4 research outputs found

    Tracing program transformations with string origins

    Get PDF
    Program transformations play an important role in domain-specific languages and model-driven development. Tracing the execution of such transformations has well-known benefits for debugging, visualization and error reporting. In this paper we introduce string origins as a lightweight, generic and portable technique to establish a tracing relation between the textual fragments in the input and output of a program transformation. We discuss the semantics and the implementation of string origins using the Rascal meta programming language as an example. Furthermore, we illustrate the utility of string origins by presenting data structures and operations for tracing generated code, implementing protected regions, performing name resolution, and fixing inadvertent name capture in generated code

    Model Manipulation for End-User Modelers

    Get PDF

    Establishing and Maintaining Semantically Rich Traceability: A Metamodelling Approach

    Get PDF
    This thesis addresses the problem of model-to-model traceability in Model Driven Engineering (MDE). A MDE process typically involves models ex- pressed in different modelling languages that capture different views of the system under development. To enhance automation, consistency and co- herency, establishing and maintaining semantically rich traceability links between models used throughout the software development lifecycle is of paramount importance. This thesis deals with the various challenges associated with providing traceability support in the context of MDE by defining a domain-specific, model-based traceability approach, which supports the main traceability ac- tivities in a rigorous and semi-automatic manner. To evaluate the validity of the thesis proposition, a reference implementation has been provided. The results obtained from the application of the proposed approach to various case-studies and examples have confirmed the feasibility and benefits of such an approach

    Model consistency management for systems engineering

    Get PDF
    Um der Komplexität der interdisziplinären Entwicklung moderner technischer Systeme Herr zu werden, findet die Entwicklung heutzutage meist modellbasiert statt. Dabei werden zahlreiche verschiedene Modelle genutzt, die jeweils unterschiedliche Gesichtspunkte berücksichtigen und sich auf verschiedenen Abstraktionsebenen befinden. Wenn die hierbei auftretenden Inkonsistenzen zwischen den Modellen ungelöst bleiben, kann dies zu Fehlern im fertigen System führen. Modelltransformations- und -synchronisationstechniken sind ein vielversprechender Ansatz, um solche Inkonsistenzen zu erkennen und aufzulösen. Existierende Modellsynchronisationstechniken sind allerdings nicht mächtig genug, um die komplexen Beziehungen in so einem Entwicklungsszenario zu unterstützen. In dieser Arbeit wird eine neue Modellsynchronisationstechnik präsentiert, die es erlaubt, Modelle verschiedener Sichten und Abstraktionsebenen zu synchronisieren. Dabei werden Metriken zur Erhöhung des Automatisierungsgrads eingesetzt, die Expertenwissen abbilden. Der Ansatz erlaubt unterschiedliche Grade an Benutzerinteraktion, von vollautomatischer Funktionsweise bis zu feingranularen manuellen Entscheidungen.The development of complex mechatronic systems requires the close collaboration of different disciplines, like mechanical engineering, electrical engineering, control engineering, and software engineering. To tackle the complexity of such systems, such a development is heavily based on models. Engineers use several models on different abstraction levels, for different purposes and with different view-points. Usually, a discipline-spanning system model is developed during the first, interdisciplinary system design phase. For the implementation phase, the disciplines use different models and tools to develop the discipline-specific aspects of the system. During such a model-based development, inconsistencies between the different discipline-specific models and the discipline-spanning system model are likely to occur, because changes to discipline-specific models may affect the discipline-spanning system model and models of other disciplines. These inconsistencies lead to increased development time and costs if they remain unresolved. Model transformation and synchronization are promising techniques to detect and resolve such inconsistencies. However, existing model synchronization solutions are not powerful enough to support the complex consistency relations of such an application scenario. In this thesis, we present a novel model synchronization technique that allows for synchronized models with multiple views and abstraction levels. To minimize the information loss and improve automation during the synchronization, it employs metrics to encode expert knowledge. The approach can be customized to allow different amounts of user interaction, from full automation to fine-grained manual decisions.Tag der Verteidigung: 24.10.2014Paderborn, Univ., Diss., 201
    corecore