 46 0.52

∧ So v Ro The property “gimbles” is a sub-property of “brilligs”.

→ Rng(So, X) →Anything that something gimbles is a girallon.

39 SubCls-ObjCom-1 X v Y Every darkmantle is a gorgon. 25 49 0.51

∧ X v ¬Y Every darkmantle is not a gorgon.

→ X v ⊥ →Nothing is a darkmantle.

40 ObjInt-DisCls X v ∃Ro.(Y1 u . . . u Ym), m ≥ 2 Every daemonfey is preceded by something that is both an axani and a phoera. 25 50 0.50

∧ Dis(Y1, . . . , Ym[, . . .]) No axani is a phoera.

→ X v ⊥ →Nothing is a daemonfey.

41 ObjMin-ObjMax X v≥ n1Ro.Y Every jermlaine possesses at least three things. 22 46 0.48

∧ X v≤ n2Ro.Y , 0 ≤ n2 < n1 Every jermlaine possesses at most one thing.

→ X v ⊥ →Nothing is a jermlaine.

42 ObjSom-Bot-1 X v ∃Ro.Y Every tasloi has as owner an aasimar. 20 44 0.45

∧ Y v ⊥ Nothing is an aasimar.

→ X v ⊥ →Nothing is a tasloi.

43 ObjMin-ObjFun X v≥ nRo.Y , n > 1 Everything has as ratings at most one value. 20 49 0.41

∧ Fun(Ro) Every buckawn has as ratings at least four integer values.

→ X v ⊥ →Nothing is a buckawn.

44 ObjRng-ObjInv Rng(Ro, X) Anything that something gimbles from is a terlen. 19 47 0.40

∧ Invs(Ro, So) X gimbles from Y if and only if Y gimbles into X.

→ Dom(So, X) →Anything that gimbles into something is a terlen.

45 DatVal-DatVal- X v ∃Rd.{l0 ? Dt0} Everything has as power level at most one value. 18 45 0.40

DatFun ∧ X v ∃Rd.{l1 ? Dt1}, Dt0 & Dt1 are disjoint, or l0 6= l1 Every sirine has as power level an integer value of 5.

∧ Fun(Rd) Every sirine has as power level an integer value of 7.

→SubClaOf(X,⊥) →Nothing is a sirine.

46 ObjVal-ObjVal- X v ∃Ro.{i} Everything worships at most one thing. 17 44 0.39

DifInd-ObjFun ∧ X v ∃Ro.{j} Every selkie worships Ashur.

∧ Dif(i, j) Every selkie worships Enki.

∧ Fun(Ro) Ashur and Enki are different individuals.

→ X v ⊥ →Nothing is a selkie.

47 ObjDom-ObjInv Dom(Ro, X) Anything that gimbles from something is an atomie. 18 48 0.38

Continued on Next Page. . .
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∧ Invs(Ro, So) X gimbles from Y if and only if Y gimbles into X.

→ Rng(So, X) →Anything that something gimbles into is an atomie.

48 ObjAll-ObjInv X v ∀Ro.Y Every tabaxi toves from only lamias. 16 50 0.32

∧ Invs(Ro, So) X toves from Y if and only if Y toves into X.

→ ∃So.X v Y →Everything that toves into a tabaxi is a lamia.

49 DatVal-DatRng X v ∃Rd.{l ? Dt}) Any value that something has as dark-vision is an integer value. 9 48 0.19

∧ Rng(Rd, Dr), Dt & Dr are disjoint Every ettin makes friends with something that has as dark-vision string value of ”three”.

→ X v ⊥ String values are unconvertible to integer values in OWL.

→Nothing is an ettin.

50 DatSom-DatRng X v ∃Rd.Dr0 Any value that something has as life expectancy is an integer value. 9 49 0.18

∧ Rng(Rd, Dr1), Dr0 & Dr1 are disjoint Every tiefling has as life expectancy a double value.

→ X v ⊥ Double values are unconvertible to integer values in OWL.

→Nothing is a tiefling.

51 ObjAll X ≡ ∀Ro.Y A hiatea is anything that eats only lamias. 2 49 0.04

→ ∀Ro.⊥ v X →Everything that eats nothing at all is a hiatea.
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7.5 Discussion and Conclusions

We have proposed a novel method for empirically measuring the understandability of

single-step inferences in OWL, focusing on people with limited knowledge of OWL. The

results indicate that overall the subjects found it difficult to understand inference steps

that conclude an unsatisfiability.

We have also proposed a probabilistic model for predicting the understandability of a

multi-step inference based on measurement of the understandability of single-step infer-

ences. First the facility indexes of 51 single-step OWL inferences are measured in an

empirical study, resulting in estimates of the probability that a person will understand

the inference. Then by multiplying the indexes of individual inference steps, the joint

probability of all steps being followed can be computed as the facility index of the associ-

ated multi-step inference. Our evaluation has confirmed that the proposed model works

relatively well for two-step inferences in OWL.

When generating explanations, the model is applied to determine the most understandable

among alternative inferences from a justification, as well as to sort explanations in order

of decreasing understandability when multiple justifications are found. A prototype of

this model as a plug-in of the SWAT ontology editing tool, and will be published soon at

http://mcs.open.ac.uk/nlg/SWAT/.

The proposed model grounds facility indexes in a well-established probabilistic interpret-

ation. This gives us confidence that the good performance of the model on two-step

inferences will extend to n-step inferences for n>2. This has, however, to be balanced

with the somewhat better performance of the theoretically less well-founded approach of

taking the minimum, which for two-step inferences achieves an accuracy of 94%. Further

work is needed to compare these models for inferences with more than two steps.

Leaving aside the way the proposed model has been used in the work presented here, we

believe that both the facility indexes of OWL inferences and the method for obtaining

them might be useful in alternative models or contexts. Additionally, the proposed model

can be used by others to predict the understandability of different kinds of inferences.

Therefore, they are worth reporting as a resource for other researchers.

http://mcs.open.ac.uk/nlg/SWAT/
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Chapter 8

Strategy-Based Explanations for

Hard Deduction Rules

This chapter describes the identification of difficult-to-understand deduction rules (Sec-

tion 8.1), and the exploration of potential strategies for explaining them to ordinary users

who often have limited knowledge of OWL and logic (Section 8.2). An empirical test to find

out which strategy is most suitable for each difficult rule is then described (Section 8.3).

8.1 Identification of Hard Deduction Rules

We investigate whether effective explanation strategies can be found for the ten most

difficult deduction rules in our set, as measured by their FIs (all of which are 0.45 or less).

On inspection, it turns out that some rules among these ten are almost the same, differing

only in whether they contain an object property or a data property (rules 45 and 46 in

Table 7.4) or whether they contain ∃Rd.{l ?Dt} or ∃Rd.Dr (rules 49 and 50 in Table 7.4).

Eliminating duplicates, we focus on the eight rules shown in Table 8.1 (sorted in order of

increasing understandability).
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Table 8.1: Difficult deduction rules (sorted in order of increasing understandability), and special strategies to explain them; the number of ‘X’ in a cell
is the number of strategy-based explanations that need to be tested

ID Name Deduction Rule Original Verbalisation

Strategy 1: Strategy 2: Strategy 3: Strategy 4:
Explicate axioms Exemplify axioms Paraphrase Contextualise

to cancel the to show the difficult Invs
presupposition contradiction axioms axioms

1 ObjAll X ≡ ∀Ro.Y An X is anything that Ro only Y s. X
→ ∀Ro.⊥ v X →Everything that Ro nothing at all is an X.

2 DatSom-DatRng X v ∃Rd.Dr0 Every X Rd a Dr0. X X X
∧ Rng(Rd, Dr1), Any value that something Rd is a Dr1. X
Dr0 & Dr1 are disjoint Dr0 values are not Dr1 values.
→ X v ⊥ →Nothing is an X.

3 ObjAll-ObjInv X v ∀Ro.Y Every X Ro only Y s. X X
∧ Invs(Ro, So) “X Ro Y” means the same as “Y So X”.
→ ∃So.X v Y →Everything that So an X is a Y .

4 ObjDom-ObjInv Dom(Ro, X) Anything that Ro something is an X. X X
∧ Invs(Ro, So) “X Ro Y” means the same as “Y So X”.
→ Rng(So, X) →Anything that something Ro is an X.

5 ObjVal-ObjVal- X v ∃Ro.{i} Every X Ro i. X X X
DifInd-ObjFun ∧ X v ∃Ro.{j} Every X Ro j. X

∧ Dif(i, j) i and j are different individuals.
∧ Fun(Ro) Everything Ro at most one thing.
→ X v ⊥ →Nothing is an X.

6 ObjRng-ObjInv Rng(Ro, X) Anything that something Ro is an X. X X
∧ Invs(Ro, So) “X Ro Y” means the same as “Y So X”.
→ Dom(So, X) →Anything that So something is an X.

7 ObjMin-ObjFun X v≥ nRo.Y , n > 1 Every X Rd at least n Drs. X X X
∧ Fun(Ro) Everything Rd at most one value. X X
→ X v ⊥ →Nothing is an X.

8 ObjSom-Bot-1 X v ∃Ro.Y Every X Ro a Y . X X
∧ Y v ⊥ Nothing is a Y . X
→ X v ⊥ →Nothing is an X.
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8.2 Special Strategies for Explanations

We proposed four special strategies to make explanations for difficult rules become more

understandable. These strategies originated from an informal study in which the author

and some colleagues proposed enhanced explanations for these rules, after which we col-

lected together the strategies into four groups.

Strategy 1: Explicate premises to cancel the presupposition

In 1, 2, 5, 7, and 8 in Table 8.1 (namely ‘ObjAll’, ‘DatSom-DatRng’, ‘ObjVal-ObjVal-

DifInd-ObjFun’, ‘ObjMin-ObjFun’, and ‘ObjSom-Bot-1’), the source of difficulty plausibly

lies in presuppositions [Bea97] caused by the words ‘only’ and ‘every’. In rule 1, the word

‘only’ may cause the readers to presuppose that an X is anything that Ro one or more

things, and all of these things are Y s. In fact, the accurate meaning of rule is that an

X is anything that either Ro nothing at all, or if it Ro one or more things then all of

these things are Y s. The first part of the meaning (i.e., things that Ro nothing at all) is

implicit in the word ‘only’. To help the readers cancel this presupposition, we explicate

the original axiom by transforming it into an equivalent axiom by using a disjunction

operator: X ≡ (∀Ro.⊥) t (∀Ro.Y ). Hence, the new verbalisation for the axiom is “An X

is anything that Ro nothing at all, or Ro only Y s”.

In rules 2, 5, 7, and 8, the word ‘every’ in the verbalisations of v axioms like “Every X Ro

a Y ”, “Every X Rd a Dr0 value” etc. may cause the readers to presuppose that there exists

at least an instance of X. This presupposition contradicts the conclusion that “Nothing

is an X”, so the readers may be confused whether rule is true. As before, we cancel this

presupposition by transforming each v axiom into a new v axiom by using a disjunction

operator—specifically, X v ∃Ro.Y is transformed into X v (∃Ro.Y ) t ⊥, X v ∃Rd.Dr0

into X v (∃Rd.Dr0) t ⊥, and so on. The new verbalisations would be “Every X Ro a Y ,

or there are no Xs at all” and “Every X Rd a Dr0 value, or there are no Xs” etc.

Another way to cancel the presupposition caused by the word ‘every’ is to use if-then

statements. Specifically, we explicate the axiom X v ∃Ro.Y as “If there are any Xs then

they all Ro a Y ”, the axiom X v ∃Rd.Dr0 as “If there are any Xs then they all Rd a Dr0

value”, and so on. This strategy, however, is not applicable for rule 1 as its only premise

is an ≡ axiom (but not a v axiom). In our empirical study, only the explication strategy
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using a disjunction is tested for rule 1, but both of the explication strategies are tested

for rules 2, 5, 7, and 8, as summarised in Table 8.1.

Strategy 2: Exemplify premises to show the contradiction

For rules that conclude a class is unsatisfiable, namely rules 2, 5, 7, and 8 in Table 8.1, an-

other source of difficulty may be the visibility of the logical contradiction in the description

of the class. To make it more visible to the readers, we propose a method that exemplifies

the premises. Specifically, a named individual is assumed to be an instance of the class in

the conclusion, and we show that the existence of this individual leads to a contradiction.

For example, to explain the contradiction in rule 2, we propose the following template for

an explanation:

Suppose there is an X named Rover. It follows from the premises that:
- Rover Rd a Dr0,
- Rover Rd only Dr1s, and
- Dr0s are not Dr1s.
The existence of an X such as Rover leads to a contradiction. Therefore, there
are no Xs.

In this template, the statement “Rover Rd a Dr0” is inferred from the axiom “X v

∃Rd.Dr0” (“Every X Rd a Dr0 value”) and the assumption, and “Rover Rd only Dr1

values” from Rng(Rd, Dr1) (“Any value that something Rd is a Dr1”). Similar templates

for rules 5, 7, and 8 can be created in the same way.

Strategy 3: Paraphrase difficult axioms

Another source of difficulty of these rules may lies in the verbalisations of difficult axioms.

We propose alternative verbalisations for several axioms, and compare them with the

original ones to identify which ones are understood best by non-logicians. The list of

possible difficult verbalisations and the new paraphrases we propose are listed in Table 8.2.

These axioms occur once in rules 2-6, and twice in rule 7 in Table 8.1.

Strategy 4: Contextualise Invs axioms

Invs is a difficult axiom to reason with. For rules that contains an Invs axiom in their

premises, namely rules 3, 4, and 6 in Table 8.1, we propose a method to contextualise

this axiom in order to make it better connected to the remaining premises. Specifically,

in rule 3 (‘ObjAll-ObjInv’) we rely on the first premise which says “Every X Ro only Y s”



8.3. Evaluation of the Strategies 137

Table 8.2: New paraphrases for (plausibly) difficult OWL axioms

OWL Axiom Original Verbalisation Paraphrase
Rng(Rd, Dr) Any value that something Rd Everything Rd only Drs.

is a Dr.
Invs(Ro, So) “X Ro Y” means the same as If something Ro something then the latter

“Y So X”. So the former; additionally, if something So

something then the latter Ro the former.
Fun(Ro) Everything Ro at most one Everything Ro either zero or one thing.

thing.
X v≥ nRo.Y Every X Rd at least n Drs. Every X Rd n or more Drs.

to contextualise the Invs axiom as follows:

“X Ro Y” means the same as “Y So X”, from which it follows that “an X Ro

a Y ” means the same as “a Y So an X”.

Similarly, based on the first axiom in rule 4 (‘ObjDom-ObjInv’) which says “Anything

that Ro something is an X”, we explain the Invs axiom as follows:

“X Ro Y” means the same as “Y So X”, from which it follows that “an X Ro

something” means the same as “something So an X”.

8.3 Evaluation of the Strategies

The aim of this study is to check whether the explanations for difficult rules generated from

the proposed strategies are more understandable than the original ones. The distribution

of the strategy-based explanations to be tested in this study is summarised in Table 8.1.

In this table, the number of explanations in a cell (i.e., the number of ‘X’(s)) depends on

whether the associated strategy is applicable for the associated rule, as well as the number

of sub-strategies within this strategy.

8.3.1 Materials

For each strategy-based or original explanation for a rule, we derived a deduction problem

in which both the premises and the entailment of the rule were given in the form of a

simple explanation, and the subjects were asked whether the explanation was correct.

The subjects were also asked to rank how difficult they found the question on a scale



138 Chapter 8. Strategy-Based Explanations for Hard Deduction Rules

Figure 8.1: A test problem devised from the original explanation of the deduction rule
‘DatSom-DatRng’ (rule 2 in Table 8.1)

from 5 (very easy) to 1 (very difficult). In each explanation, both the premises and the

entailment of the rule were given in English, replacing individual, class, and property

variables by fictional names, nouns, and verbs so that the readers would not be biased

by domain knowledge. Additionally, we used labels such as (a), (b) etc. to help subjects

locate the statements quicker. For example, the test problems devised from the original

explanation and the strategy-based explanation 1B (i.e., strategy 1 and using an if-then

statement) for rule 2 in Table 8.1 are shown in Figure 8.1 and Figure 8.2, respectively.

As in the our previous study described in Section 7.4, we checked for response bias by

including a number of control problems, as opposed to test problems, of two types: non-

entailment and trivial problems. In a non-entailment problem, the conclusion of the ex-

planation either included an object, a relationship, or both, that were not mentioned in the

premises, or was invalid given that the premises were true (for easy inferences only). The

correct answer for non-entailment problems was ‘No’, trivially. A trivial problem, in the

other hand, was one in which the test explanation was an obviously correct inference, so

the correct answer was, also trivially, ‘Yes’. As before, we used inferences with individuals

as trivial problems.

There were 23 strategy-based explanations plus 8 original explanations for 8 rules, so we
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Figure 8.2: A test problem devised from strategy 1B (using an if-then statement) for the
deduction rule ‘DatSom-DatRng’ (rule 2 in Table 8.1)

needed 31 test problems in total. Since this number was too large for a single study, we

split into two smaller studies. In the first study, we tested 13 strategy-based explanations

for the first two strategies (highlighted in Table 8.1), and 5 original explanations for the 5

associated rules (1, 2, 5, 7, and 8 in the table)—i.e., 18 test problems in total. We created

12 non-entailment and 5 trivial control problems for this study, resulting in 23/35 (66%)

positive and 12/35 (34%) negative problems.

In the second study, we tested 10 remaining strategy-based explanations for the last two

strategies, and 6 original explanations for the 6 associated rules (2-7 in Table 8.1)—i.e., 16

test problems in total. We also created 10 non-entailment and 2 trivial control problems,

resulting in 18/28 (64%) positive and 10/28 (36%) negative problems.

8.3.2 Method

Both of the studies were conducted on CrowdFlower, using the same set-up as with the

previous studies described in Chapter 7. We specified 70 responses per problem in each

study, but since we were only interested in responses in which all test problems were

answered, only responses of 55 subjects were selected in the first study, only responses of

54 subjects were selected in the second study, and none of these subjects participated in
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Figure 8.3: Subjects’ performance on control questions in the first study, sorted decreas-
ingly

Figure 8.4: Subjects’ performance on the control questions in the second study, sorted
decreasingly

both of the studies.

8.3.3 Control Questions

Figures 8.3 shows that for the 55 subjects that participated in the first study, 53 answered

70% or more of the control questions correctly, suggesting that they were performing the

task seriously. The responses of the other 2 subjects were discarded. Similarly, Figure 8.4

shows that 51 out of 54 subjects that participated in the second study answered 70% or

more of the control questions correctly, and hence, only their responses were considered

in our analysis.

8.3.4 Response Bias

For both studies, we obtained the same results as in previous studies for response bias.

Tables 8.3 and 8.4 show the absolute frequencies of the subjects’ responses ‘Yes’ (+Y) and
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Table 8.3: Distribution of the subjects’ responses—“Yes” (+Y) and “No” (−Y)—according
to their correctness—“Correct” (+C) and “Incorrect” (−C)—in the first study

+Y −Y TOTAL

+C 959 576 1535

−C 60 259 319

TOTAL 1019 835 1854

Table 8.4: Distribution of subjects’ responses—“Yes” (+Y) and “No” (−Y)—according
to their correctness—“Correct” (+C) and “Incorrect” (−C)—in the second study

+Y −Y TOTAL

+C 723 473 1196

−C 32 194 226

TOTAL 755 667 1422

‘No’ (−Y) for all problems—both control and test—in both studies. They also subdivide

these frequencies according to whether the response was correct (+C) or incorrect (−C).

Recall that for 66% of the problems in the first study and 64% of the problems in the

second study the correct answers were ‘Yes’, and for all the remaining problems they were

‘No’. In the first study, if subjects had a positive response bias we would expect an overall

rate much higher than 66%, but in fact we obtained 1,019/1,854 or 55%, suggesting no

positive response bias. Similarly, we would expect an overall rate much higher than 64%

in the second study, but in fact we obtained 755/1,422 or 53%, suggesting no positive

response bias in this study.

The distributions of incorrect answers in Tables 8.3 and 8.4 showed that subjects in both

studies were more likely to err by rejecting a valid conclusion than by accepting an invalid

one (with 259 responses in −Y−C compared with an expected value of 319*835/1,854=144

in the first study, and 194 responses in −Y−C compared with an expected value of

226*667/1,422=106 in the second study), findings confirmed statistically by the extremely

significant associations between response (±Y) and correctness (±C) on 2×2 chi-square

tests (χ2=203.4, df=1, p<0.0001 for the first study; and χ2=163.6, df=1, p<0.0001 for

the second study).
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Table 8.5: Results of the first study; for each test problem, the absolute frequency of
correct answers and the associated percentage are provided, following by the mean of
difficulty ratings (on a scale from 5 (very easy) to 1 (very difficult))

ID Name Deduction Rule Original Strategy 1A Strategy 1B Strategy 2
Explanation (Disjunction) (If-Then)

1 ObjAll X ≡ ∀Ro.Y 7/53(13.2%) 35/53(66.0%)
→ ∀Ro.⊥ v 3.8 3.8

2 DatSom- X v ∃Rd.Dr0 40/53(75.5%) 43/53(81.1%) 46/53(86.8%) 41/53(77.4%)
DatRng ∧ Rng(Rd, Dr1), 3.3 3.3 3.8 3.5

Dr0 & Dr1 are disjoint
→ X v ⊥

5 ObjVal- X v ∃Ro.{i} 44/53(83.0%) 45/53(84.9%) 42/53(79.2%) 40/53(75.5%)
ObjVal- ∧ X v ∃Ro.{j} 4.0 3.6 3.8 3.7
DifInd- ∧ Dif(i, j)
ObjFun ∧ Fun(Ro)

→ X v ⊥
7 ObjMin- X v≥ nRo.Y , n > 1 40/53(75.5%) 42/53(79.2%) 43/53(81.1%) 40/53(75.5%)

ObjFun ∧ Fun(Ro) 3.6 3.8 4.0 3.5
→ X v ⊥

8 ObjSom- X v ∃Ro.Y 38/53(71.7%) 51/53(96.2%) 43/53(81.1%) 42/53(79.2%)
Bot-1 ∧ Y v ⊥ 4.0 4.0 4.0 3.7

→ X v ⊥

8.3.5 Results of Study 1

Results of the first study are summarised in Table 8.5. Overall, the performance of the

participants on the original explanations was much better than that measured in our

previous study to measure the understandability of the rules (reported in Section 7.2).

Perhaps the slightly better verbalisations as well as the presentation of a rule as a simple

explanation in the present study helped the participants understand the relevant inferences

more easily.

For rule 1 (‘ObjAll’) in Table 8.5, we found no reliable difference in difficulty rank-

ing between the original explanation and explanation 1A (Wilcoxon Signed Ranks test,

Z=0.03, p=0.97). However, there was a reliable difference in subjects’ performance between

the two explanations (McNemar’s test, p<0.0001), and the subjects performed signific-

antly better on explanation 1A than on the original explanation. This result suggested

that most of the subjects thought that they had understood the original explanation but

they actually had not, and that strategy 1A is useful for explaining this rule to ordinary

people.

For rule 8 (‘ObjSom-Bot-1’) in Table 8.5, we found no reliable differences in difficulty

ranking among the four cases (Friedman’s test, χ2=4.80, p=0.19). However, there wer

statistically reliable differences in subjects’ performance among the four cases (Cochran’s

Q test, Q(3)=13.35, p=0.004). Pairwise comparisons using a McNemar’s test revealed
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that there were reliable differences between the following pairs: the original explanation

and 1A (p=0.002), 1A and 1B (p=0.008), and 1A and 2 (p=0.004); and 1A was the most

understandable. This suggested that 1A would be the best strategy for this rule.

On the other hand, for rule 2 (‘DatSom-DatRng’) in Table 8.5, there were statistically

reliable differences in difficulty ranking among the four cases (Friedman’s test, χ2=10.71,

p=0.013). Pairwise comparisons using a Wilcoxon Signed Ranks test revealed that the

difficulty ranking of explanation 1B was reliably greater than that of the original explana-

tion (Z=3.26, p=0.001), 1A (Z=3.14, p=0.002), and 2 (Z=2.12, p=0.034), but there were

no reliable differences between all other pairs.

For subjects’ performance, we found no reliable differences among the four cases (Cochran’s

Q test, Q(3)=3.07, p=0.38). This suggested that the participants perceived strategy-based

explanation 1B as the easiest one among the four cases, even though it did not really

facilitate their understanding. Similar results were found for rules 5 (‘ObjVal-ObjVal-

DifInd-ObjFun’) and 7 (‘ObjMin-ObjFun’) in Table 8.5.

In conclusion, we chose strategy 1A—that is, explicating the premises by using disjunctions

to cancel the presuppositions—to generate explanations for rules 1 and 8. For rules 2,

5, and 7, although the participants perceived strategy 1B as easier than the others, no

improvement in performance were found. Therefore, we also chose strategy 1A for these

rules in order to generate explanations that were consistent with those for rules 1 and 8.

8.3.6 Results of Study 2

Results of the second study are summarised in Table 8.6. As in the first study, the

performance of the participants on the original explanations was better than that measured

in our previous study (reported in Section 7.2), and this might be caused by the use of

slightly better verbalisations as well as the presentation of a rule as a simple explanation

in this study.

For rules 3, 4, and 6, we tested the application of the two strategies 3 and 4 on the common

axiom Invs(Ro, So) in their premises. Cochran’s Q tests revealed no reliable differences in

subjects’ performance among the three cases in each rule (Q(2)=0.32, p=0.85 for rule 3;

Q(2)=1.90, p=0.39 for rule 4; and Q(2)=4.52, p=0.10 for rule 6). However, the comparison

of subjects’ performance by strategies (original, 3, and 4) across the three rules (3, 4, and 6)
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Table 8.6: Results of the second study; for each test problem, the absolute frequency
of correct answers and the associated percentage are provided, following by the mean of
difficulty rankings (on a scale from 5 (very easy) to 1 (very difficult))

ID Name Deduction Rule Original Strategy 3 Strategy 4
Explanation

2 DatSom-DatRng X v ∃Rd.Dr0 39/51(76.5%) 40/51(78.4%)
∧ Rng(Rd, Dr1), 3.4 3.3
Dr0 & Dr1 are disjoint
→ X v ⊥

3 ObjAll-ObjInv X v ∀Ro.Y 43/51(84.3%) 42/51(82.4%) 44/51(86.3%)
∧ Invs(Ro, So) 3.5 3.5 3.4
→ ∃So.X v Y

4 ObjDom-ObjInv Dom(Ro, X) 41/51(80.4%) 39/51(76.5%) 44/51(86.3%)
∧ Invs(Ro, So) 3.7 3.2 3.6
→ Rng(So, X)

5 ObjVal-ObjVal- X v ∃Ro.{i} 36/51(70.6%) 28/51(54.9%)
DifInd-ObjFun ∧ X v ∃Ro.{j} 3.6 3.6

∧ Dif(i, j)
∧ Fun(Ro)
→ X v ⊥

6 ObjRng-ObjInv Rng(Ro, X) 36/51(70.6%) 38/51(74.5%) 44/51(86.3%)
∧ Invs(Ro, So) 3.5 3.3 3.6
→ Dom(So, X)

7 ObjMin-ObjFun X v≥ nRo.Y , n > 1 37/51(72.5%) 33/51(64.7%)
∧ Fun(Ro) 3.5 3.5
→ X v ⊥ 38/51(74.5%)

3.7

by using a Friedman’s test revealed statistically reliable differences among the three cases

(χ2=6.72, p=0.04). Pairwise comparisons using a Wilcoxon Signed Ranks test showed

the subjects performed significantly better on explanations of strategy 4 than those of

strategy 3 (Z=2.36, p=0.02), but equally well between the original explanations and those

of strategy 3 (Z=0.42, p=0.97), the original explanations and those of strategy 4 (Z=1.57,

p=0.17). This suggested that among the three cases 4 was the most suitable strategy for

these rules.

Similarly, the comparison of difficulty ranking by strategies across the three rules (by

using a Friedman’s test) revealed statistically reliable differences among the three cases

(χ2=11.35, p=0.003). Pairwise comparisons using a Wilcoxon Signed Ranks test showed

that the subjects found the original explanations significantly easier than those of strategy

3 (Z=3.20, p=0.001), and those of strategy 4 were significantly easier than those of strategy

3 (Z=2.04, p=0.04<0.05). This meant that the subjects perceived that strategy 3, which

paraphrased an Invs(Ro, So) axiom as “If something Ro something then the latter So

the former; additionally, if something So something then the latter Ro the former”, as

the most difficult strategy among the three cases—probably because this paraphrase was

longer than others.

For rules 2, 5, and 7 in Table 8.6, we tested whether the new paraphrases for difficult
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axioms improved subjects’ performance and/or reduced their difficulty ranking on the

baseline of the original explanations. We found no reliable differences in subjects’ per-

formance between the original explanation and explanation 3 in rules 2 (p=1.00), and 5

(p=0.06) (by using McNemar’s tests). We also found no reliable differences in difficulty

ranking between the two explanations in rules 2 (Z=0.86, p=0.39), and 5 (Z=0.51, p=0.61)

(by using Wilcoxon Signed Ranks tests). Similarly, there were no reliable differences in

subjects’ performance (Cochran’s Q test, Q(2)=2.21, p=0.33) as well as difficulty ranking

(Friedman’s test,χ2=3.11, p=0.21>0.05) among the three explanations in rule 7.

In conclusion, we chose strategy 4—i.e., contextualising Invs(Ro, So) axioms—to generate

explanations for rules 3, 4, and 6. For rules 2, 5, and 7, the original explanations would

be used.

8.4 Discussion and Conclusions

We have investigated the effectiveness of special strategies for explaining deduction rules

that are shown to be difficult in Chapter 7, and found evidence that strategies can be bene-

ficial. Specifically, for rule 2 (‘ObjAll’) in Table 8.1 which yields, for instance, “Everything

that has no rating at all is a good movie” from “A good movie is anything that has only four

stars as ratings”, strategy 1A helps cancel the presupposition caused by the word ‘only’

(that a good movie always has at least a four-star rating) by explicating the premise as

“A good movie is anything that has no ratings at all, or has only four stars as ratings”.

For rule 8 (‘ObjSom-Bot-1’), which yields, for instance, “There are no children” from

“Every child likes a dragon” and “There are no dragons”, strategy 1A also helps to cancel

the presupposition caused by the word ‘every’ (that there exist at least a child) by explic-

ating the premise as “Every child likes a dragon, or there are no children at all”. This

strategy can help rules 5 (‘ObjVal-ObjVal-DifInd-ObjFun’) and 7 (‘ObjMin-ObjFun’) in

the same way.

Rules 3 (‘ObjAll-ObjInv’), 4 (‘ObjDom-ObjInv’), and 6 (‘ObjRng-ObjInv’) contain an

Invs axiom (verbalised as, for instance, ““X owns Y” means the same as “Y is owned by

X””) in their premises. For these rules, strategy 4 which contextualises Invs axiom as

““X owns Y” means the same as “Y is owned by X”, from which its follows that “a person
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Table 8.7: Explanations for difficult deduction rules

ID Name Deduction Rule Explanation Template
1 ObjAll X ≡ ∀Ro.Y An X is anything that Ro nothing at all, or Ro only Y s.

→ ∀Ro.⊥ v →Everything that Ro nothing at all is an X.
2 DatSom- X v ∃Rd.Dr0 Every X Rd a Dr0, or there are no Xs at all.

DatRng ∧ Rng(Rd, Dr1) Any value that something Rd is a Dr1.
Dr0 & Dr1 are disjoint Dr0 values are not Dr1 values.
→ X v ⊥ →Nothing is an X.

3 ObjAll- X v ∀Ro.Y Every X Ro only Y s.
ObjInv ∧ Invs(Ro, So) “X Ro Y” means the same as “Y So X”, from which it follows

→ ∃So.X v Y that “an X Ro a Y ” means the same as “a Y So an X”.
→Everything that So an X is a Y .

4 ObjDom- Dom(Ro, X) Anything that Ro something is an X.
ObjInv ∧ Invs(Ro, So) “X Ro Y” means the same as “Y So X”, from which it follows

→ Rng(So, X) that “an X Ro a Y ” means the same as “a Y So an X”.
→Anything that something Ro is an X.

5 ObjVal- X v ∃Ro.{i} Every X Ro i, or there are no Xs at all.
ObjVal- ∧ X v ∃Ro.{j} Every X Ro j, or there are no Xs at all.
DifInd- ∧ Dif(i, j) i and j are different individuals.
ObjFun ∧ Fun(Ro) Everything Ro at most one thing.

→ X v ⊥ →Nothing is an X.
6 ObjRng- Rng(Ro, X) Anything that something Ro is an X.

ObjInv ∧ Invs(Ro, So) “X Ro Y” means the same as “Y So X”, from which it follows
→ Dom(So, X) that “an X Ro a Y ” means the same as “a Y So an X”.

→Anything that So something is an X.
7 ObjMin- X v≥ nRo.Y , n > 1 Every X Rd at least n Drs, or there are no Xs at all.

ObjFun ∧ Fun(Ro) Everything Rd at most one value.
→ X v ⊥ →Nothing is an X.

8 ObjSom- X v ∃Ro.Y Every X Ro a Y , or there are no Xs at all.
Bot-1 ∧ Y v ⊥ Nothing is a Y .

→ X v ⊥ →Nothing is an X.

owns a pet” means the same as “a pet is owned by a person”” is found to be effective.

For other rules and cases, the original explanations are used.

Based on these above analyses, we have worked out new explanation templates for the 8

difficult rules, as presented in Tables 8.7. There exist alternative methods to paraphrase

difficult axioms as well as elucidate these rules. Further work is needed to investigate such

methods and compare with ours.



Chapter 9

Generation of Explanations

This chapter describes the generation of English explanations for entailments from OWL

ontologies. The generation process includes three phrases, each of which is described

separately in a section of this chapter. Section 9.1 describes algorithms for verbalising

individual axioms in OWL. Section 9.2 briefly describes algorithms for verbalising our

deduction rules—both normal and difficult ones. How these verbalisations and a proof

tree are combined into a full explanation for an entailment is described in Section 9.3.

Finally, the implementation of our explanation system and the current user interface of

the system are briefly described in Section 9.4.

9.1 Generation of Axiom Verbalisations

9.1.1 Lexicons for Atomic Entities

To generate verbalisations for axioms in an OWL ontology, the lexical entries of all atomic

entities in the ontology, including named classes, individuals, properties, data types, and

literal values, need to be first computed. We use the algorithm implemented in the SWAT

verbaliser [PT10, WTP11] to compute this information based on either entities’ labels or

identifier names. If an entity has at least one label in English, this label is used as the

input string to compute the lexical entry. Otherwise, its identifier name is used. From

147
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Table 9.1: Categories for lexicons

Atomic Entity Category Examples

Class NOUN person, animal
Individual NAME John, London
Property VERB owns, has as height
Data type NOUN string, integer
Literal NAME false, “6 feet”

the input string, non-alphanumeric characters are eliminated, and the string is split into

words.

As in the SWAT verbaliser [PT10, WTP11], each lexical entry is classified into a category.

There are three categories for atomic entities, namely noun, verb, and proper noun (or

name). The classification of a lexical entry into a category is done automatically based on

the type of the entity, as summarised in Table 9.1.

Since identifier names and labels of atomic entities are asserted by human ontology de-

velopers for their own purposes but not for linguistics purposes, the resulting lexical entries

are unsuitable for verbalisation in some cases. They may contain abbreviations (e.g., the

noun “CS course”), be grammatically incorrect (e.g., the noun “parental advisory sugges-

ted” and the verb “has age”), or both (e.g., the noun “r rated”). Additionally, it is quite

common that an entity may have multiple English labels, and some labels are better than

others. Therefore, the capability of selecting the best English label among alternatives as

well as correcting problematic lexical entries would help to improve the quality of the res-

ulting verbalisations. However, this is a tricky problem and requires serious investigation.

Since this is not the focus of the work presented in this thesis, we followed the approach

of the SWAT verbaliser which provides only minimal improvement for the lexical entries.

Specifically, we converted verb lexical entries of the form “has + NOUN” into “has as +

NOUN” (e.g., “has height” to “has as height”), and “NOUN + of” into “is a/an NOUN

of” (e.g., “owner of” to “is an owner of”). For proper noun lexical entries, we automatic-

ally inserted the article “the” in front of names with three or more words (e.g., “Golden

Gate Bridge” to “the Golden Gate Bridge”).
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Table 9.2: Templates for OWL constructors; the category ‘S’ means a sentence, ‘NP’
means a noun phrase, ‘VP’ means a verb phrase, ‘DET’ means a determiner, ‘CNOUN’
means a compound noun, ‘CONJ’ is a conjunction, ‘RPNOUN’ means a relative pronoun,
‘ADV’ means an adverb; the mode ‘s’ of verbs and verb phrases means singular, and ‘p’
means plural; A and B are named classes, C and D are complex class expressions

OWL Category Grammar
Constructor
A v B S NP[DET(‘every’), NOUN(A)], VPs(B)

A v C S NP[DET(‘every’), NOUN(A)], VPs(C)

C v D S NP[CNOUN(‘everything’), RPNOUN(‘that’), VPs(C)], VPs(D)

> v A S NP[CNOUN(‘everything’)], VPs(A)

A v ⊥ S NP[CNOUN(‘nothing’)], VPs(A)

where:

- VPs(A) → VERBs(‘is’), NP[DET(‘a’), NOUN(A)]

- VPp(A) → VERBp(‘are’), NP[DET(‘’), NOUN(A)]

- Templates for VPs(C) and VPp(C) vary depending on the type of C.

A u B VPs VERBs(‘is’), CONJ(‘both’), NP[DET(‘a’), NOUN(A)], CONJ(‘and’), NP[DET(‘a’), NOUN(B)]

VPp VERBp(‘are’), CONJ(‘both’), NP[DET(‘’), NOUN(A)], CONJ(‘and’), NP[DET(‘’), NOUN(B)]

A u C VPs VERBs(‘is’), NP[DET(‘a’), NOUN(A)], RPNOUN(‘that’), VPs(C)

VPp VERBp(‘are’), NP[DET(‘’), NOUN(A)], RPNOUN(‘that’), VPp(C)

C uD VPs VPs(C), CONJ(‘and’), VPs(D)

VPp VPp(C), CONJ(‘and’), VPp(D)

∀RpA VPs VERBs(Rp), ADV(‘only’), NP[DET(‘’), NOUN(A)]

VPp VERBp(Rp), ADV(‘only’), NP[DET(‘’), NOUN(A)]

∀RpC VPs VERBs(Rp), ADV(‘only’), CNOUN(‘things’), RPNOUN(‘that’), VPp(C)

VPp VERBp(Rp), ADV(‘only’), CNOUN(‘things’), RPNOUN(‘that’), VPp(C)

9.1.2 Templates for OWL Constructors

To generate verbalisations for OWL axioms, each OWL constructor is mapped into a

template which corresponds to a component in English grammar. As in the SWAT verb-

aliser [PT10, WTP11], each class constructor is mapped to a verb phrase (VP) template,

and each axiom constructor is mapped to a sentence (S) template. However, instead of

mapping class constructors into singular-mode NPs and VPs (as in the SWAT verbaliser),

we map them into phrases in both singular and plural modes in order to grammatically

generate appropriate sentences and phrases in an explanation. As an example, Table 9.2

shows the mapping of three OWL constructors, one for axiom and two for class construct-

ors, to templates for English. In this way, the verbalisation for an OWL axiom, or even

an OWL class expression, can be generated in the form of a syntactic tree. This is bene-

ficial for explanation purposes as verbalisations can be modified easily to fit into the final

explanations.
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9.2 Generation of Explanations for Steps

Generally speaking, there are two approaches to scientific explanations, namely top-down

and bottom-up [Fri74, Sal84, Kit85]. According to Kitcher [Kit85], the top-down approach

proceeds toward “the identification of causes” in particular states or events whereas the

bottom-up approach proceeds toward “stitching together results about the causation of

individual states and events”. This classification is also true in our case. Given a deduc-

tion, two types of explanations can be generated: a top-down explanation starts from the

conclusion to the premises of the rule, whereas a bottom-up explanation starts from the

premises to the conclusion. Which is best might depend on circumstances. However, as

the first attempt to this problem, we focus only on generating a top-down explanation for

a rule.

Lipton [Lip01] argued that one feature of good scientific explanations is the distinction

between “knowing that a phenomena occurs and understanding why it does”—which is

similar to the distinction between grasping the conclusion and understanding the explan-

ation of why it follows from the premises. Therefore, we include both of these separately

in an explanation. The explanation template for each deduction is based on the verbal-

isation of the rule worked out in Chapter 6. For the ten most difficult rules identified in

Chapter 8, their explanation templates follow the verbalisations worked out in Chapter 8.

As an example, the following template is what the top-down explanation for rule ‘ObjSom-

ObjDom’ (rule 36 in Table 4.3) looks like:

The statement “every X is a Y ” is implied because:

- every X Ro a Z, and

- anything that Ro something is a Y .

As will be explained shortly, nodes within a proof tree, and so those of individual inference

steps, are labelled with “axiom 1”, “axiom 2” etc. (for terminal nodes or lemmas) and

“(a)”, “(b)”, etc. (for non-terminal nodes or premises), before generating an explanation.

In an inference step associated with rule “ObjSom-ObjDom”, for example, if the conclusion

and the second premise are labeled with “(a)” and “(b)”, and the first premise is labelled

with “axiom 1”, then its explanation template would be (the premise labelled with “(b)”
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is a non-terminal node and its explanation will be presented after this explanation):

Statement (a) is implied because:

- every X Ro a Z (from axiom 1), and

- anything that Ro something is a Y (b).

If both of the premises are terminal nodes and are labelled with “axiom 1” and “axiom

2” (both are premises), then the explanation template for this inference step would be:

Statement (a) is implied because:

- every X Ro a Z (from axiom 1), and

- anything that Ro something is a Y (from axiom 2).

9.3 Generation of Complete Explanations

In our work, an explanation is generated from a given proof tree. As in the generation of

explanations for deduction rules, there are two approaches for the generation of explana-

tions for proof trees, namely top-down and bottom-up. In the scope of this thesis, we focus

only on top-down explanations in which explanations for individual steps also conform to

the top-down approach.

The main algorithm GenerateTopDownExplanation(P ) for generating an explanation

is summarised in Algorithm 3, where P is the input proof tree. It first traverses the tree

to compute appropriate labels, one for each node in the tree. The purpose of these labels

is to help readers locate the statements quicker as well as to link the statements with the

premises in the original justification. Specifically, labels for terminal nodes are in the form

of “axiom n” where n is the index of the associated axiom in the original justification, and

labels for non-terminal nodes are of the form “(a)”, “(b)”, and so on.

Algorithm 3 GenerateTopDownExplanation(P )

1: Explanationcomplete ← {}
2: ComputeTopDownLabelsByNode(P.root)
3: ComputeATopDownExplanationByNode(P.root, Explanationcomplete)
4: return Explanationcomplete
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Based on the computed labels, which are stored within the nodes, our main algorithm then

traverses the tree again to generate explanations for individual inference steps, one at each

non-terminal node, based on the associated deduction rules. With this design, explanations

for individual steps can be flexibly modified in order to provide a good explanation. Our

algorithm to generate individual explanations is summarised in Algorithm 4.

Algorithm 4 ComputeTopDownExplanationByNode(Node,Explanation)

1: if Node! = null and !Node.isTerminal() then
2: Rule← Node.getAppliedRule()
3: if Rule! = null then
4: SortedChildNodes← Rule.sortPremises(Node.getChildren())
5: Explanationincomplete ← Rule.computeATopDownExplanation(Node, SortedChildNodes)
6: Explanation.add(Explanationincomplete)
7: for ChildNode ∈ SortedChildNodes do
8: ComputeTopDownExplanationByNode(ChildNode, Explanation)
9: end for

10: end if
11: end if

9.4 Implementation and User Interface

We have implemented a Java program that can automatically generate one or more ex-

planations for a given entailment of an OWL ontology. This program is currently a plug-in

of the SWAT verbaliser [PT10, WTP11], so ontology developers can use it as a tool for

checking and debugging while developing their ontologies. The number of explanations

for an entailment depends on the number of its justifications—for each justification, only

one explanation (that the program identifies as the most understandable among a set of

alternatives) is shown to end-users.

The main steps of the generation of explanations are described in Figure 1.2. The program

starts from the justifications of the entailment, which can be computed using the module

implemented by Horridge [KPHS07]. Thereafter, it constructs one or more proof trees for

each justification by using the rule set described in Chapter 4. This program retains all of

the justifications of the entailment because each of them may show a different reason why

the entailment follows from the ontology. 1 Recall that our deduction rules may result

in zero, one, or multiple proof trees for a given justification, but only one tree is selected

1One might argue that it is better to select only one best proof tree, and so only one best explanation for
each entailment. However, we find that in many cases, different justifications of a problematic entailment
show different errors or mistakes. This information might suggest different corrections for the ontology,
so is useful for the repairing purposes. At this stage, it is up to the readers to decide which justifications
and/or explanations are useful for them.
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for each justification—if one tree is found then it is selected; if multiple trees are found,

the program uses the understandability model (described in Chapter 7) to select the most

understandable one. In the case of no tree being found (because of the limited coverage of

the rule set), the system simply presents the justification in which both the conclusion and

the premises are verbalised. From each selected proof tree, the system plans and generates

an English explanation.

As discussed in Section 5.3, the exhaustive search algorithm used in the algorithm for

constructing proof trees is a computational limitation of our system. Therefore, we set

a time out of 60 seconds for this computation in order to guarantee the practical use of

our explanation system as a plug-in for interactive real-time debugging purposes. Con-

sequently, there would be cases in which no proof tree would be computed because of this

time out setup. In such cases, the system would simply present the justification in which

both the conclusion and the premises are verbalised.

In the output interface, each justification is presented in a tab. These justifications are first

sorted by whether they have proof trees—that is, justifications that have at least a proof

tree will precede those that have no proof trees. Among the former group, justifications

are sorted in order of decreasing understandability (of their best proof trees)—i.e., the

easiest one is shown first. Currently, both the proof trees and the English explanations

are presented in the interface. Figure 9.1 shows a screen shot of the output interface of

our program for an entailment that has three justifications.

9.5 Conclusions and Future Work

We have designed and implemented a program that can automatically generate one or

more English explanations for an entailment from an OWL ontology, one based on each

justification. Currently, an explanation is generated in the form of a paragraph that ex-

plains all inference steps linking from the premises to the conclusion but in the top-down

approach—i.e., stating the conclusion then explaining why it follows. For large justifica-

tions, explanations generated in this way are still long, and may explain a repeated rule

multiple times (when the rule occurs twice or more times within a proof tree). Therefore,

in addition to enhancement of proof trees, enhancement of the planning are required to

make the final explanations concise, fluent, and readable, and the main inference steps
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Figure 9.1: A screen shot of the output of our explanation system for the entailment
LectureTaking4Course v ⊥ of the university ontology

more visible for end-users.



Chapter 10

Preliminary Evaluation

For the evaluation of our explanation tool, we want to find out (a) whether it is helpful for

domain experts as well as knowledge engineers in debugging OWL ontologies (compared

to the baseline of justifications for entailments), and (b) if so, how the final explanation

is best set up (i.e., whether the proof tree or the English explanation is best, or we need

to give both of them).

As in the study conducted by Kalyanpur et al. [KPSH05, Kal06] to evaluate debugging

features implemented in the Swoop ontology editor, designing a serious study towards these

purposes is very difficult. Before the two above-mentioned questions can be investigated,

at least all of the following conditions must be met:

Thorough training It is crucial that the users, whether domain experts or knowledge

engineers, are familiar with reasoning with OWL ontologies as well as how to use

the explanation tool for debugging purposes. This means that they need to be

thoroughly trained on these skills before participating in the study.

High standard of verbalisation It is also crucial that the users can understand exactly

what each axiom or entailment means. This holds whether the axiom or entailment

is expressed in English. A serious study would therefore require test ontologies to

have a very high standard of English verbalisation1.

1This condition was not considered in Kalyanpur et al.’s study [KPSH05, Kal06].
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Familiar topics It is also crucial that the users can distinguish certainly correct axioms

from uncertain ones. Without this condition, people have no way to identify which

axioms may contain mistakes, as well as how to correct them. This condition requires

the users to have a relatively good understanding of the domain. Therefore, test

ontologies should be in topics that are familiar to the users.

Additionally, justifications need to vary in both size and complexity in order to identify in

which cases explanations are helpful for the users. The think-aloud protocol, or recording

(e.g., video recording or eye-tracking recoding) should be employed to determine whether

users understand and utilize explanations. Since this study focuses on the debugging

process, our test ontologies should contain mistakes that lead to one or more undesired

entailments, some of which are used as test entailments.

Given the complexity of designing and conducting a serious study, in the scope of this

thesis, we conduct just a preliminary evaluation study to collect users’ comments on

different types of explanations as well as the design of the study (e.g., the selection of test

ontologies, entailments, verbalisations etc.). Specifically, we want to compare subjects’

performance as well as their difficulty ranking on ontology debugging tasks when one of

the following five types of explanations for entailments is provided:

1. Only the entailment and its justification (verbalised in English)

2. A proof tree in which all nodes are verbalised but difficult steps are not further

elucidated

3. An English explanation in which difficult steps are not further elucidated

4. A proof tree with all nodes verbalised and difficult steps highlighted and elucidated

5. An English explanation in which difficult steps are further elucidated—i.e., the ex-

planation generated by our system

Among these explanation types, the first one is our baseline; the remaining four are to

compare between proof trees or English explanations in two cases: with and without

further elucidations for difficult steps. This chapter describes the set-up and results of this

study, followed by the discussion of what have been learnt from it for serious evaluation

studies that will be conducted in the future.
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10.1 Materials

As mentioned before, the aim of this study is to compare subjects’ performance and their

difficulty rankings, and collect their comments on ontology debugging tasks when five

different types of explanations are provided. As test ontologies, we selected five real world

ontologies of various but familiar topics that included undesired entailments (i.e., incorrect

entailments) from our corpus (described in Chapter 4). They are:

1. “Movie” ontology, which describes categories of movies

2. “University” ontology, which describes positions in universities

3. “Multi-modal Yard” ontology, which describes the physical and abstract elements of

a yard such as containers, devices etc.

4. “Particle” ontology, which describes basic particles such as neutrons, protons etc.

5. “Koala” ontology, which describes features of koalas

From each ontology, an undesired entailment and one of its justification were selected as

a test inference. These test inferences are listed in Table 10.1.

For each test ontology and the associated test inference, we devised five test problems. In

each problem, part of the ontology (that caused the undesired entailment to follow)2, the

entailment, and an explanation were given in English, and the subjects were asked whether

the explanation makes it clear why the entailment was literally drawn from the ontology

by a computer program. The subjects were also asked to rank how difficult they found

the question on a scale from 5 (very easy) to 1 (very difficult), identify and correct the

axiom(s) that they thought to be the main cause of the entailment, and finally, provide

their comments on the overall problem. The only difference between the five problems

(from the same test ontology and inference) lay in the explanation—i.e., in each problem,

the explanation was presented in one of the five types mentioned above. Since there were

five test inferences, a total of 25 test problems were devised. As an example, Figures 10.1-

10.5 show five explanations of the five types for the undesired entailment “Every rating is

a movie” of the Movie ontology.

2We stipulated that exactly ten axioms from an ontology would be given.
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Figure 10.1: The baseline explanation for the undesired entailment “Every rating is a
movie” of the Movie ontology, given in the form of the verbalisation of the entailment and
its justification

Figure 10.2: The explanation for the undesired entailment “Every rating is a movie” of
the Movie ontology, given in the form of a proof tree, but without further elucidations for
difficult inferences

Figure 10.3: The explanation for the undesired entailment “Every rating is a movie” of
the Movie ontology, given in the form of an English explanation, but without further
elucidations for difficult inferences
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Figure 10.4: The explanation for the undesired entailment “Every rating is a movie” of
the Movie ontology, given in the form of a proof tree with further elucidations for difficult
inferences, where possible

Figure 10.5: The explanation for the undesired entailment “Every rating is a movie” of
the Movie ontology, given in the form of an English explanation with further elucidations
for difficult inferences, where possible
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Table 10.1: The list of inferences tested in the preliminary evaluation study, the indexes used in the justifications are the indexes of the axioms in the
test ontologies used in the study

ID Ontology Entailment Justification
1 Movie Rating 1.DecentMovie ≡ ∀hasRating.ThreeStar

v 2.Dom(hasRating,Movie)
Movie 6.DecentMovie v StarRatedMovie

7.StarRatedMovie vMovie
2 University HCIStudent 5.HCIStudent v ∃researchesInto.HCITopic u ∃supervisedBy.CSProfessor

v 6.CSProfessor v FacultyMember u ∀supervises.AIStudent
⊥ 9.Invs(supervises, supervisedBy)

10.Dis(HCIStudent,AIStudent)
3 Multi-modal Yard OfficeBuilding 1.Invs(mountedOn, hasDevice)

v 2.Dom(mountedOn, SupplementaryDevice)
⊥ 3.FireAlarmSystem v ∃hasDevice.SmokeAlarm

9.OfficeBuilding v ∃equippedWith.F ireAlarmSystem
10.Dis(SmokeAlarm, SupplementaryDevice)

4 Particle TetraNeutronNucleus 2.Neutron v= 1hasPart.UpQuark
v 5.TetraNeutronNucleus v= 4madeUpOf.Neutron
⊥ 9.UpQuark v= 2hasElectricalCharge.PositiveCharge

10.Fun(hasElectricalCharge)
5 Koala NorthernKoala 1.Koala vMarsupial

v 2.Koala v ∃hasHardWorkingAttribute.{False}
⊥ 5.NorthernKoala ≡ Koala u lives.NorthernAreaInAustralia

7.Dom(hasHardWorkingAttribute, Person)
10.Dis(Marsupial, Person)
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Table 10.2: Distribution of test problems into five studies, the number in each cell is the
identifier of the associated study

Explanation Explanation Explanation Explanation Explanation
1 2 3 4 5

Inference 1 2 3 4 5
1

Inference 5 1 2 3 4
2

Inference 4 5 1 2 3
3

Inference 3 4 5 1 2
4

Inference 2 3 4 5 1
5

As in previous studies, control questions are used to filter ‘scammers’. In this study, a

control question is an extra question presented within a test problem, after the ontology

but before the test questions. In this question, the subjects are asked whether a statement

can be literally inferred from the ontology. The inference in a control question is often

trivial, and the correct answer can be either “Yes” or “No”. Figure 10.6 shows a test

problem used in our study. In this problem, the first question is the control one, and its

correct answer is “No”; the explanation is of the first type—that is, only the entailment

and its justification (verbalised in English) are provided.

Since there were 25 test problems and each problem was quite long, we divided them into

five smaller studies, each of which included five test problems. The distribution of the

test problems into studies is shown in Table 10.2. In this way, none of the subjects could

work on more than one test problem of either the same explanation type or the same test

inference, so the ordering side effect could be avoided. Additionally, subjects’ performance

and their difficulty ranking by explanation types or test inferences were comparable.

In addition to the test problems, three control problems, as opposed to test problems, were

devised in order to enable the use of CrowdFlower’s quality control service. These control

problems were designed to resemble test problems but all questions (both control and test)

were obvious to subjects who did the test seriously. These problems were devised from

three additional ontologies of familiar topics, namely “Pizza”, “Economy”, and “Car”

(created by ourselves). As an example, Figure 10.7 shows a control problem used in this

evaluation.

In summary, we conducted five small studies, each of which consisted of five test problems

and three control problems. Among the eight control questions in each study (in both test

and control problems), three of them had the correct answer “Yes”, and the remaining

questions had the correct answer “No”.
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Figure 10.6: A test problem devised for the undesired entailment “Every rating is a movie”
from the Movie ontology
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Figure 10.7: A control problem devised for the undesired entailment “Nothing is an ice
cream” from the ontology “Pizza.owl”
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Figure 10.8: Subjects’ performance on control questions in all five studies

10.2 Method

We used the usual procedure that was applied to all our previous studies. In our studies,

each subject was required to answer all questions in eight problems of the associated study,

and no subject was allowed to participate in more than one study. We set up to collect

the responses of exactly 10 subjects for each study, and so 50 subjects in total. Most of

them reported as having a basic understanding of logic, but not being familiar with OWL.

10.3 Control Questions

Figures 10.8 shows that for the 50 subjects that participated in our five studies, all of

them answered 75% or more of the control questions correctly, suggesting that they were

performing the tasks seriously.

10.4 Results

The task required subjects to make three judgements, which we analysed separately: (1)

whether the explanation was useful; (2) which axiom was problematic; and (3) how this ax-

iom should be corrected. It should be noted that for each test inference the main inference

that caused the undesired entailment to follow always involved two axioms in the ontology.

Therefore, when analysing the identification of the problematic axiom(s), we accepted all

answers that selected any of these axioms, or both of them. Similarly, when analysing the

corrections, changes of any kind that could help to cancel the undesired entailment were

accepted, regardless of whether the resulting statements were true. However, we classi-
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fied subjects’ corrections into four categories—they are: (i) change the axiom correctly,

(ii) remove the axiom correctly, (iii) provide no correction, and (iv) make inappropriate

correction.

The results are summarised in Table 10.3. Overall, we found no evidence of statistically

reliable differences among the five conditions, perhaps because of the complications men-

tioned in the introduction to the chapter and the small number of participants in each

study. However, we found improvement when comparing explanation type 5 (i.e., text

explanations with elucidation—they were outputs of our explanation system) and type

1 (i.e., justifications verbalised—they were the baseline). In particular, there were more

participants who found text explanations with elucidation useful for understanding un-

desired entailments (41 participants for type 5 versus 35 participants for type 1); there

were more participants who fixed the mistaken axioms correctly (39 participants for type

5 versus 33 participants for type 1). Moreover, even though text explanation with elucid-

ation were often longer than verbalised justifications, most participants found that their

difficulty levels were similar (mean difficulty value of 2.7 for type 5 versus 3.0 for type 1).

This suggested a positive result on whether English explanations generated by our system

would be useful for debugging OWL ontologies.
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Table 10.3: Results of the preliminary evaluation study, “#Useful” means the number of subjects finding the given explanation useful, “Mean Difficulty”
means the mean of ranked difficulties (from 5 (very easy) to 1 (very difficult)), “#Change Correctly” means the number of subjects changing the
axiom correctly, “#Remove Correctly” means the number of subjects removing the axiom correctly, “#No Correction” means the number of subjects
providing no correction, and finally “#Change Inappropriately” means the number of subjects changing the axiom incorrectly

Explanation #Useful Mean #Change #Remove #No #Change
Type Difficulty Correctly Correctly Correction Inappropriately

1 35 3.0 27 6 5 0
(Justification)

2 41 3.0 35 6 3 4
(Proof Tree)

3 39 2.7 24 9 5 5
(Text)

4 33 2.6 26 10 2 2
(Proof Tree & Elucidation)

5 41 2.7 32 7 7 1
(Text & Elucidation)



10.5. Subjects’ Comments and Lessons Learnt 167

10.5 Subjects’ Comments and Lessons Learnt

Throughout the study, we also obtained a number of subjects’ comments on both the

design of the studies (e.g., the selection of test ontologies, entailments, verbalisations

etc.), as well as how the final explanation should be best set up. These comments are

listed in Appendix B. Generally speaking, the subjects’ comments fall into the following

categories:

1. Comments about specific axioms—e.g., that an axiom is unclear (such as comments

3 in 1.1, 2 in 4.1, 1 and 2 in 5.2, etc. in Appendix B)

2. Comments about ontology topics—e.g., that lack of domain knowledge make it diffi-

cult to follow the reasoning (such as comments 1 in 4.2 and 1 in 4.3), but familiarity

causes the use of subjects’ own assumption (such as comments 1 in 4.3)

3. Comments about specific inference steps—e.g., that an inference step is false (such

as comments 3 in 1.2, 5 in 1.3 etc.), or too difficult (such as comments 1, 3, and 4

in 1.4)

4. Comments about explanation presentations—e.g., that English explanations are dif-

ficult to understand (such as comments 3 in 2.3 and 3 in 5.3), that diagrams are

better than text (such as comments 4 in 4.2 and 3 in 5.3), or vice-versa (such as

comment 2 in 3.4)

For category (1), it seems clear that some axioms are simply not understood, mostly

because of weird English wordings. Phrases such as “has as rating only three-star ratings”

and “has as hard-working attribute some value” do no appear to be grammatically correct,

and so are misunderstood by most people3. If a premise or the conclusion of an inference is

not well-understood, the inference might appear invalid even if the correct logic is applied.

Perhaps ontologies that are developed using a natural language editor, or those of a domain

that has a grammar specially developed for it might help.

For category (2), the technical subject-matter of some test ontologies is still difficult for

untrained people to conceptualize concepts and reason with them. Terms likes “tetra-

neutron nucleus” and “up-quark” in the “Particle” ontology, for example, are so technical

3Verbalising OWL statements containing property names such as “hasRating” and “hasHardWorkingAt-
tribute” is a research topic in ontology verbalisation.
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that they might as well be nonsense words—they should be avoided in the future study.

Providing training to the participants is necessary to help them understand the context

of the test.

For category (3), it seems clear that the inference based on the trivial satisfaction of

the universal restriction in OWL is so difficult that some participants judge that it was

drawn by the computer program by mistake. As before, training might help to avoid such

misunderstanding.

For category (4), comments vary, suggesting that different people like different present-

ations of explanations, and the important thing is to cater for a variety of preferences.

Perhaps presenting the final explanations in both forms, as our explanation tool currently

does, is the best solution for this purpose.

In addition to the above-mentioned analyses, the subjects’ corrections and comments also

suggest that there exist cases in which mistakes in axioms are so obvious that the subjects

tend to fix these axioms locally without reading and utilizing the explanations. To detect

such cases, robust data gathering methods such as think aloud protocol and recording

would be helpful.

10.6 Related Work

Kalyanpur et al. [KPSH05, Kal06] conducted a study to evaluate debugging features im-

plemented in the Swoop/Pellet ontology editor. The subjects of this study were twelve

subjects that had experience with OWL and a good understanding of description logic

reasoning. Before the test, the subjects were trained on OWL, Swoop, and the debug-

ging tools. In the main test, the subjects were divided into four groups, each of which

performed a number of debugging tasks in a different condition—specifically, one group

with no debugging support, and each of the remaining groups with a different type of

debugging support. A weakness of this study was that it did not control for whether the

subjects were familiar with the concepts and knowledge within the test ontologies.
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10.7 Conclusions and Future Work

We have conducted a preliminary study to find out (a) whether our explanation tool is

helpful for debugging tasks in OWL ontologies (compared to the baseline of justifications

for entailments), and (b) how the final explanation is best set up (i.e., proof trees versus

English text). Although no reliable evidence of differences are found due to the limited

scope of this study, we have learnt a number of valuable lessons from subjects’ comments

(listed in Appendix B) in selecting the appropriate presentation for our explanations—

that is, presenting both proof trees and English explanations to cater for a variety of

preferences—as well as designing a serious evaluation study in the future—e.g., selecting

only familiar ontologies with a very high standard of verbalisation, providing training to

participants, using robust data gathering methods etc. This means that although we have

been able to test our ideas in theory, using the studies on the understandability of single

and two-step inferences, the conditions are not yet right to test them in practice—at least

not in the context of a serious ontology development project.
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Chapter 11

Conclusion

This thesis advances knowledge and techniques in generating explanations for entailments

in OWL ontologies. In the practical limitation of this thesis, we restrict to explanations

for non-trivial subsumption entailments between two class names—i.e., entailments of the

forms > v A (Everything is an A), A v ⊥ (Nothing is an A), and A v B (Every A is

a B), where A and B are class names. We use a set of deduction rules collected from a

corpus-based study of subsumption inferences in OWL ontologies to guide the generation

of explanations, focus on the indentification of difficult inferences and how to explain them

to end-users (instead of maximising the coverage of the rule set). Empirical studies are

used to assess the cognitive difficulty of OWL inferences, but we test with only ordinary

people who have limited knowledge of OWL and logic.

To conclude, this chapter first summarises our answers to the research questions set out in

the Introduction (in Section 11.1), and other key findings (in Section 11.2). The limitations

of the research are discussed in Section 11.3, followed by the discussion of the broader

significance made by this thesis in Session 11.4. Finally, questions raised for further

research in the future are discussed in Section 11.5.

171
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11.1 Answers to Research Questions

Our answers for the research questions set out in the Introduction are as follows:

Question 1: How can we find deduction patterns that are suitable for single inference

steps in an explanation (considering both frequency and level of understandability)?

Answer: We have found suitable patterns by identifying the most common deduction

patterns in a large corpus of real world ontologies, and choosing those that are frequent

and cannot be usefully simplified further.

Question 2: Given a set of alternative multi-step explanations, how can we provide an

empirically grounded criterion for deciding which is most suitable—i.e., which would be

understood best by our target users, assumed to be non-logicians?

Answer: We have provided an empirically grounded criterion for choosing the most

understandable proof tree (among a set of alternatives) by studies measuring the under-

standability of our single-step inferences, and validating a method for combining these

measures for multi-step inferences.

Question 3: Having determined the logical structure of an explanation, how can we

most clearly express it in English through appropriate ordering, verbalisation, and extra

elucidation?

Answer: We have used existing work on ontology verbalisation and the psychology of

reasoning to inform decisions on wording and organisation, along with an extra study on

specific issues (e.g., how to express disjoint and equivalent classes). We have also used

the understandability measures (see the second answer) in order to decide which inference

steps require further elucidation, and test empirically which of various possible strategy-

based elucidations work best.

11.2 Other Key Findings

In addition to the above-mentioned answers, our key findings are:

1. Our corpus-based study (described in Chapter 4) has shown that a surprisingly small

set of deduction rules can cover most of the subsumption entailment-justification
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pairs found in the corpus.

2. Our study on comparing candidate verbalisations of deduction rules (described in

Chapter 6) indicates that for most of our rules, difficulty of inferences depends more

on the deduction pattern than on which of several reasonable verbalisations is used

for axioms.

3. Our study on the understandability of deduction rules (described in Chapter 7) has

shown that even though our rules are all simple in the sense of having 1-3 premises,

their understandability for human subjects covers a full range from 4% (very difficult)

to 100% (very easy) success in recognising validity. Overall, the subjects found it

difficult to understand inference steps that conclude an unsatisfiability. This suggests

that it really matters which rules are used.

4. Our study on strategy-based explanations (described in Chapter 8) has shown that

it is hard to find special strategies to elucidate difficult rules. Most strategies that

we tried had little or no effect, the exceptions being the explicit statement of pre-

suppositions and contextualisation of Invs statements.

11.3 Limitations of the Research

The main limitations of this research are as follows:

Rule coverage We did not try to collect deduction rules that can cover all justifications

found in the corpus, but a small set of rules that can cover most of them. This

approach is suitable for the practical limitations of a PhD project while still obtaining

quite good coverage. Because of this, our system will, however, fail to produce a

proof tree if it requires an inference step that is not covered by our rule set.

Lack of sophisticated planning Currently, we verbalise all inference steps in a proof

tree to produce an explanation. This simple planning approach is unsuitable for

complex proof trees as the presentation of too many (probably trivial) steps might

hinder the readers’ understanding of the overall inference. In such cases, the explan-

ation should include only important steps.
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Lack of test cases In evaluating the understandability model, we tested with only two-

step inferences in OWL. It is unclear whether the model can generalise to OWL

inferences with more than two steps.

Lack of testing with our target users in a realistic context In our studies, we tested

with only ordinary users on CrowdFlower, but neither with domain experts nor

knowledge engineers. Additionally, we used fictional words to theoretically test lo-

gical inferences in OWL (except in the preliminary evaluation study). In a realistic

context, subjects might perform better [Was68, JLLL72].

Lack of deep data gathering methods Our preliminary evaluation study was con-

ducted through questionnaires on CrowdFlower, and we did not ask the subjects

to think aloud or debrief them after the test. Therefore, we do not know how they

did the reasoning as well as utilized the explanations.

Lack of validation of final system Only a preliminary evaluation study was conduc-

ted.

Explanation generation In human-built ontologies, there are axioms that are too com-

plex to be expressible in an unambiguous English sentence [PT10]. Identifying such

axioms and methods to verbalise them is not a focus of our work. For this reason,

our system will fail to produce an explanation if it contains such an axiom.

Proof tree construction Our proof tree construction algorithm also has a limitation in

the sense that we did not try to find the best solution.

Most of the above-mentioned limitations are practical, and can be addressed in a larger

project.

11.4 Broader Significance of the Work

1. We have proposed a novel method for measuring the cognitive difficulty of single-step

inferences in OWL. Both the understandability indexes we have measured and the

method for obtaining them might be useful in alternative models or contexts.

2. We have proposed a novel probabilistic model for predicting the understandability
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of a multi-step inference based on those of single steps. This model can be used by

other researchers to predict the understandability of different kinds of inferences.

3. In planning an explanatory text which contains multiple steps, the cognitive difficulty

of individual steps should be taken into account. This is because their cognitive

difficulty might vary greatly even though their structural complexity is simple (e.g.,

the trivial satisfaction of the universal restriction in OWL).

4. Our explanation tool can be integrated as a plug-in of ontology editing tools in order

to help developers in inspecting undesired entailments, and potentially in debugging

them (proving this is part of future work).

11.5 Future Work

Part of future work is to extend our current rule set to cover more inferences in OWL as

well as measure their understandability. The findings and limitations of this thesis also

suggest the following questions for further research in the future:

1. Are the explanations really helpful in debugging ontologies, and for which type of

user (i.e., domain expert and/or ontology expert)?

2. Does the method for computing the understandability of a proof tree generalise to

inferences with more than two steps?

3. How can we find a way to abstract a proof tree (e.g., grouping similar or related

inference steps) in order to make important steps more visible to end-users? Addi-

tionally, how can we define different levels of abstraction and styles for an explanation

in order to serve a wide variety of users?

4. For undesired entailments, how can we detect and highlight the main inference steps

in a proof tree that lead to the absurd conclusion? And if possible, how can we

provide suggestions for corrections in such cases?

5. How can we apply sophisticated NLG planning techniques (both macro-planning

and micro-planning) to produce fluent and readable English explanations that can

be understood easily by lay users?



176 Chapter 11. Conclusion



Bibliography

[ABB+00] Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein,

Heather Butler, J. Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S.

Dwight, Janan T. Eppig, Midori A. Harris, David P. Hill, Laurie Issel-

Tarver, Andrew Kasarskis, Suzanna Lewis, John C. Matese, Joel E. Richard-

son, Martin Ringwald, and Gerald M. Rubin. Gene Ontology: Tool for the

Unification of Biology. Nature Genetics, 25(1):25–29, 2000.

[ADS+07] Harith Alani, David Dupplaw, John Sheridan, Kieron O’Hara, John Dar-

lington, Nigel Shadbolt, and Carol Tullo. Unlocking the Potential of Public

Sector Information with Semantic Web Technology. In International/Asian

Semantic Web Conference (ISWC/ASWC 2007), pages 708–721, 2007.

[AEC04] AECMA. AECMA Simplified Technical English, PSC-85-16598 ”A Guide

for the Preparation of Aircraft Maintenance Documentation in the Interna-

tional Aerospace Maintenance Language”. Technical report, The European

Association of Aerospace Industries, 2004.

[AL98] John R. Anderson and Christian Lebiere. The Atomic Components of

Thought. Lawrence Erlbaum Associates, Inc., 1998.

[And80] Peter B. Andrews. Transforming Matings into Natural Deduction Proofs.

In International Conference on Automated Deduction (CADE 1980), pages

281–292, 1980.

177



178 Bibliography

[BBLPC] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Caroth-

ers. Turtle (Terse RDF Triple Language). http://www.w3.org/TR/turtle/

/. Last Accessed: 30th August 2010.

[BBMR89] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and

Lori Alperin Resnick. CLASSIC: a Structural Data Model for Objects. In

International Conference on Management of Data (SIGMOD 1989), pages

58–67, 1989.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and

Peter Patel-Schneider. The Description Logic Handbook: Theory, Imple-

mentation and Applications. Cambridge University Press, 2003.

[BCRM08] Alexander Borgida, Diego Calvanese, and Mariano Rodriguez-Muro. Ex-

planation in the DL-Lite Family of Description Logics. In Confederated In-

ternational Conferences, CoopIS, DOA, GADA, IS, and ODBASE (OTM

2008), pages 1440–1457, 2008.

[Bea97] David Ian Beaver. The Handbook of Logic and Language, chapter 1, pages

939–1008. Elsevier, 1997.

[BFH+99] Alexander Borgida, Enrico Franconi, Ian Horrocks, Deborah L. McGuinness,

and Peter F. Patel-Schneider. Explaining ALC Subsumption. In Interna-

tional Workshop on Description Logics (DL 1999), pages 37–40, 1999.

[BFH00] Alex Borgida, Enrico Franconi, and Ian Horrocks. Explaining ALC Sub-

sumption. In European Conference on Artificial Intelligience (ECAI 2000),

pages 209–213, 2000.

[BG01] Leo Bachmair and Harald Ganzinger. Resolution Theorem Proving. In

Handbook of Automated Reasoning, pages 19–99. Elsevier and MIT Press,

2001.

[BH95] Franz Baader and Bernhard Hollunder. Embedding Defaults into Terminolo-

gical Knowledge Representation Formalisms. Automated Reasoning, 14:149–

180, 1995.

http://www.w3.org/TR/turtle//
http://www.w3.org/TR/turtle//


Bibliography 179

[BL84] Ronald J. Brachman and Hector J. Levesque. The Tractability of Subsump-

tion in Frame-Based Description Languages. In National Conference on

Artificial Intelligence (AAAI 1984), 1984.

[Bli] Bliksem. http://www.ii.uni.wroc.pl/~nivelle/software/bliksem/.

Last Accessed: 1st February 2013.

[BMPS+91] Ronald J. Brachman, Deborah L. McGuinness, Peter F. Patel-Schneider,

Lori A. Resnick, Lori Alperin Resnick, and Alexander Borgida. Living with

CLASSIC: When and How to Use a KL-ONE-Like Language. In Prin-

ciples of Semantic Networks: Explorations in the representation of know-

ledge, pages 401–456, 1991.

[Bor92] Alexander Borgida. From Type Systems to Knowledge Representation: Nat-

ural Semantics Specifications for Description Logics. Int. J. Cooperative Inf.

Syst., 1(1):93–126, 1992.
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[HM01] Volker Haarslev and Ralf Möller. RACER System Description. In Inter-

national Joint Conference on Automated Reasoning (IJCAR 2001), volume

2083, pages 701–705, 2001.

[HMS04] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reducing SHIQ− Descrip-

tion Logic to Disjunctive Datalog Programs. In International Conference

on the Principles of Knowledge Representation and Reasoning (KR 2004),

pages 152–162, 2004.

[Hor98] Helmut Horacek. Generating Inference-Rich Discourse through Revisions of

RST-Trees. In Conference on Artificial intelligence/Innovative Applications

of Artificial Intelligence (AAAI/IAAI 1989), pages 814–820, 1998.

[Hor99] Helmut Horacek. Presenting Proofs in a Human-Oriented Way. In Interna-

tional Conference on Automated Deduction (CADE 1999), pages 142–156,

1999.

[Hor08] Ian Horrocks. Ontologies and the Semantic Web. Communications of the

ACM, 51(12):58–67, 2008.

[Hor11] Matthew Horridge. Justification Based Explanation in Ontologies. PhD

thesis, University of Manchester, 2011.

[Hov88] Eduard H. Hovy. Generating Natural Language under Pragmatic Con-

straints. L. Erlbaum Associates Inc., Hillsdale, New Jersey, USA, 1988.



Bibliography 183

[HPS08a] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Explanation of OWL
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[Sch88] Uwe Schöning. Graph isomorphism is in the low hierarchy. J. Comput. Syst.

Sci., 37(3):312–323, 1988.

[Sch10] Rolf Schwitter. Controlled Natural Languages for Knowledge Representa-

tion. In International Conference on Computational Linguistics: Posters

(COLING 2010), pages 1113–1121, 2010.

[SHCH07] Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank Harmelen.

Debugging Incoherent Terminologies. J. Autom. Reason., 39(3):317–349,

2007.

[SKC+08] Rolf Schwitter, Kaarel Kaljurand, Anne Cregan, Catherine Dolbear, and

Glen Hart. A Comparison of three Controlled Natural Languages for

OWL 1.1. In International Workshop on OWL: Experiences and Directions

(OWLED 2008), 2008.



190 Bibliography

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and

Yarden Katz. Pellet: A Practical OWL-DL Reasoner. Journal of Web

Semantics, 5:51–53, 2007.

[SQJH08] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase. A

Modularization-Based Approach to Finding All Justifications for OWL DL

Entailments. In Asian Semantic Web Conference (ASWC 2008), 2008.

[SS91] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions

with complements. Artificial Intelligence, 48(1):1–26, 1991.

[ST04] Rolf Schwitter and Marc Tilbrook. Controlled Natural Language meets the

Semantic Web. In Australasian Language Technology Workshop (ALTW

2004), pages 55–62, 2004.

[Stu08] Heiner Stuckenschmidt. Debugging OWL Ontologies – A Reality Check.

In International Workshop on Evaluation of Ontology-based Tools and the

Semantic Web Service Challenge (EON-SWSC 2008), 2008.

[Sun09] Boontawee Suntisrivaraporn. Polynomial-Time Reasoning Support for

Design and Maintenance of Large-Scale Biomedical Ontologies. PhD thesis,

Technical University of Dresden, 2009.

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Reasoner:

System Description. In International Joint Conference on Automated Reas-

oning (IJCAR 2006), pages 292–297, 2006.

[TON] The TONES Ontology Repository. http://owl.cs.manchester.ac.uk/

repository/. Last Accessed: 1st February 2013.

[Top] TopQuadrant. TopBraid Composer. http://www.topquadrant.com/

products/TB_Composer.html. Last Accessed: 1st February 2013.

[Was68] Peter Cathcart Wason. Reasoning about a Rule. Quarterly Journal of

Experimental Psychology, 20(3):273–281, 1968.

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,

Martin Suda, and Patrick Wischnewski. SPASS Version 3.5. In International

Conference on Automated Deduction (CADE 2009), pages 140–145, 2009.

http://owl.cs.manchester.ac.uk/repository/
http://owl.cs.manchester.ac.uk/repository/
http://www.topquadrant.com/products/TB_Composer.html
http://www.topquadrant.com/products/TB_Composer.html


Bibliography 191

[WO98] Huijsen Willem-Olaf. Controlled Language—An Introduction. In Interna-

tional Workshop on Controlled Language Applications (CLAW 1998), pages

1–15, 1998.

[WT92] Michael R. Wick and William B. Thompson. Reconstructive expert system

explanation. Artificial Intelligence, 54:33–70, 1992.

[WTP11] Sandra Williams, Allan Third, and Richard Power. Levels of Organisation

in Ontology verbalisation. In European Workshop on Natural Language

Generation (ENLG 2011), pages 158–163, 2011.



192 Bibliography



Appendix A

Frequently Occurring Deduction

Patterns

Table A.1 lists all nine deduction patterns for > v A entailments, and ten frequently

occurring deduction patterns for A v ⊥ and A v B entailments (where A and B are class

names) that were collected from the empirical study described in Chapter 4.
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Table A.1: Frequently occurring deduction patterns for each entailment type sorted by
ontology frequency (‘O’) then justification frequency (‘J’)

Entailment Justification O J
> v C0 1. C0 ≡ C1 t C2 3 (50.0%) 6 (21.4%)

2. C1 ≡ ¬C2

1. C1 v C0 3 (50.0%) 6 (21.4%)
2. C2 v C0

3. C1 ≡ ¬C2

1. Dom(r0, C0) 2 (33.3%) 3 (10.7%)
2. C1 ≡ ∀r0C2

3. C1 v C3

4. C3 v C0

1. Dom(r0, C0) 2 (33.3%) 3 (10.7%)
2. C1 ≡ (∀r0C2) t (∃r1C3)
3. C1 v C4

4. C4 v C0

1. Dom(r0, C0) 1 (16.7%) 3 (10.7%)
2. C1 ≡ ∀r0(C2 t C3)
3. C1 v C4

4. C4 v C0

1. Dom(r0, C0) 1 (16.7%) 2 (7.1%)
2. C1 ≡ (∀r0C2) t (∃r0C3)
3. C1 v C0

1. Dis(C1, C2) 1 (16.7%) 2 (7.1%)
2. Dom(r0, C1)
3. C4 ≡ ∀r0C5

4. C4 v C0

5. C0 v C1

6. C3 v C2

7. Rng(r0, C3)
1. Dis(C1, C2) 1 (16.7%) 2 (7.1%)
2. Dom(r0, C1)
3. r1 v r0
4. C4 ≡ ∀r1C5

5. C4 v C0

6. C0 v C1

7. C3 v C2

8. Rng(r1, C3)
1. Dom(r0, C0) 1 (16.7%) 1 (3.6%)
2. r1 v r0
3. C1 ≡ ∀r1C2

4. C1 v C3

5. C3 v C0

C0 v ⊥ 1. C0 v C1 10 (31.3%) 16 (0.8%)
2. C0 v C2

3. C2 v C3

4. C3 v C4

5. Dis(C1, C4)
1. C0 v C1 8 (25.0%) 15 (0.8%)
2. C0 v C3

3. C1 v C2

4. C3 v C4

5. Dis(C2, C4)
1. C0 v C1 6 (18.8%) 38 (2.0%)
2. C0 v C2

3. C2 v C3

4. Dis(C1, C3)
Continued on Next Page. . .
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1. C1 ≡ C0 t C2 t C3 2 (6.3%) 5 (0.3%)
2. C1 v C4

3. C4 v C5

4. Dis(C0, C5)
1. C0 ≡ C3 u ∃r0.C4u = nr1.T 1 (3.1%) 96 (5.0%)
2. C1 ≡ C3 u ∃r0.C4u = nr1.T
3. C2 ≡ C3 u ∃r0.C4u = nr1.T
4. Dis(C1, C2)
1. C0 v C1 1 (3.1%) 19 (1.0%)
2. C1 v ∃r0.C2

3. Dom(r0, C3)
4. C3 v ∃r1.C4

5. Rng(r1, C5)
6. Dis(C4, C5)
1. C0 v C1 1 (3.1%) 16 (0.8%)
2. C1 v C2

3. Dom(r0, C3)
4. r1 v r0
5. C4 ≡ ∀r1.C5

6. C4 v C6

7. C6 v C3

8. Dis(C2, C3)
1. C0 v C1 1 (3.1%) 12 (0.6%)
2. C1 v C2

3. Dom(r0, C3)
5. Invs(r0, r1)
4. C2 v ∃r1.C4

6. Dis(C3, C4)
1. C0 v C1 1 (3.1%) 11 (0.6%)
2. C1 v C2 u ∃r0.(C3 t C4)
3. C2 v C5 u ∃r1.C6 u ∀r1.C6

4. C6 ≡ C7

5. C7 ≡ C8

6. C8 v C10 u ∃r2.C11 u ∀r2.C11

7. C9 v C10 u ∃r2.C12 u ∀r2.C12

8. C11 v C12

9. Dis(C6, C9)
1. C0 v C1 1 (3.1%) 9 (0.5%)
2. C1 ≡ C2 u ∃r0.C3 u ∃r0.C4 u ∃r0.C5 u ∃r1.C6

3. C3 ≡ C7 u ∃r2.(C8 u ∃d0.{l0 ? Dt0})
4. Rng(d0, Dt1), Dt0 & Dt1 are disjoint

C0 v C1 1. C0 v C2 47 (28.1%) 3,204 (2.1%)
2. C2 ≡ C1

1. C0 ≡ C2 47 (28.1%) 1,804 (1.2%)
2. C2 v C1

1. C0 v C2 43 (25.7%) 939 (0.6%)
2. C2 v C1

1. C0 ≡ C1 u ∃r0.C2 35 (21.0%) 895 (0.6%)
1. C0 v= nd0.Dt0, n > 0 22 (13.2%) 50 (0.0%)
2. Dom(d0, C1)
1. C0 v C2 15 (9.0%) 140 (0.1%)
2. C2 v≤ nr0.>, n > 0
3. C2 v C3

4. C3 v C4

5. Invs(r0, r1)
6. r1 v r2
7. Rng(r2, C1 t C5)
8. C5 ≡ (C6 t (C7 u ∃r3.C6)) u ∃r4.C2

Continued on Next Page. . .
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9. Dis(C4, C7)
10. Dis(C3, C6)
1. C0 v ∃r0.C2 15 (9.0%) 223 (0.1%)
2. C1 ≡ ∃r4.C3

3. Invs(r0, r1)
4. r1 v r2
5. Invs(r2, r3)
6. r3 v r4
7. Rng(r0, C3)
1. C0 v C2 14 (8.4%) 79 (0.1%)
2. C2 v≥ nr0.>, n > 0
3. Rng(r0, C3)
4. C3 ≡ C4

5. C1 ≡ (∃r0.C4) t (∃r1.C5)
1. C0 v ∃d0.{l0 ? Dt0} 9 (5.4%) 2,569 (1.7%)
2. Dom(d0, C1)
1. C0 v ∃r0.(C2 u ∃r0.C3) 5 (3.0%) 168 (0.1%)
2. C0 v C4

3. C3 v C4

4. Tra(r0)
5. C1 ≡ C4 u ∃r0.C4



Appendix B

Subjects’ Comments from the

Preliminary Evaluation Study

This chapter reports the subjects’ comments for each question in the preliminary evalu-

ation study. Some of these comments compare explanations (e.g., proof tree versus text);

others describe the subjects’ difficulties when they were doing the task. Such comments

provide good suggestions for deciding how the final explanation is best set up as well as

designing a more extensive evaluation study of the tool in the future. The corrections

proposed by the associated subjects are also presented here.

QUESTION 1.1 (PATTERN 1 EXPLANATION 1)

EXPLANATION:

Figure B.1: The explanation in Question 1.1 (pattern 1 explanation 1), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: None of the statements

197
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Correction: Every rating is a movie is a correct statement. It does not need to be

corrected.

Comment: The explanation is longer than it needs to be. The second statement

“Anything that has a rating something is a movie” draws the conclusion any rating

is a movie.

2. Problematic statement: None of the statements

Correction: None

Comment: I do not agree with “Every rating is a movie” would be outputted. Since

only objects with ratings would be considered movies, and ratings do not have ratings

of themselves. The object would be the unique identifier in a database, not the

ratings themselves. So these two entities could not be linked, and assumes one is

another. Since they do not have common class that could be given the title of movie.

3. Problematic statement: Anything that has as rating something is a movie.

Correction: Anything that has rating something is not a movie.

Comment: The phrase ”anything that has rating something” is confused as it never

occurs in real life.

4. Problematic statement: Anything that has as rating something is a movie.

Correction: Every movie has a rating.

Comment: I don’t know OWL.

QUESTION 2.1 (PATTERN 2 EXPLANATION 1)

EXPLANATION:

Figure B.2: The explanation in Question 2.1 (pattern 2 explanation 1), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Every professor in CS is a faculty member that supervises

only AI students.

Correction: Every professor in CS is a faculty member that supervises only AI
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students. This statement is incorrect. The next statement clearly shows that HCI

Student Researchers are supervised by professors in CS. It should say, a CS professor

supervises either HCI students or AI students, but not both. Every HCI student

researches into a HCI topic and is supervised by a professor in CS.

Comment: Yes, this is very difficult task.

QUESTION 3.1 (PATTERN 3 EXPLANATION 1)

EXPLANATION:

Figure B.3: The explanation in Question 3.1 (pattern 3 explanation 1), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: No smoke alarm is a supplementary device.

Correction: A smoke alarm is a supplementary device.

Comment: It looks to me that since it isn’t even true that a smoke alarm could not

be a supplementary device at the same time it COULD be mounted.

2. Problematic statement: No smoke alarm is a supplementary device.

Correction: Statement 10, that no smoke alarm is a supplementary device, is contra-

dictory to previous statements, particularly statements 2 and 3. By simply removing

this statement, the other statements are acceptable.

Comment: This was not confusing; I love logic games like this!

3. Problematic statement: None of the statements

Correction: I’m not sure how the computer drew the conclusion, so I don’t know

which statement to remove.

Comment: I just couldn’t follow the long list of statements that the computer used

to draw the conclusion.

QUESTION 4.1 (PATTERN 4 EXPLANATION 1)
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EXPLANATION:

Figure B.4: The explanation in Question 4.1 (pattern 4 explanation 1), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Everything has as electrical charge at most one thing.

Correction: Everything has as electrical charge at least one thing.

Comment: I presume one of the statements is inaccurate, and I lack the experience

to know which.

2. Problematic statement: Everything has as electrical charge at most one thing.

Correction: Statement 10 is worded very oddly in general, so my best guess is that

it would need changing, but I am not sure what an improvement would be without

better understanding what it’s intended to mean.

Comment: None

3. Problematic statement: None of the statements

Correction: None

Comment: The concept of neutrons and quarks is very confusing.

QUESTION 5.1 (PATTERN 5 EXPLANATION 1)

EXPLANATION:

Figure B.5: The explanation in Question 5.1 (pattern 5 explanation 1), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Anything that has as hard-working attribute some value is

a person.
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Correction: I’m confused how to fix the result without leading to another incorrect

result (quokkas don’t exist). To fix both, either Statement 7 and 4 would have to be

changed, or 6 and 7 to something besides Boolean. I don’t know whether I didn’t

make the correct change or I’m just meant to ignore quokkas because I wasn’t asked

about them.

Comment: None

QUESTION 1.2 (PATTERN 1 EXPLANATION 2)

EXPLANATION:

Figure B.6: The explanation in Question 1.2 (pattern 1 explanation 2), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Anything that has as rating something is a movie.

Correction: I would remove Statement 2, as it is redundant and illogical due to

Statement 7.

Comment: This was a bit confusing, due to having to really think like a computer

program.

2. Problematic statement: Anything that has as rating something is a movie.

Correction: Anything that is star rated and has rating from 0 to 5 is a movie. If

nothing at all is something then the requirement needs to be more specific.

Comment: None

3. Problematic statement: None of the statements

Correction: None
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Comment: I don’t see why “everything has rating nothing at all” follows from state-

ment 1. This seems an incorrect inference. Perhaps the program misinterprets the

(bad) English of statement 1.

QUESTION 2.2 (PATTERN 2 EXPLANATION 2)

EXPLANATION:

Figure B.7: The explanation in Question 2.2 (pattern 2 explanation 2), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

No comments provided.

QUESTION 3.2 (PATTERN 3 EXPLANATION 2)

EXPLANATION:

Figure B.8: The explanation in Question 3.2 (pattern 3 explanation 2), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Anything that is mounted on something is a supplementary

device.
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Correction: Some things that are mounted on something are supplementary devices.

Comment: It was very confusing.

QUESTION 4.2 (PATTERN 4 EXPLANATION 2)

EXPLANATION:

Figure B.9: The explanation in Question 4.2 (pattern 4 explanation 2), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Everything has as electrical charge at most one thing.

Correction: I would change the statement to read ”Everything has electrical charge

at least one thing”.

Comment: Up-quarks, tetra-nucleons, etc. are highly scientific terms that are hard

for lay people to conceptualize and attach significance to.

2. Problematic statement: Everything has as electrical charge at most one thing.

Correction: It could be stricken entirely or changed to read ”Everything has as

electrical charge at least one thing”.

Comment: It was hard to see how many possible charges could make a nucleus.

3. Problematic statement: Everything has as electrical charge at most one thing.

Correction: Everything has as an electrical charge at least two things.

Comment: There were multiple possible changes that could change the conclusion.

4. Problematic statement: Everything has as electrical charge at most one thing.

Correction: Either S9 or S10 should be corrected, depending on which is untrue.

Either up-quarks do not have more than one positive charge, or some things can
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have more than one electrical charge.

Comment: This second explanation shows the hierarchy of reasoning much more

clearly.

QUESTION 5.2 (PATTERN 5 EXPLANATION 2)

EXPLANATION:

Figure B.10: The explanation in Question 5.2 (pattern 5 explanation 2), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Anything that has as hard-working attribute some value is

a person.

Correction: I would either omit Statement 7 or change to “Anything that has a

hard-working attribute some value is not a person”.

Comment: Statement 5 is difficult to read. I think it should be written as follows:

A northern koala is anything that is a koala and lives in northern Australia.

2. Problematic statement: Anything that has as hard-working attribute some value is

a person.

Correction: Change to “Anything that has as hard-working attribute some value is

an animal”.

Comment: I found the text of the hard-working attributes statements very difficult

to process—they don’t make a whole lot of sense.

QUESTION 1.3 (PATTERN 1 EXPLANATION 3)
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EXPLANATION:

Figure B.11: The explanation in Question 1.3 (pattern 1 explanation 3), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Anything that has as rating something is a movie.

Correction: The statement, “Anything that has as rating something is a movie”,

would need to be removed.

Comment: The statement, “Anything that has as rating something is a movie”, is

grammatically confusing.

2. Problematic statement: Anything that has as rating something is a movie.

Correction: I would change Statement 2 to: Anything that has a rating something

is a movie. I think the computer is thinking “as rating” is an independent thing.

Comment: None

3. Problematic statement: None of the statements

Correction: None

Comment: Even though the explanation was a bit difficult to follow I could under-

stand how a computer could come to the answer.

4. Problematic statement: Anything that has as rating something is a movie.

Correction: Some things that have a rating are movies.

Comment: Too many logic statements

5. Problematic statement: Anything that has as rating something is a movie.
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Correction: To avoid arriving at the conclusion that “Every rating is a movie” re-

quires the omission of statement 2.

Comment: I found the above questions difficult because they didn’t appear to be

grammatically correct for my understanding of English usage. I believe the explan-

ation is deriving incorrect conclusions at various points such as (b) and (c).

QUESTION 2.3 (PATTERN 2 EXPLANATION 3)

EXPLANATION:

Figure B.12: The explanation in Question 2.3 (pattern 2 explanation 3), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Every professor in CS is a faculty member that supervises

only AI students.

Correction: Either omit “AI”, or change to “AI or HCI”, or omit “only”. Other

possibility is to remove statement 10 or change it to “Every HCI and AI student is

a HCI student and an AI student”.

Comment: Nope, but you might want phrase the computer conclusion in more com-

mon language, as for some people “Nothing is. . . ” might sound confusing. I would

explain that this statement means “There are no HCI students”.

2. Problematic statement: Every professor in CS is a faculty member that supervises

only AI students.

Correction: Statement 6 should read “Every professor in CS is a faculty member

that supervises AI and/or HCI students”.
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Comment: The explanation did eventually make sense after following every step.

For me, an easier explanation would be that the combination of Statement 6 and

Statement 5 means that an HCI student cannot be supervised by a CS professor

unless they are also a AI student, which Statement 10 rules out.

3. Problematic statement: Every professor in CS is a faculty member that supervises

only AI students.

Correction: Statement 5 and statement 6 are contradictory. In statement 5 it states,

“Every HCI student. . . is supervised by a professor in CS”. In statement 6, it states,

“Every professor in CS...supervises only AI students”. To avoid confusion and the

conclusion “Nothing is an HCI student”, I would change the end of statement 6 to

“. . . that supervises only AI AND HCI students”.

Comment: It took me a minute to figure out the explanation. I had to think about

what it was saying, making slightly harder to understand.

QUESTION 3.3 (PATTERN 3 EXPLANATION 3)

EXPLANATION:

Figure B.13: The explanation in Question 3.3 (pattern 3 explanation 3), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Every fire-alarm system has as device a smoke alarm.

Correction: If anything that is mounted is a supplementary device and no smoke

alarms are supplementary devices, then (per Statement 6) no building with a smoke

alarm is an office building. If statement 3 is changed to “Some fire-alarm systems do

not have smoke alarms” then some buildings could, hypothetically, be office build-
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ings. I think.

Comment: They are very narrow in their scope and the logical reasoning is difficult

between the different statements. They lead to circular thinking.

2. Problematic statement: No smoke alarm is a supplementary device.

Correction: A smoke alarm is a supplementary device.

Comment: Extra statements that aren’t part of the proof, and statements are out

of the order of the proof making it more difficult to follow.

3. Problematic statement: No smoke alarm is a supplementary device.

Correction: Smoke alarm is a supplementary device.

Comment: The phrase “something that has as device something” is very confused.

QUESTION 4.3 (PATTERN 4 EXPLANATION 3)

EXPLANATION:

Figure B.14: The explanation in Question 4.3 (pattern 4 explanation 3), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Every up-quark has as electrical charge exactly two positive

charges.

Correction: I see a conflict between 9 and 10, but I don’t know what is an up-quark

so I don’t know what would be the correct modification.

Comment: Lack of knowledge on the semantic domain makes it more difficult to fol-

low. On the other hand, familiarity is also dangerous because one may use “known”

statements that are not in the ontology.

2. Problematic statement: Everything has as electrical charge at most one thing.

Correction: None
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Comment: I do not understand the sentence “Everything has as electrical charge at

most one thing”.

QUESTION 5.3 (PATTERN 5 EXPLANATION 3)

EXPLANATION:

Figure B.15: The explanation in Question 5.3 (pattern 5 explanation 3), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Anything that has as hard-working attribute some value is

a person.

Correction: Every person has hard-working as an attribute some value.

Comment: There are multiple statements and some of them aren’t really true.

2. Problematic statement: Anything that has as hard-working attribute some value is

a person.

Correction: I would change it to read “Anything that has as hard-working attribute

is an animal”.

Comment: I think the terminology and phrasing is in correct grammatically for some

of these sentences and the aspects of hard-working and boolean values muddied the

other statements.

3. Problematic statement: None of the statements

Correction: None

Comment: This explanation was much more confusing to follow, I liked the flow

chart of the previous explanation much better.



210 Appendix B. Subjects’ Comments from the Preliminary Evaluation Study

4. Problematic statement: None of the statements

Correction: There is no reason for the computer to make that conclusion based on

the statements given.

Comment: None.

QUESTION 1.4 (PATTERN 1 EXPLANATION 4)

EXPLANATION:

Figure B.16: The explanation in Question 1.4 (pattern 1 explanation 4), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: A decent movie is anything that has as rating only three-star

ratings.

Correction: A decent movie is any movie that has as rating only three-star ratings.

Comment: Not sure I am right on this one. I don’t follow the logic that “A decent

movie is anything that has as rating only three-star ratings” allows you to state

“Everything that has as rating nothing at all is a decent movie”.

2. Problematic statement: None of the statements

Correction: Statement (a) is contradictory to Statement 1. It basically saying “If I

have either no rating or a 3 star rating, then it is a decent movie”.

Comment: None

3. Problematic statement: None of the statements

Correction: I’m really not sure how to fix it.
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Comment: I just can’t follow the statements to figure out why the computer con-

cluded every rating is a movie.

4. Problematic statement: None of the statements

Correction: None

Comment: I don’t understand why Statement 1 “A decent movie is anything that

has as rating only three-star ratings” means “a decent movie is anything that has

as rating nothing at all, or has as rating only three-star ratings”.

5. Problematic statement: Anything that has as rating something is a movie.

Correction: Every movie has a rating of something.

Comment: Slightly confusing because there are a lot of similar statements with

slightly differed words.

QUESTION 2.4 (PATTERN 2 EXPLANATION 4)

EXPLANATION:

Figure B.17: The explanation in Question 2.4 (pattern 2 explanation 4), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Every professor in CS is a faculty member that supervises

only AI students.

Correction: Well, if Statement 6 stated that CS professors supervised both AI and

HCI students, the conclusion in Statement 10 would no longer follow.

Comment: From reading the ten statements, I, who am not a computer, concluded

that Statement 10 followed from Statements 5 and 6. However, your explanation
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and chart only confused me. Note, I did study symbolic logic circa 1980, but not

computer science.

2. Problematic statement: Every professor in CS is a faculty member that supervises

only AI students.

Correction: Every professor in CS is a faculty member that supervises only AI

students or HCI students.

Comment: Logic is hard.

QUESTION 3.4 (PATTERN 3 EXPLANATION 4)

EXPLANATION:

Figure B.18: The explanation in Question 3.4 (pattern 3 explanation 4), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Anything that is mounted on something is a supplementary

device.

Correction: Not everything that is mounted on something is a supplementary device.

If I am riding or “mounted on” a bicycle, the bicycle is the supplementary device.

Comment: None

2. Problematic statement: No smoke alarm is a supplementary device.

Correction: Statement 10 contradicts the first three statements. . . so you have to

choose which one you’d like to keep.

Comment: Poor diagram

3. Problematic statement: No smoke alarm is a supplementary device.

Correction: Must be deleted, or could be corrected in many ways, e.g., A smoke
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alarm may not be a supplementary device.

Comment: Hard to keep track of the multiple relevant statements, esp. given the

inverse relationship between mounted on and has as device.

4. Problematic statement: No smoke alarm is a supplementary device.

Correction: Every smoke alarm is a supplementary device. Smoke alarm is mounted

on every fire alarm system. Every life protection system is a fire alarm system

therefore has a smoke alarm mounted on it. Every office building is equipped with a

fire alarm system. Because the smoke alarm is mounted on the fire alarm system it

is a supplementary device. “No smoke alarm is a supplementary device” contradicts

previous statement and can’t be mounted on the fire alarm. And if every fire alarm

system has to have a smoke alarm and no fire alarm systems have smoke alarms and

no office buildings can be equipped with a fire alarm system and have no reason to

exist.

Comment: None

5. Problematic statement: Anything that is mounted on something is a supplementary

device.

Correction: Remove statement 2.

Comment: I think that part of the problem is that, in deciding how to correct the

ontology, one really needs domain knowledge. There are various ways to resolve it

logically—hard to know which is the correct one.

QUESTION 4.4 (PATTERN 4 EXPLANATION 4)

EXPLANATION:

Figure B.19: The explanation in Question 4.4 (pattern 4 explanation 4), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:
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1. Problematic statement: Everything has as electrical charge at most one thing.

Correction: Everything has an electrical charge.

Comment: Two positive charges is not the way I would say it. I would say it as a

positive charge of two meaning a singular charge of two, instead of referring to the

charges as two separate things.

2. Problematic statement: Everything has as electrical charge at most one thing.

Correction: Statement 10: “Everything has as electrical charge at most one thing”

seems to be the least well defined in this example. It’s also a limiting factor that

everything has an electrical charge of one. Perhaps change it to a better number?

Comment: I’d say the part that was the hardest was wrapping my mind around the

terminology. I’m unfamiliar with all things atomic so I didn’t really follow it all that

well.

3. Problematic statement: Everything has as electrical charge at most one thing.

Correction: Everything has as electrical charge one or more things.

Comment: It used scientific language that I’m not familiar with.

4. Problematic statement: Everything has as electrical charge at most one thing.

Correction: Statement 10 is the contradict to statement 9 (?)

Comment: The language is not nature enough.

QUESTION 5.4 (PATTERN 5 EXPLANATION 4)

EXPLANATION:

Figure B.20: The explanation in Question 5.4 (pattern 5 explanation 4), the indexes of
axioms are from the associated justification in Table 10.1
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PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Any value that something has as hard-working attribute is

a boolean value.

Correction: I simply think Statement 6 is out of place and adds nothing to the chain,

it may not fix it.

Comment: Statement 6 threw me and made me wonder how it played into the logical

conclusion.

QUESTION 1.5 (PATTERN 1 EXPLANATION 5)

EXPLANATION:

Figure B.21: The explanation in Question 1.5 (pattern 1 explanation 5), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Anything that has as rating something is a movie.

Correction: I would change it to “All movies have something as rating”.

Comment: I guess all the other information besides “Everything is a movie” which

seems to be shown by the first two statements, confused the issue for me.

2. Problematic statement: None of the statements

Correction: None

Comment: It says statement (c) follows because statement 1 of the ontology “means”

that every movie that has a rating “nothing at all” (btw using quotes would make

the rating statements more understandable) is a decent movie. Statement 1 does

not directly contain this assertion in the text above. It is not clear whether it is
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implied in some other way. Statement 1 says “A decent movie is anything that has

as rating only three-star ratings”. The meaning of “only” is not very clear to me

but I would say that a movie is decent only if it has a three stars rating. I see no

mention about having nothing at all as rating.

3. Problematic statement: Anything that has as rating something is a movie.

Correction: This statement can be removed, because every star-rated movie state-

ment more accurately captures this idea without potentially including actors or

directors if they, or other kinds of things are allowed to be reviewed. Conversely, if

the only thing that could be reviewed are movies, the statement would be accurate,

if limiting to the expansion of the ontology.

Comment: None

QUESTION 2.5 (PATTERN 2 EXPLANATION 5)

EXPLANATION:

Figure B.22: The explanation in Question 2.5 (pattern 2 explanation 5), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Every professor in CS is a faculty member that supervises

only AI students.

Correction: Every professor in CS is a faculty member that supervises students.

Comment: I think this is hard because this takes a while to understand that X

supervises Y = as Y is supervised by X. You want to think “is supervised by”.
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2. Problematic statement: Every professor in CS is a faculty member that supervises

only AI students.

Correction: Every professor in CS is a faculty member that supervises either AI or

HCI students.

Comment: The definitions were a little disorienting to me personally.

QUESTION 3.5 (PATTERN 3 EXPLANATION 5)

EXPLANATION:

Figure B.23: The explanation in Question 3.5 (pattern 3 explanation 5), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: No smoke alarm is a supplementary device.

Correction: It could be corrected by changing it to A smoke alarm isn’t a supple-

mentary device.

Comment: Once I read the explanation from the bottom to the top it made far more

sense and was easier to understand.

QUESTION 4.5 (PATTERN 4 EXPLANATION 5)

EXPLANATION:
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Figure B.24: The explanation in Question 4.5 (pattern 4 explanation 5), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Everything has as electrical charge at most one thing.

Correction: I think statement 10 should say that everything has an electrical charge

at least one thing.

Comment: I don’t really understand what I just read!

2. Problematic statement: Everything has as electrical charge at most one thing.

Correction: Everything has an electric charge which is equivalent to positive charges

minus negative charges.

Comment: They are somewhat confused due to typically you want to define all

components not just up quarks. There are no charges assigned to down quarks so

that makes the logic incomplete.

3. Problematic statement: Everything has as electrical charge at most one thing.

Correction:I ’m not sure how to change it to be correct. I don’t know enough about

electrical charges to know if 10 is true or not. You could fix the ontology by just

taking out the phrase “at most one thing” but that doesn’t necessarily make it true.

Comment: None

4. Problematic statement: Everything has as electrical charge at most one thing.

Correction: Everything has one value for its electrical charge.

Comment: A complex chain of logic is involved. Also, part of the problem is in the

definition of ’has as electrical charge’. What is the range of this. Is it a set of values

{-1, 1, 0, +1, +2} or is it {one positive charge; two positive charges}? An alternative

might be to change statement 9 - perhaps to “one positive charge”—if one had the

domain knowledge.
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5. Problematic statement: Every up-quark has as electrical charge exactly two positive

charges.

Correction: By changing statement 9 to say every up-quark has as electrical charge

exactly 1 positive charge, then a tetra-neutron nucleus could exist.

Comment: This was more difficult to determine which statement should be changed

because it seemed at first glance that many statements could be changed to allow

the requested conclusion to be true, but after re-reading statements following my

initial proposed adjustment, it appeared that the statement could still be false.

QUESTION 5.5 (PATTERN 5 EXPLANATION 5)

EXPLANATION:

Figure B.25: The explanation in Question 5.5 (pattern 5 explanation 5), the indexes of
axioms are from the associated justification in Table 10.1

PROBLEMATIC STATEMENTS, CORRECTIONS, AND COMMENTS:

1. Problematic statement: Anything that has as hard-working attribute some value is

a person.

Correction: Every person has as hard working attribute some value.

Comment: The translation to English was a bit unusual. Specifically the statements

dealing with “has as hard-working attribute some value”. This isn’t proper English

grammar, so it made the exercise confusing.
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