
Jan Dominik Rieke

Model Consistency Management for
Systems Engineering

Heinz Nixdorf Institut, Universität Paderborn – Paderborn – 2015

ISSN 2195-5239

Das Werk einschließlich seiner Teile ist urheberrechtlich geschützt. Jede Verwertung
außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung der
Herausgeber und des Verfassers unzulässig und strafbar. Das gilt insbesondere für
Vervielfältigung, Übersetzungen, Mikroverfilmungen, sowie die Einspeicherung und
Verarbeitung in elektronischen Systemen.

Als elektronische Version frei verfügbar über die Digitalen Sammlungen der
Universitätsbibliothek Paderborn.

Satz und Gestaltung: Jan Dominik Rieke

Hersteller: Verlagshaus Monsenstein und Vannerdat OHG
Druck . Buch . Verlag
Münster

Printed in Germany

Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen National-

bibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de

abrufbar

Preface

Today’s technical systems, from home appliances to transportation means, exhibit innovative
functionality and provide only comfort for the user, if they consist of a smart configuration of
hardware and software components. As a consequence, the necessary engineering process has
become very complex, because it requires a close interaction between the different involved
disciplines, in particular mechanical, electrical and software engineering.

Traditionally and even today, these disciplines and their corresponding engineering processes
and models are not really aligned to each other. Rather, the so-called “throw-it-over-the-wall”
approach is the dominant guiding principle for many of these processes. “Throw-it-over-the-
wall” means that usually a CAD-model is designed first by the mechanical engineers, then
given to the electrical engineers to design the wirings, sensors, actuators etc. and, finally, the
software engineers have to build the software “on top” what is given to them. Of course, this
picture is a vast simplification, because many more models exist which have to be aligned to
each other. Still this picture illustrates the two major weaknesses, namely (1) that the
engineers of one discipline have to live with built in (resource) constraints as defined by the
engineers of another discipline who could not oversee all consequences of their design and (2)
that a tedious and error-prone manual process is often in place to redesign the different
models if such constraints are detected during the engineering process. s

The core of Jan Rieke’s approach is a method for an automatic model-to-model
transformation which is combined with smart means for guaranteeing model consistency. In
principle, the approach guaranties automatic updates of all models across all disciplines of an
engineering process, when one model is changed by an engineer. However, such updates
should not happen always immediately after a change. These changes are often very fine-
grained ones and may even be reconsidered later on. Immediate updates would corrupt the
whole process and would not really support a rigorous and controllable engineering process.
As a particular advantage compared with other similar approaches, Jan Rieke’s approach
provides and integrates various ideas to enable so-called continuous engineering, i.e. the
concurrent construction of different models. This requires to include version- and
configuration management of models as well as provisions to delay updates. Delaying updates
means to define appropriate milestones when updates are performed and appropriate
processes to reestablish model consistency. As a result, no unexpected and hampering
interferences with the work of individual engineers should happen during the engineering
process.

In summary, the approach provides significant advantages in comparison with others,
especially concerning model consistency and synchronization management. It represents a
significant step towards making systems engineering, i.e. the close cooperation of different
engineering disciplines, applicable in industry. Considering the current hype about cyber
physical systems and Industry 4.0, such an approach comes exactly at the right time and
marks a cornerstone in providing sophisticated automatic support for highly intertwined and
aligned engineering processes. The thesis’ results will surely boost the quality of resulting
products and the cost-effectiveness of its development and engineering processes.

Paderborn, January 2015 Prof. Dr. Wilhelm Schäfer

Heinz Nixdorf Institute
Software Engineering Group
Zukunftsmeile 1
33102 Paderborn

Model Consistency
Management for Systems

Engineering
by

Jan Dominik Rieke
jan.rieke@uni-paderborn.de

PhD Thesis
in partial fulfilment of the requirements for the degree of

doctor rerum naturalium (Dr. rer. nat.)

supervised by
Prof. Dr. Wilhelm Schäfer

Paderborn, January 23, 2015

Abstract

The development of complex mechatronic systems requires the close collabora-
tion of different disciplines, like mechanical engineering, electrical engineering,
control engineering, and software engineering. To tackle the complexity of such
systems, such a development is heavily based on models. Engineers use several
models on different abstraction levels, for different purposes and with different
view-points. Usually, a discipline-spanning system model is developed during
the first, interdisciplinary system design phase. For the implementation phase,
the disciplines use different models and tools to develop the discipline-specific
aspects of the system.

During such a model-based development, inconsistencies between the differ-
ent discipline-specific models and the discipline-spanning system model are likely
to occur, because changes to discipline-specific models may affect the discipline-
spanning system model and models of other disciplines. These inconsistencies
lead to increased development time and costs if they remain unresolved.

Model transformation and synchronization are promising techniques to de-
tect and resolve such inconsistencies. However, existing model synchronization
solutions are not powerful enough to support the complex consistency relations
of such an application scenario. In this thesis, we present an novel model syn-
chronization technique that allows for synchronized models with multiple views
and abstraction levels. To minimize the information loss and improve automa-
tion during the synchronization, it employs metrics to encode expert knowledge.
The approach can be customized to allow different amounts of user interaction,
from full automation to fine-grained manual decisions.

iii

Zusammenfassung

Die Entwicklung komplexer mechatronischer Systeme erfordert die Zusammen-
arbeit verschiedenster Fachdisziplinen wie beispielsweise Mechanik, Elektro-
nik/Elektrotechnik, Regelungstechnik und Softwaretechnik. Um der Komple-
xität solcher Systeme während der Entwicklung Herr zu werden, findet die Ent-
wicklung heutzutage meist modellbasiert statt. Dabei existieren zahlreiche ver-
schiedene Modelle, die jeweils verschiedenen Zwecken dienen, unterschiedliche
Gesichtspunkte berücksichtigen und sich auf verschiedenen Abstraktionsebenen
befinden. Typischerweise wird zunächst ein fachdiziplinübergreifendes System-
modell in einer ersten, interdiziplinären Entwicklungsphase erstellt. In der dar-
auf folgenden Implementierungsphase verwenden die Fachdisziplinen jeweils ei-
gene Modelle und Werkzeuge, um ihre disziplinspezifischen Aspekte des Systems
zu entwickeln.

Während dieser Implementierungsphase kommt es häufig zu Inkonsistenzen
zwischen den fachdisziplinspezifischen Modellen und dem disziplinübergreifen-
den Systemmodell, da sich Änderungen an den Fachdisziplinmodellen auch auf
das Systemmodell und andere Disziplinen auswirken können. Wenn solche In-
konsistenzen ungelöst bleiben, führt dies zu einer verlängerten Entwicklungszeit
und steigenden Kosten.

Modelltransformations- und -synchronisationstechniken sind ein vielverspre-
chender Ansatz, um solche Inkonsistenzen zwischen Modellen zu erkennen und
aufzulösen. Existierende Modellsynchronisationstechniken sind allerdings nicht
mächtig genug, um die komplexen Beziehungen in so einem Entwicklungssze-
nario zu unterstützen. In dieser Arbeit wird eine neue Modellsynchronisations-
technik präsentiert, die es erlaubt, Modelle verschiedener Sichten und Abstrak-
tionsebenen zu synchronisieren. Dabei werden Metriken zur Erhöhung des Auto-
matisierungsgrads eingesetzt, die Expertenwissen abbilden. Der Ansatz erlaubt
unterschiedliche Grade an Benutzerinteraktion, von vollautomatischer Funkti-
onsweise bis zu feingranularen manuellen Entscheidungen.

iv

Acknowledgments

This work would not have been possible without the tremendous support from
several people and the great working atmosphere at the software engineering
research group at the University of Paderborn/Heinz Nixdorf Institute.

I especially thank Wilhelm Schäfer for the guidance throughout the years
at his research group and the confidence he had in me. Further thanks go to
Gregor Engels, Jürgen Gausemeier, and Steffen Becker, who significantly helped
me with their support and their views on my research from different perspectives.

I also thank all of my former colleagues at the software engineering research
group, especially Joel Greenyer, Oliver Sudmann, Claudia Priesterjahn, Markus
von Detten, Dietrich Travkin, Jens Frieben, Matthias Meyer, Christopher Brink,
Christian Heinzemann, Stefan Dziwok, Uwe Pohlmann, Anas Anis, Christian
Stritzke, and Sebastian Lehrig. Besides the inspiring scientific discussions, I
very much enjoyed the atmosphere and the humor at the research group. Very
special thanks go to “administrative” section, Jutta Haupt, Jürgen “Sammy”
Maniera, Astrid Canisius, and Eckhard Steffen. You always knew what to do
when technical or administrative problems arose. All of you made the time at
Paderborn a very special experience.

My work highly benefited from the interdisciplinary work with researchers
from the SFB 614 and particularly those from the group of Prof. Gausemeier. I
thank Sascha Kahl, Sebastian Pook, Mareen Vaßholz, Rafał Dorociak, Roman
Dumitrescu, and Harald Anacker for many interesting discussions.

It was fun working together with Sebastian Goschin, Philipp Ackermann,
Andrey Pines, and Thomas Zolynski during their bachelor and master thesis
and in the Project Group SafeBots II.

Also, Florian Schoppmann helped a lot with proofreading.
Most importantly, I thank my family for their continuous support: My par-

ents Klara and Heribert and my brother Matthes. But first and foremost, I
thank my beloved wife Doreen (besides her helpful design advices) for her con-
stant encouragement, her patience, and her extraordinary support despite all
the things she had endure during the last years.

v

Contents

1 Introduction 1
1.1 Running Example . 4
1.2 Problem . 7
1.3 Objective . 9
1.4 Approach and Contribution . 10
1.5 Structure of this Thesis . 11

2 Foundations 13
2.1 Model-based Development of Mechatronic Systems 14

2.1.1 Models and Model-Based Development 14
2.1.2 Development Process 15
2.1.3 Interdisciplinary Conceptual Design 17
2.1.4 Discipline-Specific Design and Development 21
2.1.5 Further Disciplines . 30

2.2 Model Transformations . 31
2.2.1 General Concepts and Terms 31
2.2.2 Feature-Based Classification of Model Transforma-

tion Approaches . 32
2.3 Graph Grammars and Graph Transformations 35

2.3.1 Graphs . 36
2.3.2 Graph Transformations 38
2.3.3 Graph Grammars . 39

2.4 Triple Graph Grammars . 42
2.4.1 Basic TGG Syntax and Semantics 43
2.4.2 Model Transformation with TGGs 45
2.4.3 Incremental Updates and Model Synchronization . . 49
2.4.4 Model Transformation Features 52

3 Synchronizing Mechatronic System Development Models 55
3.1 Example Scenario Overview . 56
3.2 Deriving Initial Discipline-Specific Models from the System

Model . 59
3.2.1 Defining Discipline Relevance 59
3.2.2 Transformation from CONSENS to Software Engi-

neering Models . 60

vi

3.2.3 Transformation from CONSENS to Control Engi-
neering Models . 63

3.2.4 Transformation to Other Disciplines 69
3.3 Synchronizing Models During the Discipline-Specific Refine-

ment Phase . 69
3.3.1 Updating the System Model 70
3.3.2 Updating Control Engineering Models 71
3.3.3 Tackling the Challenges of Synchronizing Models for

Mechatronic System Development 71
3.4 Comparison with Other Scenarios 72

3.4.1 Summary . 74

4 Model Synchronization 75
4.1 Incremental Updates . 76

4.1.1 Related Work . 77
4.1.2 General Approach . 81
4.1.3 Example . 84
4.1.4 Concept of the Incremental Update Algorithm 89
4.1.5 Selection of Elements to be Reused 90
4.1.6 Selection Metrics . 91
4.1.7 Partially Reusable Pattern Matching Algorithm . . . 94
4.1.8 Formal Properties of the Approach 98
4.1.9 Summary . 98

4.2 Abstraction and Concretion Relations 99
4.2.1 Related Work . 102
4.2.2 Problem Formalization 103
4.2.3 Definition of the Initial Transformation Function I . 104
4.2.4 Definition of Refinement Operations 105
4.2.5 Derivation of the Consistency Relation R 108
4.2.6 Model Synchronization with a 1-to-n Consistency

Relation . 109
4.2.7 Generalization to n-to-n Consistency Relations . . . 113
4.2.8 Summary . 115

4.3 Synchronizing Concurrent Modifications 116
4.3.1 Conflict Categorization 117
4.3.2 Related Work . 122
4.3.3 Model Comparison for Merging Concurrent Modifi-

cations . 123
4.3.4 Improving Conflict Resolution 126
4.3.5 Summary . 131

5 TGG Extensions 133
5.1 Constraints and Application Conditions 134

5.1.1 Attribute Value Constraints 134
5.1.2 General Constraints . 135
5.1.3 Transformation Semantics of Application Conditions 137

vii

5.1.4 Correctness of Application Condition and Con-
straint Semantics . 139

5.2 Combinatoric Distributions . 140
5.2.1 Reusable Nodes and Application Conditions 142
5.2.2 Child Transformations 143

5.3 Concrete-Syntax-Based TGG Rules 146
5.3.1 General Approach . 147
5.3.2 Related Work . 148
5.3.3 Concept . 149

5.4 TGG Debugging . 150
5.4.1 Related Work . 152
5.4.2 Debugging Concept . 153

6 Realization and Evaluation 159
6.1 Implementation . 159

6.1.1 Incremental Bidirectional Synchronization Algorithm 162
6.1.2 Static Analyses . 165
6.1.3 Correspondence View 167
6.1.4 Rule Backtracking/Look-Ahead 169
6.1.5 Abstraction and Concretion Relations 170
6.1.6 TGG Syntax Extensions 172
6.1.7 Constraints and Application Conditions 174
6.1.8 TGG Debugging . 176

6.2 Model Transformations . 176
6.3 Evaluation . 179

6.3.1 Incremental Updates with Element Reuse 179
6.3.2 Bidirectional Synchronization 182
6.3.3 TGG Debugging . 183

7 Conclusion and Future Research 187
7.1 Summary . 187
7.2 Future Research . 189

A Transformation from CONSENS to MechatronicUML 191

B Transformation from Refinement Rules to TGG Refinements 211

Bibliography 225

List of Figures 240

viii

List of Publications

[ADF+14] H. Anacker, M. Dellnitz, K. Flaßkamp, S. Groesbrink, P. Hartmann,
C. Heinzemann, C. Horenkamp, B. Kleinjohann, L. Kleinjohann,
S. Korf, M. Krüger, W. Müller, S. Ober-Blöbaum, S. Oberthür,
M. Porrmann, C. Priesterjahn, R. Radkowski, C. Rasche, J. Rieke,
M. Ringkamp, K. Stahl, D. Steenken, J. Stöcklein, R. Timmermann,
A. Trächtler, K. Witting, T. Xie, and S. Ziegert. Methods for the
design and development. In J. Gausemeier, F. J. Rammig, and
W. Schäfer (editors), Design Methodology for Intelligent Technical
Systems, Lecture Notes in Mechanical Engineering, pp. 183–350.
Springer Berlin Heidelberg, 2014.

[BvDHR11] S. Becker, M. von Detten, C. Heinzemann, and J. Rieke. Struc-
turing complex story diagrams by polymorphic calls. Tech. Rep.
tr-ri-11-323, Software Engineering Group, Heinz Nixdorf Institute,
University of Paderborn, Mar. 2011.

[GKRT08] J. Greenyer, E. Kindler, J. Rieke, and O. Travkin. TGGs for trans-
forming UML to CSP: Contribution to the AGTIVE 2007 graph
transformation tools contest. Tech. Rep. tr-ri-08-287, Software En-
gineering Group, Department of Computer Science, University of
Paderborn, 2008.

[GPR11] J. Greenyer, S. Pook, and J. Rieke. Preventing information loss in
incremental model synchronization by reusing elements. In Proceed-
ings of the 7th European Conference on Modelling Foundations and
Applications (ECMFA 2011). 2011.

[GR12] J. Greenyer and J. Rieke. Applying advanced TGG concepts for a
complex transformation of sequence diagram specifications to timed
game automata. In A. Schürr, D. Varró, and G. Varró (editors), Ap-
plications of Graph Transformations with Industrial Relevance, vol.
7233 of Lecture Notes in Computer Science, pp. 222–237. Springer
Berlin Heidelberg, 2012.

[GRSS11] J. Greenyer, J. Rieke, W. Schäfer, and O. Sudmann. The Mecha-
tronic UML development process. In P. L. Tarr and A. L. Wolf
(editors), Engineering of Software, pp. 311–322. Springer Berlin
Heidelberg, 2011.

ix

[GSG+09] J. Gausemeier, W. Schäfer, J. Greenyer, S. Kahl, S. Pook, and
J. Rieke. Management of cross-domain model consistency dur-
ing the development of advanced mechatronic systems. In M. N.
Bergendahl, M. Grimheden, and L. Leifer (editors), Proceed-
ings of the 17th International Conference on Engineering Design
(ICED’09), vol. 6. 2009.

[GST14] J. Gausemeier, W. Schäfer, and A. Trächtler (editors). Seman-
tische Technologien im Entwurf mechatronischer Systeme – Effek-
tiver Austausch von Lösungswissen in Branchenwertschöpfungsket-
ten. Carl Hanser Verlag, München, 2014.

[HLG+13] S. Hildebrandt, L. Lambers, H. Giese, J. Rieke, J. Greenyer,
W. Schäfer, M. Lauder, A. Anjorin, and A. Schürr. A survey of
triple graph grammar tools. EC-EASST, Post-Proceedings of the
Second International Workshop on Bidirectional Transformations
(BX 2013), 2013.

[HPR+12] C. Heinzemann, U. Pohlmann, J. Rieke, W. Schäfer, O. Sudmann,
and M. Tichy. Generating Simulink and Stateflow models from soft-
ware specifications. In Proceedings of the 12h International Design
Conference DESIGN 2012. 2012.

[HRB+14] C. Heinzemann, J. Rieke, J. Bröggelwirth, A. Pines, and A. Volk.
Translating MechatronicUML models to MATLAB/Simulink and
Stateflow. Tech. Rep. tr-ri-14-338, Software Engineering Group,
Heinz Nixdorf Institute, University of Paderborn, May 2014. Ver-
sion 0.4.

[HRS13] C. Heinzemann, J. Rieke, and W. Schäfer. Simulating self-adaptive
component-based systems using MATLAB/Simulink. In Proceed-
ings of the 7th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO ’13), pp. 71–80. IEEE Computer
Society Press, Sep. 2013.

[LAS+14] E. Leblebici, A. Anjorin, A. Schürr, S. Hildebrandt, J. Rieke, and
J. Greenyer. A comparison of incremental triple graph grammar
tools. In 13th International Workshop on Graph Transformation
and Visual Modeling Techniques (GT-VMT 2014). 2014.

[RDS+12] J. Rieke, R. Dorociak, O. Sudmann, J. Gausemeier, and W. Schäfer.
Management of cross-domain model consistency for behavior mod-
els of mechatronic systems. In Proceedings of the International De-
sign Conference – DESIGN 2012. 2012.

[Rie11] J. Rieke. Model synchronization for mechatronic systems. In Soft-
ware Engineering (Workshops), pp. 309–314. 2011.

[RS12] J. Rieke and O. Sudmann. Specifying refinement relations in ver-
tical model transformations. In Proceedings of the 8th European
Conference on Modelling Foundations and Applications (ECMFA
2012). Springer Berlin/Heidelberg, 2012.

x

[SEH+10] W. Schäfer, T. Eckardt, C. Henke, L. Kaiser, T. Kerstan, J. Rieke,
and M. Tichy. Der Softwareentwurf im Entwicklungsprozess mecha-
tronischer Systeme. In 7. Paderborner Workshop Entwurf mecha-
tronischer Systeme. 2010.

[vDHP+12] M. von Detten, C. Heinzemann, M. C. Platenius, J. Rieke,
D. Travkin, and S. Hildebrandt. Story diagrams – syntax and
semantics. Tech. Rep. tr-ri-12-324, Software Engineering Group,
Heinz Nixdorf Institute, University of Paderborn, July 2012. Ver-
sion 0.2.

[vDRH+11] M. von Detten, J. Rieke, C. Heinzemann, D. Travkin, and
M. Lauder. A new meta-model for story diagrams. In Proceedings
of the 8th International Fujaba Days. University of Tartu, Estonia,
May 2011.

xi

CHAPTER 1
Introduction

From home appliances to transportation means, modern technical systems are
becoming more and more complex. In addition, they incorporate an increasing
amount of software. Software plays a key role especially with large networks of
interconnected systems (so-called “systems of systems”). Such advanced tech-
nical systems are often aptly described by the term mechatronics. Mechatronic
system development is characterized by the collaboration of several disciplines,
e.g., mechanical engineering, electrical engineering, and control and software
engineering.

The increasing complexity also poses challenges to the engineering process
itself. Up to now, the development of the discipline-specific aspects of the sys-
tem is often not thoroughly integrated into the overall system development
processes, or no interdisciplinary developement processes exist at all. For in-
stance, the primary focus in the early phases of the development often is on the
mechanical engineering, and software and control engineering only play a mi-
nor role. Typically, mechanical engineers design the conceptual and mechanical
aspects of a system first. After finalizing this system design, they pass it over
to the control and software engineers1, who are consequently unable to change
the conceptual design of the system. For instance, the mechanical engineers
may have expected that a certain system function is implemented by software;
however, to do so, the software requires additional sensors that have not been
integrated into the mechanical system design. This easily leads to increased
production time and costs, as problems related to the conceptual design of the
system are identified late, and additional iterations in the development process
are necessary. Therefore, mechatronic system design requires a more integrated
development process.

1Note that in this thesis we distinguish between control engineering and software engineer-
ing, although both disciplines mainly develop software in a broad sense. Control engineering
is responsible for the continuous behavior of the system, i.e., system dynamics and controller
design. Software engineering deals with the discrete behavior, i.e., state-based behavior and
message-based communication between different system elements.

1

2 CHAPTER 1. INTRODUCTION

In particular, the effort of building complex technical systems requires a view
on the system as a whole, where every aspect of the system under development
is considered, and all these aspects are integrated. This is called systems en-
gineering. Systems engineering focuses both on the system under development
and the corresponding development project: It “integrates all the disciplines and
specialty groups into a team effort forming a structured development process
that proceeds from concept to production to operation.” [INCO04]

Several design guidelines exist that target different types of systems. For
mechatronic systems, the VDI 2206 [VDI2206] or the V-Model [Ben05, BRD06])
propose that the development of such systems should take place in three phases.
Figure 1.1 shows the V-Model, a typical process model for the development of
technical systems [Ben05, BRD06].

C
onceptual D

esign S
ys

te
m

 In
te

gr
at

io
n

Design & Development

Mechanical Engineering

Electrical Engineering

Control Engineering

Software Engineering

Principle Solution

Con-
struction

Strategic Planning and
Innovation Management

Figure 1.1: V-Model as a process for mechatronic system development (adapted
from [VDI2206, BRD06])

After performing the initial strategic product planning, experts from all
disciplines collaborate in a first development phase, called the conceptual design.
In this phase, they work out the principle solution, a system model that captures
all interdisciplinary concerns. Discipline-specific details, however, are usually
not contained in that system model.

Next, the principle solution serves as a basis for the second phase, the
discipline-specific design and development phase. Here, the engineers from the
different disciplines use their own models, artifacts, and tools to design and
implement all discipline-specific details of the system. The general idea is that
tasks previously performed consecutively are now executed simultaneously by
collaborating engineers of the different disciplines; this idea is known as “con-
current engineering” [FGYO95, MCT08].

Finally, in the system integration phase, all discipline-specific artifacts are
combined to form a holistic model of the system, which, for instance, is used for
model-based testing and simulation. Later, this model is also the basis for the
actual construction of the system.

3

The V-Model itself is just the organizational framework for the develop-
ment. It therefore has to be individually detailed for the actual system under
development. In particular, it only addresses the development process, but not
which types of development documents (“artifacts”) are used, how they are
used, and how they influence each other. Thus, the development methodology
elaborated in the Collaborative Research Center (CRC) 614 “Self-Optimizing
Concepts and Structures in Mechanical Engineering” expands and details ex-
isting methodologies with focus on self-optimizing mechatronic systems. This
methodology supports engineers and developers by providing specific methods
and tools (cf. Gausemeier et al. [GKP+14]). One particular part of this
methodology is the collaboration and coordination of the different disciplines.
On a more technical level, we have to ensure the consistency of the different
development artifacts used throughout the development process.

Ideally, the principle solution, which is the result of the conceptual design
phase, covers all discipline-spanning concerns. This means that all interfaces be-
tween the disciplines have been finally defined. Thus, there should be no need
for further discipline-spanning coordination during the discipline-specific refine-
ment phase. However, in practice, interdisciplinary concerns that the engineers
have not foreseen frequently arise during the conceptual design. For instance,
engineers may identify new interrelations between the disciplines during the de-
velopment. Additionally, changes to the system design may become necessary,
e.g., due to changing requirements.

For example, it can turn out that a designated sensor has a failure rate
that is too high to allow a safe operation of the system. This requires either
selecting another sensor type, adding a second redundant sensor, or implement-
ing new safety procedures – each of which has an impact on several disciplines.
Even relatively small modifications may have a severe impact on other disci-
plines. For instance, only slightly increasing the total weight of a vehicle in
mechanical engineering may require new braking strategies in control engineer-
ing, together with increased power consumption of the braking system, which
affects electrical engineering. These problems have long been recognized (cf.,
Fohn et al. [FGYO95]). Ma et al. state that, in concurrent engineering, it
is “not easy to maintain the consistency among related product models because
information associations are not established.”[MCT08]

To sum up, changes that affect several disciplines are likely to arise during the
discipline-specific design and development phase. This requires communicating
these changes between the disciplines, to assure that all discipline’s engineers
still develop the same system. Otherwise, severe issues will arise during the final
system integration phase, as there will be contradictions when bringing together
the development artifacts of the different disciplines. Not surprisingly, a recent
study with 32 engineering companies of the German-speaking region reveals
that the orchestration of the discipline-spanning development and the tools that
enable this orchestration are seen as key enablers for future products [GCW+13].

In order to tackle the complexity of modern systems, most engineer-
ing disciplines use model-based development approaches. According to Sta-
chowiak [Sta73], a model is a restricted representation (abstraction) of entities
of the real world and connections between them used for well-defined purposes

4 CHAPTER 1. INTRODUCTION

(pragmatism). In engineering, models are typically used to ease the development
the system. For instance, by abstracting from unimportant details, models im-
prove the understanding of a certain aspect of a system. Models can also be
used to simulate the behavior of a system without using a real-world prototype
(model-based testing). This reduces the necessity of costly prototype construc-
tion, and allows performing analyses during all phases of the development. In
computer-aided engineering (CAE), we primarily find virtual models that only
exist as a representation within computers.

During the development of a system, several development models reflect dif-
ferent aspects of a system under development. Models are used in all stages of
the development process, and consequently, these models differ in purpose and
viewpoint. For instance, there are models that exclusively cover mechanical en-
gineering or software engineering aspects, and models that represent discipline-
spanning information. In other words, the way a model abstracts from details
and represents information depends on the purpose of this model (pragmatism).

As described before, it is necessary to keep all models consistent. Due to the
difference in the models’ abstraction and representation, a change constitutes
differently in each model. In addition, when changing a model, an engineer may
not even be aware of the consequences of this change to other, “foreign” models.
Automaticmodel transformation and synchronization techniques are a promising
approach to tackle such scenarios. However, as we describe in the following, ex-
isting approaches often focus on simple unidirectional transformation scenarios
and lack features important for complex bidirectional synchronization scenar-
ios. This restricts their applicability to relatively simple scenarios and mappings.
Thus, existing model transformation techniques face new challenges in mecha-
tronic system design: Models of different disciplines are manifold, and map-
ping between them is a complex task. Moreover, even if these transformation
techniques would provide the necessary language features, defining, maintain-
ing, and executing such complex transformation specifications is not adequately
supported by the tools in use. As a result, a substantial amount of fine-grained
user intervention is necessary, frequently offsetting the gains achieved through
the increased automation due to the model synchronization.

Before summarizing the inapplicability of existing approaches in Sect. 1.2,
we first describe the running example that is used in this thesis.

1.1 Running Example
As a running example throughout this thesis, we consider the RailCab research
project2, which also serves as an extensive case study for the CRC 614. The
vision of the RailCab project is that, in the future, the schedule-based rail-
way traffic will be complemented or replaced by small, autonomous RailCabs
that transport passengers and goods on demand, being more energy-efficient by
dynamically forming convoys. Figure 1.2 illustrates this vision, showing some
aspects of this system and the test track built at the University of Paderborn.

2Neue Bahntechnik Paderborn/RailCab: http://www-nbp.uni-paderborn.de/

1.1. RUNNING EXAMPLE 5

Passenger RailCab

Cargo RailCab Convoy formation

Test track at the

University of Paderborn

Figure 1.2: Illustration of the RailCab research project

In the following, we consider how the model-based development process could
be applied to the RailCab project. In the first phase, an interdisciplinary team
of engineers develops the principle solution of this RailCab system. The active
structure is part of the principle solution and models the basic structure of the
system under development. More specifically, it describes the system elements
which the system comprises. Figure 1.3 shows an excerpt of the active structure
of the RailCab.

A system element is a building block that fulfills one or more functions. For
instance, a Distance Sensor3 that measures the distance to other objects is such
a system element. These system elements have ports, which form the interface
to other system elements. Ports may transfer material, energy, or information.
Consequently, there are material flows, energy flows, and information flows that
connect ports of different system elements. In the case of a distance sensor, the
sensor transfers the measured distance to a RailCab driving in front via an
information flow to the system element Hazard Detection. System elements can
also be hierarchically structured, i.e., they consist of further sub-elements in
order to fulfill a more complex function.

Let us have a look into the active structure shown in Fig. 1.3. To move the
RailCab, this Traction Unit generates a force Ftraction, which is transferred to the
railway tracks outside of the RailCab system (not contained in the figure). The
Velocity Control is responsible to provide the Traction Unit with a designated
force value F ∗ that will accelerate or decelerate the RailCab to the speed it
should drive at. The different controllers inside the Velocity Control calculate
this force, which will be described in the following.

RailCabs are able to form convoys dynamically when traveling. In a convoy,
the RailCabs drive closely together to optimally make use of the slipstream,
but there is no mechanical connection between the RailCabs. The participating
RailCabs therefore have to drive at exactly the same speed. When driving alone
or as a leader in a convoy, the Velocity Control compares the current speed with
a given reference speed to calculate the acceleration or deceleration force. When
following in a convoy, it uses the difference between a given reference distance to

3When referring to specific model elements, we use this sans-serif type face in this thesis.

6 CHAPTER 1. INTRODUCTION

RailCab

Communica-

tion Module

D

Drive Control

Hazard

Detection

convoy

coordination

d*

convoy state

 detected
 hazards

vleader

 dsafe

Velocity Control

Position

Controller

Velocity

Controller

Reference

Generator

v*RailCab

Position

Observer

xRailCab,vRailCab

 F*

xRailCab,vRailCab

x*’

Traction Unit

 Ftraction

v*RailCab

Distance

Processingdleader

d*

dleader

track section

negotiation

convoy
coordination

Distance

Sensor

distance
data

v*

v*

vRailCab

Legend

Energy FlowInformation FlowJoinPortSystem Element

Figure 1.3: Active structure of the RailCab

the preceding RailCab and the actual distance measured by a Distance Sensor.
In this way, RailCabs can ensure keeping a safe distance in a convoy. Also the
Hazard Detection uses the distance measured by the distance sensor to initiate
emergency responses or failsafe behavior.

The general behavior of the RailCab is also specified within the principle
solution. For instance, the communication protocol to negotiate convoys is de-
fined, as it is interdisciplinary relevant: Software engineers later have to prove
the safety of the protocol, and control engineers have to allow for the time con-
straints when implementing the reconfiguration of Longitudinal Dynamics Con-
troller.

As described, changes that affect several disciplines are likely to occur during
the design and development phase. In the running example, the distance sensor
is a highly safety-critical system element, as faulty data or a malfunction of the
sensor when the RailCab is in a convoy may lead to a crash, putting human lives
at risk. Therefore, after selecting the actual sensor component, the engineers
have to perform a hazard analysis. It may turn out that the risk of the sensor
causing such hazards is, in fact, too high. Thus, in such a case, the system
engineers may decide to add a second distance sensor. In this way, the RailCab
can detect bad data by comparing the values from both sensors. If they differ
significantly, at least one of the sensors is not working correctly, and the system
can initiate a fail-safe behavior, e.g., immediately leaving the convoy.

The necessary additions to the system model are relevant to several disci-
plines: The software and control engineers have to integrate the new sensor into
their models so that the RailCab compares both values to detect possible sen-
sor failures. Furthermore, the fail-safe behavior must be developed and added
to the behavioral models, and the software engineers must prove whether this
behavior is actually safe. In electrical engineering, engineers have to wire the
sensor. Finally yet importantly, mechanical engineers have to mount the sensor
into the chassis in their models.

Manually altering all discipline-spanning and discipline-specific models with
the required changes is a highly time-consuming and error-prone task. Thus,

1.2. PROBLEM 7

we aim at a model consistency management support that helps the engineers in
performing the necessary changes to all affected models (mostly) automatically.
Figure 1.4 shows how the different models evolve and how information must be
propagated between them during the development scenario described above. Af-
ter generating initial discipline-specific models in step 1, engineers start refining
their models (step 2), e.g., implementing control strategies in control engineer-
ing. In step 3, the second distance sensor is added to the system model. This
change has to be propagated to all affected discipline-specific models in step 4.

v1.0SEv1.0EE v1.0CE v1.0ME

v1.1SE v1.1CE

v1.1

v1.2CE

v1.0

v0.9

v0.8

Principle
Solution

Initial transformation and mapping of
corresponding design artifacts

1

Discipline-specific refinements
(implementation of control strategies)

2

Discipline-spanning relevant change
(additional distance sensor)

3

Update of discipline-specific models
4

v1.2SEv1.1EE v1.1ME

SE

EE

CE

ME

Discipline-Spanning System Model

Electrical Engineering Models

Software Engineering Models

Control Engineering Models

Mechanical Engineering Models

Manual Change

No or Automatic Change

Legend

Model Transformation/
Incremental Update

Figure 1.4: Evolution of the different models in the example scenario

1.2 Problem
Model transformation and synchronization techniques are a promising ap-
proach to tackle such model consistency issues. Languages and algorithms for
bidirectional model synchronization are an intensively researched topic today
(cf. [HLR06, GH09, GW09, XSHT09, LAVS12a, HLG+12, Lau13]). However,
existing model synchronization techniques mainly focus on application scenarios
where models of the same or similar expressiveness and/or structurally similar
models have to be kept consistent [RS12]. If, like in our case, models of dif-
ferent abstraction levels, different scopes, or of different disciplines have to be
synchronized (vertical transformations4), these techniques are often insufficient.
The graph structures, on which the model transformations work, differ signifi-
cantly between, for instance, software engineering models like architecture de-
scriptions, mechanical engineering models like CAD, and electrical engineering

4Horizontal transformations map between models of the same abstraction level, vertical
transformations map between models of different abstraction levels [MG06].

8 CHAPTER 1. INTRODUCTION

models like block diagrams. In particular, existing techniques have three major
problems in our scenario.

First, they may cause unnecessary loss of information. When the additional
distance sensor is introduced, the discipline-specific implementation has already
started: The different models now contain discipline-specific information that
has been added by the discipline engineers. In the example scenario of Fig. 1.4,
this is the case for the software engineering models (v1.1SE) and the control
engineering models (v1.1CE). For instance, the software engineer may have al-
ready elaborated on the reconfiguration behavior, and the control engineers may
have already implemented some of the controllers. This additional, discipline-
specific information is not contained in the discipline-spanning system model,
and therefore not subject to the model transformation and synchronization.
When updating such modified and enriched models, existing model synchro-
nization techniques cause unnecessary information loss to the discipline-specific
models: Because they are not aware of such additional discipline-specific infor-
mation, they may damage or even delete it.5

Second, existing model transformation techniques do not provide sufficient
support for transformations between models of different abstraction levels. In
our scenario, the system model has a higher level of abstraction than the
discipline-specific models. This means that the discipline-specific models con-
tain more information. Therefore, there often exist several ways to translate a
concept from the system model to the discipline-specific models. For instance,
controllers may be realized for different kinds of electronic control units (ECUs),
communicating via different kinds of bus systems. Moreover, not all possible
ways of concretizing an abstract concept in an discipline-specific model may be
known in advance; i.e., the mapping between the models changes during the de-
velopment. Existing model transformation techniques do not provide first-class
support for such changing 1-to-n relations between models.

Third, editing conflicts6 may occur when engineers simultaneously modify
related models. For instance, the time necessary to reconfigure the Longitudinal
Dynamics Controller in control engineering may be in conflict with the timing
constraints for the communication protocol that the software engineers selected.
The model synchronization approach also has to support engineers in resolving
these editing conflicts. Model differencing and merging tools can solve some of
these conflicts automatically and provide dedicated means for manual conflict
resolution. However, such tools are not integrated into existing model synchro-

5Especially model-to-text transformations (e.g., for code generation) address these issues
by defining user-editable areas in the resulting target model/text. Changes to these areas are
preserved in further transformation runs. However, this heavily restricts the kind of changes
a user may apply to the target model/text. Furthermore, it only works if these areas are
completely independent from the rest of the models, and do not influence the semantics of the
other model parts – which typically does not hold for highly interlinked graph structures (i.e.,
models) like we find in our application scenario.

6In the context of model transformations, the term conflict is also used to describe a
situation where more than one model transformation rule is applicable during a transformation
run. When speaking about a “conflict” in this thesis, we mean editing conflicts (a conflict
caused by two users concurrently editing models). Otherwise, we explicitly use the term “rule
conflict”.

1.3. OBJECTIVE 9

nization approaches.
These three problems restrict the applicability of model transformations to

simple scenarios. Some model transformation approaches partially tackle the
described issues by introducing a large amount of user interaction or include
an increased number of manual steps during the transformation. This can be a
solution for certain use cases and scenarios, especially when there are many en-
gineers available that have profound knowledge about more than one discipline
and the models and tools in use – those engineers can then perform the necessary
transformations and the respective user decisions. However, such engineers are
typically difficult to find [GCW+13]. If they are available, they often have to fo-
cus their time effort on higher-level task like managing general interdisciplinary
concerns.

Finally yet importantly, existing model transformation approaches suffer
from bad understandability and maintainability of the transformation specifica-
tions, e.g., due to verbosity of their rules, or a lack of analysis and debugging
facilities. On the other hand, we require a model transformation approach that
has precisely defined semantics, because it is applied in a safety-critical context
where uncertainties or impreciseness can lead to dangerous situations.

1.3 Objective
The objective of this dissertation is to improve existing model synchronization
techniques in order to support the advanced requirements of a development
process of mechatronic systems. Especially, we aim at resolving the problems
described in the previous section. As these issues are partially interwoven and
interdependent, we aim at integrating the improvements into a single model
synchronization technique. To allow evaluating the approach, a prototypical
tool suite shall implement this technique.

As mentioned, the problems described in the previous section can (at least
partially) be solved with an increased manual effort when synchronizing mod-
els. In fact, in some situations, expert decisions are indispensable. On the
other hand, manual solutions always increase the risk of errors and flaws and
enlarge the workload for the engineers involved. Thus, we aim for a solution that
provides an adjustable level of automation, i.e., its users can customize it from
highly automatic to fully manual. Depending on the transformation scenario,
engineers can fine-tune the solution to their specific needs and requirements.

Our hypothesis is that applying such an improved model synchronization
technique within the development of advanced mechatronic system reduces the
time spent on manual consistency assurance tasks. Consequently, engineers
could spend more time on developing and analyzing the different models itself,
which will allow that more consistency modeling errors and flaws are detected,
and that they are detected earlier. This will accelerate the development process
and reduce flaws in the developed system. Thus, it will eventually lead to better
and less expensive products. We also expect other model-based development
approaches, like Model-Driven Architecture (MDA) [OMG01], to benefit from
this technique, as similar issues occur there, too.

10 CHAPTER 1. INTRODUCTION

1.4 Approach and Contribution
As there are three main problems, we propose a three-fold, but combined ap-
proach.

To approach the first problem, we have to incrementally update without
changing unaffected target model parts, as models may contain discipline-specific
information which otherwise might get lost. This is important when updating
discipline-specific models that have been enriched with discipline-specific refine-
ments in the meantime. We propose a novel model synchronization algorithm
that avoids unnecessary deletion by a more intelligent way of rule revocation and
application. The underlying idea is, when propagating changes, not to delete
elements right away, but to mark for deletion. In this way, the algorithm pre-
serves information and can reuse it during the model synchronization process if
necessary.

Second, the improved technique should allow relating models of different
abstraction levels. In this way, transformation engineers can more easily specify
the relation between an abstract system model and concrete discipline-specific
models. In addition, as new interrelations between models may still be identified
during the development process, we need to support changing this abstraction-
refinement relation later on. In general, defining a complete 1-to-n relation is
often time-consuming and complex, even if a transformation technique would
provide support for such 1-to-n relations. To simplify the definition of such
abstraction and concretization functions, we propose that the transformation
engineer first defines an initial transformation function I. In order to make
it more comprehensible and maintainable, I only contains a default case and
no discipline-specific refinements. The transformation engineer then defines so-
called refinement rules that describe what kind of changes to a default discipline-
specific model are refinements. These rules are described directly in terms of
the discipline-specific model, so that even discipline engineers without further
knowledge of the abstract system model and the transformation can define them.
We combine the refinement rules with the initial transformation function I to
form an overall consistency relation R that also covers the refinements.

To address the third problem, the technique should allow concurrent modi-
fications, conflict detection and resolution in cases where simultaneous changes
to models occur. Furthermore, it should support the engineers in restoring the
consistency in cases where editing conflicts cannot be automatically resolved.
We propose adopting existing model comparison and merging techniques for
model transformations. Thereby, we can automatically solve many editing con-
flicts automatically. The user can then inspect remaining editing conflicts. To
facilitate this manual task, we propose to use model synchronization previews
to estimate the impact of possible conflict resolutions to all affected models.

The proposed approach also allows involving the user in ambiguous situa-
tions. We use a set of heuristics and metrics that represent and encode knowl-
edge of transformation experts to allow reducing the amount of user interactions.
This helps non-expert users in applying our technique. The amount of desired
interaction can be customized according to the level of knowledge of the users
and/or the availability of work force.

1.5. STRUCTURE OF THIS THESIS 11

We use Triple Graph Grammars (TGGs) as the common model transforma-
tion formalism. TGGs are a rule-based, declarative model transformation lan-
guage invented by Schürr [Sch95]. Its semantics are precisely defined (based
on the well-known formalism of graph grammars), which allows, for instance,
sophisticated formal analyses. This is particularly important when develop-
ing safety-critical systems, where we want to guarantee the correctness of the
result of a transformation. However, there are drawbacks in terms of expressive-
ness, understandability, and maintainability of the transformation specification
language. In order to implement the required model transformations of our
application scenario (i.e., to the different disciplines’ models), we develop some
extensions to the TGGs formalism that increase its expressiveness. Further
TGG extensions aim at an improved user experience when developing a model
transformation, for instance, debugging facilities and an alternative concrete
syntax for TGG rules.

1.5 Structure of this Thesis
This thesis is structured as follows. In Chap. 2, we lay the foundations neces-
sary to understand the contents of this thesis. We suggest to read this section
selectively or to use it as a reference. Chapter 3 provides an overview about the
scenario. Here we describe the concepts of the different model transformations
and explain the running exemplary process, which is used throughout the thesis
to motivate and explain the different contributions. The core contributions of
this thesis are presented in Chap. 4 and 5. We describe our new model synchro-
nization algorithm in Sect. 4.1, the technique to define abstraction/refinement
model transformation in Sect. 4.2, and the support for concurrent changes in
Sect. 4.3. Chapter 5 presents the extensions to the TGG formalism that have
been developed in this thesis. In Chap. 6, we present how we implemented the
different developed techniques in our prototype tool, the TGG Interpreter
tool suite. Furthermore, we evaluate the developed approaches. We conclude
this thesis in Chap. 7 and give an outlook on future research directions. As
a reference, Appendixes A and B contain the specifications of transformations
that we developed in the course of this thesis.

CHAPTER 2
Foundations

Contents
2.1 Model-based Development of Mechatronic Systems 14

2.1.1 Models and Model-Based Development 14
2.1.2 Development Process . 15
2.1.3 Interdisciplinary Conceptual Design 17
2.1.4 Discipline-Specific Design and Development 21
2.1.5 Further Disciplines . 30

2.2 Model Transformations . 31
2.2.1 General Concepts and Terms . 31
2.2.2 Feature-Based Classification of Model Transformation Ap-

proaches . 32
2.3 Graph Grammars and Graph Transformations 35

2.3.1 Graphs . 36
2.3.2 Graph Transformations . 38
2.3.3 Graph Grammars . 39

2.4 Triple Graph Grammars . 42
2.4.1 Basic TGG Syntax and Semantics 43
2.4.2 Model Transformation with TGGs 45
2.4.3 Incremental Updates and Model Synchronization 49
2.4.4 Model Transformation Features 52

This chapter introduces the foundations for this thesis. The principles, pro-
cesses, and languages used in a model-based, multi-disciplinary development of
mechatronic systems are explained in Sect. 2.1. Section 2.2 introduces the basic
notions, terminology, and features of model transformations. Before introducing
Triple Graph Grammars (TGGs), the model transformation technique used in
this thesis, in Sect. 2.4, we explain graph grammars, the foundation of TGGs,
in Sect. 2.3.

13

14 CHAPTER 2. FOUNDATIONS

2.1 Model-based Development of Mechatronic
Systems

The complexity of technical systems has grown tremendously over the last
decades. For instance, transportation systems like cars were mainly mechan-
ical systems with no or little electronics before 1980. In the 1980s, the use of
anti-lock braking systems (ABS) in serial-production cars marked a first signif-
icant change. Since then, software running on electronic control units (ECUs)
increasingly influences the behavior of cars. Nowadays, even middle-class cars
are software-intensive systems that include a high degree of automation, e.g.,
parking assistants or adaptive headlights. Today, we are on the verge of a sec-
ond significant change – a change towards advanced mechatronic systems that
form so-called systems of systems, i.e., autonomous systems that communicate
with each other to perform tasks that would not be achievable individually.

Developing such advanced mechatronic systems is a complex task and poses
several challenges to the development process and the engineers involved. It re-
quires the expertise of several disciplines, namely mechanical engineering, elec-
trical engineering, control engineering, and software engineering. In particular,
the interdisciplinary dependencies require a strong collaboration between the dif-
ferent disciplines involved. Moreover, the development is often also partitioned
into separate modules that are developed by different teams or subcontractors.
This further increases the need for an effective collaboration.

To tackle the complexity of such a development, most engineering disciplines
use model-based development approaches. Thus, we first describe the notion of
a model and its use in development in Sect. 2.1.1. In Sect. 2.1.2, we describe
how the development of such systems proceeds. This process is divided into two
main phases. We describe these process phases in detail in Sect. 2.1.3 and 2.1.4.

2.1.1 Models and Model-Based Development

According to Stachowiak [Sta73], a model is a representation of an original
that is restricted in a particular way. It can be characterized by three main
properties:

• Representation: A model represents an original. The original can be real-
world entities and/or notions, but also other models.

• Abstraction: A model represents an original such that it abstracts from
some of its properties, i.e., partially or fully disregards them in the model.

• Pragmatism: The way in which a model abstracts depends on the purpose
of the model. The model disregards properties that are irrelevant for the
model’s purpose.

A model is valid for a given purpose if operations on the model yield re-
sults that are equivalent to performing these operations on the original (or are
approximating the results good enough for the given purpose).

In system development, models are used to ease the development in several
ways. For instance, by abstracting from unimportant details, models improve
the understanding of a certain aspect of a system. Models can also be used to

2.1. MODEL-BASED DEVELOPMENT OF MECHATRONIC SYSTEMS 15

simulate the behavior of a system without using a real-world prototype (model-
based testing). This reduces the necessity of costly prototype construction, and
allows performing analyses during all phases of the development.

In computer-aided engineering (CAE), we find virtual models that exist as
a representation within a computer. Using this representation, we can, for
instance, perform analyses like a formal verification of the behavior of a system
to ensure that no deadlocks or unsafe states can ever be reached.

The most important types of models for the development of mechatronic
systems are [GST14]:

• Process models describe sequences of process steps, e.g., models for devel-
opment processes.

• Requirements models define which (functional and non-functional) require-
ments a system has to fulfill.

• Structural models describe the hierarchical and modular structure of the
components of a system. They can be physical (e.g., representing construc-
tional elements) or logical (e.g., representing a software architecture).

• Behavioral models describe the dynamic, temporal, or static behavior of
a system. Examples are statecharts, which encode the behavior as states
and transitions, or signal-flow-graphs (block diagrams), which encode it
using mathematical equations.

• Geometric models model the (two- or three-dimensional) shape of a com-
ponent. CAD models often further contain information on materials, di-
mensions and its tolerances.

Typically, models are created for a specific purpose, and they cover a specific
field (domain). To allow a meaningful use of models, they have to be formalized
such that their syntax and semantics are clear and unambiguous. A domain-
specific language (DSL) precisely defines how its instances (models) are built and
which semantics they have [SV06]. In particular, a DSL consists of a metamodel
to define

• its abstract syntax, i.e., the building blocks (elements) of a model, their
properties, and how they relate to each other, and

• its static semantics, i.e., additional criteria on the well-formedness of mod-
els.

Additionally, a DSL defines1

• at least one concrete syntax, i.e., how elements of the DSL are represented
visually, e.g., using a graphical or text-based representation, and

• its dynamic semantics, i.e., the meaning of the different modeling con-
structs in particular situations.

2.1.2 Development Process

As explained above, software plays an increasing role in modern engineering
products. For instance, experts estimate that software will induce over 70 to 80
percent of future innovations in the automotive sector [Gri03, HKK04, BKPS07].
However, the development processes used in practice are often not suited for

1Some authors regard the concrete syntax and dynamic semantics definitions as part of
the metamodel [RH09, pp. 94f]; in practice, however, most DSL tools separate these.

16 CHAPTER 2. FOUNDATIONS

such advanced mechatronic systems engineering. In fact, until a few years
ago, the development often followed a so-called “throw it over the wall” prin-
ciple [AP96, SW07], as depicted in Fig. 2.1. First, the mechanical engineers
started developing the system according to their needs. Once finished, the re-
sults were handed over to the electronics development, then further making its
way through control engineering to software engineering. The underlying prob-
lem is that the traditional development process was not adapted thoroughly, but
simply extended by adding the supervening disciplines’ processes at the end.

Finished
Product

Software
Engineering

Control
Engineering

Electrics/
Electronics

Mechanical
Engineering

Figure 2.1: Traditional sequential development process (“throw it over the wall”)

It is obvious that such a development process does not only take more time
(as the disciplines cannot develop simultaneously), it also drastically impedes
the fixing of design flaws that are detected during the later phases. In or-
der to overcome these process-related issues, several interdisciplinary design
methods and processes have been proposed. Most of them are derived from
the V-Model [FM92], which was developed in the late 1980s and early 1990s.
A general design guideline for mechatronic systems is described by the VDI
standard 2206 [VDI2206], published by the Verein Deutscher Ingenieure (VDI).
The concept of developing different aspects of a system (and also the asso-
ciated production system) simultaneously is known as concurrent engineer-
ing [FGYO95, MCT08].

The V-Model, as depicted in Fig. 2.2, is a general development process that
has to be adapted for the specific needs and requirements of the type of system
under development. For instance, development methods elaborated in the Col-
laborative Research Center (CRC) 614 “Self-Optimizing Concepts and Struc-
tures in Mechanical Engineering” in Paderborn further improve, extend, and
detail this guideline, with respect to intelligent, self-optimizing mechatronic
systems.

In this thesis, we assume that this adapted development process of the CRC
614 is used. One important difference to the V-Model is that the distinction
between the phases “Design and Development” and “System Integration” has
been removed. Instead, the system integration is seen as a continuous part of
the second phase. A continuous integration of the results of the disciplines dur-
ing the second phase allows a shorter response time to problems and failures
and therefore reduces development time and costs [GRS14a]. This especially
holds for highly structured systems, i.e., systems that contain several subsys-
tems/modules that are developed independently.

2.1. MODEL-BASED DEVELOPMENT OF MECHATRONIC SYSTEMS 17

C
onceptual D

esign S
ys

te
m

 In
te

gr
at

io
n

Design & Development

Mechanical Engineering

Electrical Engineering

Control Engineering

Software Engineering

Principle Solution

Con-
struction

Strategic Planning and
Innovation Management→ →

Modeling & Simulation

Testing and Verification

of Requirements

Figure 2.2: V-Model as a process for mechatronic system development (adapted
from [VDI2206, BRD06])

In the following sections, we describe these two phases with a focus on the de-
velopment of self-optimizing mechatronic systems. In the first, conceptual design
phase, experts from all disciplines collaborate to develop the conceptual design,
as explained in Sect. 2.1.3. Second, the engineers design all discipline-specific
details of the system under development during the design and development
phase, described in Sect. 2.1.4. For details of the development process and the
development phases, we refer to Gausemeier et al. [GFDK09, GRS14b].

2.1.3 Interdisciplinary Conceptual Design

The goal of the first, interdisciplinary conceptual design phase is to define the
basic principles and concepts of the system under development. All disciplines
that are involved in the development collaborate in developing a system model
that defines everything necessary to start the discipline-specific design and de-
velopment. The result of the phase, therefore, is the so-called principle solution,
which covers at least all discipline-spanning information.

There are different modeling techniques to specify such a principle
solution. One well-known language is the Systems Modeling Language
(SysML) [OMG10a], which has been developed by the Object Management
Group (OMG) together with the International Council on Systems Engineering
(INCOSE). SysML is a very generic language, and there is no strong connec-
tion to a reference process [ABD+14]. Because it is usable for a wide range of
systems, users have to tailor it to the type of system under development (e.g.,
using profile mechanisms).

In this thesis, we use a language called CONSENS (Conceptual Design
Specification Technique for Engineering of Complex Systems) [GFDK09], which
was developed in the CRC 614. It is tailored for developing complex, self-

18 CHAPTER 2. FOUNDATIONS

optimizing mechatronic systems. It consists of a reference process and several
distinct, yet coherent partial models, each describing a different aspect of the
system. Figure 2.3 shows these partial models. Here, we focus on the partial
models that are most important for this thesis, namely Active Structure and
Behavior. For further reading, we refer to Frank [Fra06] and Gausemeier et
al. [GFDK09], who describe this specification language in detail.

System of coherent
partial models

Shape

Application Scenarios

Knowledge
base

Knowledge
base

Track
section x

Track
section y

Requirements

Geometry2
2.1 Length lges: 6600 mm

2.2 Width bges: 2420 mm

2.3 Heighth hges: 2855 mm

2.4 Distance hBo.: >400 mm

Behavior

System of Objectives

Environment

Functions

Active Structure

RailCab

1

1

3

1

1..2

0..10

1

*
*

influences
influences

*

*

1.
.*

us
es

tr
an

sp
or

ts

co
nt

ro
ls

co
nn

ec
ts

co
nn

ec
ts

bu
rs

ts
 o

pe
n

fe
ed

s
an

d
co

nd
uc

ts

User Switch

Environ-
ment

Track
sectioninfluences

influences

bu
rs

ts

op
en

VSky.

FSky
.yy

 FSky=dS*Vabs

!?
ds adjustable
with s.o.

S2

y

z2z2 z2

z1z1

measured
value

z1

measured
value

measured
value

calculate
speed
Skyhook

calculate
damping
interaction

Z7
Z7.1

Z7.2

Z8

Z8.3

Z8.2

Z9.1

Z9.2

Z9.4

Z9.5

max.

max.

abrasion

maintenance
interval

min.

min.

min.

max.

in-
put

controller

working-
point

control

drive
module 1

drive
module 2

V

F*

...

adjust air
gap

determine
control input

optimize
control input

determine
influences

external system of objectives

internal system of objectives

shuttle (cut-out)

shuttle (cut-out)

internal system of
objectives shuttle (cut-out)

targets of
the user

safety/
reliability

lateral
acceleration

costs

serial
interface

Figure 2.3: Aspects of the principle solution (adapted from [Fra06, GFDK09])

The conceptual design phase consists of four main activities, which are de-
picted in Fig. 2.4. In the following, we briefly describe these activities of the
first phase briefly. For a more detailed introduction, we refer to, e.g., Gause-
meier et al. [GFDK09], Adelt et al. [ADG+09], and Gausemeier et
al. [GRS14b].

2.1.3.1 Planning and Clarifying the Task

The conceptual design phase starts with planning and clarifying the task. This
is where the classical requirements engineering takes place: We analyze the envi-
ronment and the system’s interfaces to it and identify application scenarios and
core requirements of the system under development. The results are specified
using the partial models Environment, Application Scenarios, Requirements, and
System of Objectives.

2.1. MODEL-BASED DEVELOPMENT OF MECHATRONIC SYSTEMS 19

Conceptual Design

Module n

Module 2

Module 1

List of Requirements,

Application Scenarios

Principle Solution

on System Level

Principle Solution

on Module Level

Planning and

Clarifying the Task

Conceptual Design

on System Level

Conceptual Design

on Module Level
Concept Integration

Principle Solution of

the Whole System

Legend

Development artifact(s) Process step
Unit 1 Unit / Module

Figure 2.4: Conceptual design phase (adapted from [GFDK09])

Next, we continue with the conceptual design on system level, using these
determined requirements.

2.1.3.2 Conceptual Design on System and Module Level

In this phase, different solution variants for the design of the complete system are
explored and evaluated. After engineers choose the best design for the system,
they continue with the same process for all designated modules of the system.

In detail, they first define the function hierarchy such that the functions of
the system fulfill the defined requirements. They may reuse existing solution
patterns that have proven useful in previous systems. Information about such
solutions patterns can be found using online catalogs. However, the search
in such catalogs is based on keywords rather than specific solution pattern
information like functions. Thus, semantic technologies (like the “Semantic
Web”) are a promising approach to improve identifying reasonable solution pat-
terns [OJT+12, GST14].

Once the engineers identified promising solution variants, these solution pat-
terns form the basis for defining the Active Structure.

Active Structure Figure 2.5 shows a simplified active structure of the Rail-
Cab system. Such an active structure describes which elements the systems
comprises and how these system elements are cross-linked, i.e., how they in-
fluence each other. More specifically, there are unidirectional or bidirectional
flows that connect system elements. There are three types of flows: energy,
information, and material (the latter not contained in the figure).

In Fig. 2.5, there are several information flows between system elements, and
an energy flow from the Traction Unit to the Track Section. The latter is the
actual driving force that accelerates or decelerates the RailCab. The traction
unit receives a target driving force F ∗ from the Velocity Control. This system
element is responsible for calculating the target speed in different driving modes.
For a more detailed discussion of the active structure of the RailCab see Chap. 3.

Behavioral Modeling Engineers also define the basic principles of the be-
havior of the system during the conceptual design.

20 CHAPTER 2. FOUNDATIONS

RailCab

Communica-

tion Module

D

Drive Control

Hazard

Detection

convoy

coordination

d*

convoy state

 detected
 hazards

vleader

 dSafe

xRailCab,vRailCab

Traction Unit

 Ftraction

Distance

Processing

dleader

Track

Section

track section

negotiation

convoy
coordination

Distance

Sensor

distance
data

v*

System Element

Join

Information Flow

Energy Flow

Port

Legend

Velocity

Control

 F*

Figure 2.5: Simplified active structure of the RailCab

In general, the behavior of a mechatronic system can be separated into two
parts: the discrete behavior (i.e., event-based and communication behavior,
usually defined using statecharts) and the continuous behavior (i.e., controller
and physical/dynamic behavior usually defined by differential equations and/or
block diagrams). The principle solution primarily considers discrete behavior.

As an example, consider the Behavior–States model in Fig. 2.6. This model
defines the discrete behavior in terms of states and the necessary communication
for forming and breaking convoys. It consists of three states: In the noConvoy
state, the RailCab is in single-driving mode; this is the default state In states
convoyLeader and convoyFollower, the RailCab is in a convoy, either leading it
or following another RailCab.

Legend

convoyFollower noConvoy

/ breakConvoy breakConvoy /

createConvoy //createConvoy

noConvoy convoyLeader

state trigger / message event logical relationship start state

Figure 2.6: Behavior–States model defining the discrete and communication
behavior for convoys

According to the statechart of Fig. 2.6, switching between the different states
happens when certain message are sent or received. For instance, when a Rail-
Cab approaching a preceeding RailCab, it sends a message createConvoy to
initiate a convoy with the preceding RailCab. (Sending a message is denoted as
the message’s name after the slash “/”, reception, or trigger, as the message’s

2.1. MODEL-BASED DEVELOPMENT OF MECHATRONIC SYSTEMS 21

name after the slash. Both the trigger or the message can be empty.) The rear
RailCab switches from the noConvoy state to the convoyLeader state. However,
such a switch also involves the continuous, dynamic behavior of the system, as
the Velocity Control system element must be reconfigured to now use the dis-
tance to the leading RailCab to control its speed. So the discrete behavior and
the continuous behavior are highly interlinked.

The behavioral models that are developed during the conceptual design can
only serve as a first, rough sketch, and must be refined during the design and
implementations phase. Therefore, the engineers of these two disciplines have
to closely collaborate during the second phase.

2.1.3.3 Concept Integration

In the final step of the conceptual design, engineers combine the selected con-
cepts to form the detailed principle solution for the whole system. We check
whether there are conflicts between the chosen concepts. Furthermore, we an-
alyze and evaluate the complete solution (in contrast to the evaluation on the
sub-system level performed before).

If any issues or deficiencies are identified, we go back to the respective devel-
opment phase. For instance, we may have to select a different solution variant
for a sub-system and, thus, perform the conceptual design on subsystem level
again. Only if the complete principle solution has no deficiencies, we move on
to the next phase, the discipline-specific design and development, where the
disciplines start their discipline-specific development tasks.

2.1.4 Discipline-Specific Design and Development

The principle solution that has been developed in the conceptual design phase
is used as a starting point for the discipline-specific design and development. In
this phase, the disciplines work mainly on their own and use their own discipline-
specific development methods, models, and tools. As depicted in Fig. 2.7, a
separate development process is started for each system module. In parallel to
the disciplines’ development processes, the system engineers have a close look
on the discipline-spanning interplay. In particular, they perform the module
integration, where they keep track of the development artifacts of the different
disciplines and synchronize changes between the different disciplines’ models.
The same holds for the whole system: changes to a module may also affect
other modules. Therefore, we need to propagate such relevant changes to other
models of other modules.

Modern technical systems increasingly rely on software to fulfill their
functions, and software is the key innovative factor for many of these sys-
tems [HPR+12]. For instance, in a car, software influences acceleration (traction
control systems), braking (anti-lock braking system (ABS)), and even steer-
ing (automatic parking). Already in 2003, DaimlerChrysler experts estimated
“that 80 percent of all future automotive innovations will be driven by elec-
tronics, 90 percent thereof by software.“ [Gri03]. The amount of software in
cars grows exponentially, and a modern car nowadays has tens of millions of

22 CHAPTER 2. FOUNDATIONS

D
e

s
ig

n
 a

n
d

 D
e

v
e

lo
p

m
e

n
t

S
y
s
te

m
 O

p
tim

iz
a

tio
n

M
o

d
u

le
 1

S
y
s
te

m
 In

te
g

ra
tio

n

M
o

d
u

le
 n

S
y
s
te

m
 T

e
s
t

T
e

s
t R

e
s
u

lts

C
o

n
s
tru

c
tio

n
 M

o
d

e
ls

P
rin

c
ip

le

S
o

lu
tio

n

C
o

n
c

e
p

tu
a

l D
e

s
ig

n

M
o

d
u

le
 In

te
g

ra
tio

n
M

o
d

u
le

 O
p

tim
iz

a
tio

n
M

e
c
h

a
n

ic
a

l E
n

g
in

e
e

rin
g

C
o

n
tro

l E
n

g
in

e
e

rin
g

E
le

c
tric

a
l E

n
g

in
e

e
rin

g
S

o
ftw

a
re

 E
n

g
in

e
e

rin
g

M
o

d
u

le
 In

te
g

ra
tio

n
M

o
d

u
le

 O
p

tim
iz

a
tio

n
M

e
c
h

a
n

ic
a

l E
n

g
in

e
e

rin
g

C
o

n
tro

l E
n

g
in

e
e

rin
g

E
le

c
tric

a
l E

n
g

in
e

e
rin

g
S

o
ftw

a
re

 E
n

g
in

e
e

rin
g

L
e

g
e

n
d

D
e

v
e

lo
p

m
e

n
t a

rtifa
c
t(s

)

P
ro

c
e

s
s
 s

te
p

S
y
n

c
h

ro
n

iz
a

tio
n

s

Figure 2.7: Design and development phase (from [GRS14a])

2.1. MODEL-BASED DEVELOPMENT OF MECHATRONIC SYSTEMS 23

lines of code [BKPS07]. In the near future, we will have true autonomous driv-
ing available for standard passenger cars. This again will dramatically increase
the amount of software in a car, but also the necessity for car-to-car commu-
nication. For instance, vehicles will exchange information on planned routes to
reduce congestions or notify each other about oncoming hazards like rough road
conditions and accidents. The exchange of information influences the behav-
ior of the vehicles. This is typically called “system of systems”, i.e., different
systems interact and cooperate using message-based communication.

Regarding the software within such technical systems, we distinguish be-
tween continuous and discrete parts of software. The continuous parts, which
are designed by control engineers, contain the controllers that continuously pro-
cess input data from sensors to compute outputs for actuators. Their behavior is
usually defined by differential equations and/or block diagrams.2 For instance,
the ABS uses continuous controllers to actuate the brakes of each wheel individ-
ually. The discrete software defines, for instance, the message-based communi-
cation or event-driven behavior like system states and transitions. For instance,
cars communicate with each other using discrete software. It is typically imple-
mented by software engineers.

However, there is a strong relation between continuous and discrete soft-
ware. The car-to-car communication influences the behavior of the continuous
controllers, e.g., when another car warns about a hazard and the car decides
to decelerate. In a convoy of RailCabs, the convoy is negotiated by message-
based communication between the RailCabs, and that determines the mode of
operation of the velocity controller. Therefore, the interplay and consistency
between software and control engineering models is of great importance when
developing modern technical systems. For more details on interplay between
the continuous behavior and the discrete software, we refer to Burmester et
al. [BGO06] and Heinzemann et al. [HSST13].

Due to the growing importance of software-related aspects, we focus mainly
on the disciplines of software engineering and control engineering in this thesis.
However, the methods and approaches presented in this thesis can be applied
for all disciplines that are involved in developing complex technical systems.

Next, we describe the development process in software engineering and con-
trol engineering and introduce the discipline-specific models used in this thesis.
For further details on the specific developments tasks and processes that are per-
formed in the different disciplines, we refer to Gausemeier et al. [GRS14a].

2.1.4.1 Software Engineering

In general, software engineers implement software that is responsible for the
discrete behavior of the system. For instance, this could be the message-based

2Note that in most modern mechatronic systems the continuous behavior is implemented
as controller software that runs on embedded devices (ECUs). This controller code is executed
periodically, e.g., every 0.5ms. Also the analog/digital converter for the sensor data runs
periodically (signal quantization with a given sampling rate). As a result, this controller code
is also not truly continuous; sometimes, it is also referred to as “quasi-continuous”.

24 CHAPTER 2. FOUNDATIONS

communication between two system elements or between several RailCabs, or
event-driven behavior like system states and transitions between states.

First, software engineers refine the software architecture that was defined by
the “software” system elements in the active structure. Every software system
element is mapped to a software component. The software engineers may now
introduce sub-components or add new ports and connectors when additional
communication is necessary.

Most importantly, they implement the real-time behavior of the components
by means of statecharts. In this thesis, we use MechatronicUML [BBB+12]
as a specification technique for the component real-time behavior. The idea is
that only components on the “lowest level”, so-called atomic components, have
a behavior assigned. The behavior of structured components (which consist of
other structured and atomic component) is only defined by the behavior of its
sub-components. This is also called compositional behavior.

With atomic components, we distinguish between continuous and discrete
components. Continuous components are typically controllers that continu-
ously process input data from sensors to compute outputs for actuators. These
controllers are implemented in control engineering (cf. Sect. 2.1.4.2). How-
ever, MechatronicUML allows to integrate them as “black-box” components,
i.e., no actual behavior is attached to continuous components in Mechatron-
icUML. In this way, they can be used to define the interface to control engi-
neering in a MechatronicUML software model.

In contrast, the behavior of discrete components is implemented using
MechatronicUML. Discrete components communicate with each other via
discrete ports using asynchronous, message-based communication. This com-
munication is implemented using real-time statecharts. Discrete components
can also send or receive signals to or from continuous components using hybrid
ports.

Component Structure Figure 2.8 shows the software component structure
of the RailCab system. It resembles the system element structure from the ac-
tive structure (cf. Fig. 2.5), but contains only the parts that are relevant to
software engineering. For instance, the Communication Module, which realizes
the wireless connection between RailCabs on a hardware level, has no direct
counterpart in the software model. Instead, the properties of the wireless con-
nection, e.g., average round-trip time, packet loss probability etc., are mapped
to properties of the corresponding connectors in the software model. In this
way, we abstract from the technical details of the Communication Module to
allow focusing on the software-specific information.

As explained, components may consist of sub-components. In the exam-
ple, the Velocity Control component consists of up to three instances of atomic
components, as Fig. 2.9 shows.

MechatronicUML allows specifying dynamically changing software com-
ponent structures, so-called reconfigurations [HB13]. In Fig. 2.9, you see that
the Reference Generator and the Velocity Controller have cardinality 1, where the
Position Controller has cardinality 0..1. Thus, we can reconfigure the Velocity

2.1. MODEL-BASED DEVELOPMENT OF MECHATRONIC SYSTEMS 25

Legend

RailCab

Drive Control

Velocity

Control

Hazard

Detection

xRailCab,
vRailCab

refDist

convoy
state

member

detected

hazards

coordinator

refSpeed

xRailCab,
vRailCab

distance

Distance

Sensor

I*

Distance

Processing

distance
data

Hybrid Port

Discrete Port

Continuous

Port

Component

Connector

Figure 2.8: Software component structure of the RailCab (excerpt)

 Velocity Control

 pos_ctrl :

 PositionController [0..1]

 velocity_ctrl :

 VelocityController [1]

F*v*

vRailCab

d*

F*

RM

reconfExec
RE

reconfMsg

 ref_gen :

 ReferenceGenerator [1]

dLeader

convoy
state

v*RailCab

v*RailCab

x*‘

Legend

Hybrid Port

Discrete Port

Continuous
Port

Component

Connector

RM

RE

Reconfigurator

Reconfiguration
Manager Port

Reconfiguration
Executor Port

Figure 2.9: Software component structure of the Velocity Control component

Control component by instantiating or destroying the instance pos_ctrl : Position
Controller [0..1] during runtime.

Component Behavior We define the state-based behavior of software com-
ponents using real-time statecharts. Real-time statecharts combine features of
UML state machines [OMG10b] and timed automata [AD94, BY03]. In the fol-
lowing, we only briefly introduce their main features. For a detailed description
of the syntax and the semantics of real-time statecharts, we refer to Becker et
al. [BBB+12].

Figure 2.10 shows such a statechart that implements the discrete behavior
of the DriveControl component. This component is responsible for negotiating
convoys with other RailCabs as well as triggering the necessary reconfiguration
in the RailCab’s controllers when entering or leaving a convoy.

Initially the component is in state noConvoy. In that state, it continuously
evaluates whether it is reasonable and useful to build a convoy. It is useful to

26 CHAPTER 2. FOUNDATIONS

ConvoyCoordination

convoyFollower

entry / convoy_state = FOLLOW

do / {convoyUseful =

isConvoyUseful()} [1000;2000] convoyUseful = false

/ breakConvoy()

noConvoy

entry / convoy_state = NONE

do / {convoyUseful =

isConvoyUseful()} [1000;2000]

convoyLeader

 entry / convoy_state =

LEADER

convoyUseful = true

/ createConvoy()

createConvoy /

breakConvoy /

var: boolean convoyUseful := false;

op: boolean isConvoyUseful();

Legend

TransitionState Initial State
condition / effect

Figure 2.10: (Simplified) statechart that defines the behavior of the DriveControl
component

build a convoy if we drive behind another RailCab and share a larger part of our
route, such that exploiting the slipstream effect saves more energy than what
is required to form the convoy (e.g., the necessary acceleration to approach the
preceding RailCab). Typically, reasoning algorithms that are not specified in
MechatronicUML perform such calculations, because these algorithms can-
not be easily implemented in hard real-time using state-based behavior. There-
fore, we implement such behavior in external operations and allow calling these
operations from MechatronicUML. Here, we call the operation isConvoyUse-
ful() every 1000 to 2000 ticks (usually milliseconds), assigning its return value
to the local variable convoyUseful.

As the local variable convoyUseful becomes true, it enables the transition
from the noConvoy state to convoyFollower. This transition has a raise message
as effect, createConvoy(). This message is sent to the leading RailCab to inform
it that we are now creating a convoy.

Similar to the RailCab that is approaching from the rear, this leading Rail-
Cab previously was in the noConvoy state when it receives the createConvoy()
message. This enables the transition to the convoyLeader state, so the leading
RailCab will switch to the convoyLeader state.

The follower RailCab continuously monitors the usefulness of the convoy in
the convoyFollower state. When it is reasonable to leave the convoy, the RailCab
takes the transition back to the noConvoy state, sending a breakConvoy()message
to the leader RailCab. When the leader RailCab receives this message, it also
switches back to noConvoy state, so that both RailCabs are now in single driving
mode.

Reconfigurations When a RailCab enters a convoy as a follower, it has to
change the way the RailCab’s speed is controlled: The target velocity is now
calculated based on the distance to the preceding RailCab (cf. Fig. 2.9). We also
call this reconfiguration [HB13]. To perform such reconfigurations, we allow the
transitions of a statechart to trigger so-called reconfiguration rules. These rules
perform the actual instantiation or destruction of component instances and the
rewiring of port connectors. In our example, there is a rule that instantiates
the pos_ctrl (cf. Fig. 2.9) and its connectors whenever the RailCab enters the
state convoyFollower. These reconfigurations are specified using durative graph

2.1. MODEL-BASED DEVELOPMENT OF MECHATRONIC SYSTEMS 27

transformation rules, i.e., the execution of the reconfiguration may take time.
For brevity, we omit the details of reconfiguration here and refer to Heinzemann
and Becker [HB13] instead.

Hazard and Risk Analysis As most mechatronic systems operate in safety-
critical scenarios, ensuring their safe operation is crucial. One aspect of a sys-
tem’s safety is that the software running on it is free of bugs. Mechatron-
icUML supports model checking to proof safety properties and therefore helps
ensuring that the software contains no safety-critical faults.

As mechatronic systems also consist of hardware parts, this hardware may
fail as well. For instance, the sensor that measures the distance to the leading
RailCab may fail, which leads to a potentially hazardous situation when driv-
ing in a convoy. Hardware errors are often due to wear, are random and can
be neither predicted nor avoided. It is important to ensure a certain level of
dependability nevertheless. The developers must guarantee that hazards due to
hardware failures only occur with a probability below a given threshold. As not
every hardware failure immediately leads to a hazardous situation, we must an-
alyze how this failure propagates through our system and in which situations it
may lead to hazards. The software engineers perform a hazard and risk analysis
to identify hazards that occur with a probability above the given threshold.

If such a hazard is identified, the software engineers have different options to
solve the problem. They can apply self-healing methods, e.g., they can imple-
ment a reconfiguration of the software architecture to prevent the bad data from
the sensor to propagate through the software of the system. If self-healing is
not possible or does not reduce the hazard probability sufficiently, the engineers
have to re-design parts of the system. For instance, adding redundancy, i.e. an
additional distance sensor, helps reducing the hazard probability, as the system
may switch to the second sensor in case of a failure.

For details of the hazard and risk analysis, we refer to Priesterjahn et
al. [PST13, GRSS14]

2.1.4.2 Control Engineering

The control engineers deal with the continuous behavioral aspects of the sys-
tem.3 Mainly, these are:

• the physical behavior of the mechanical system parts, i.e., the dynamics
of the multibody system; also called system or plant, and

• the information processing, i.e., the controllers that compute the outputs
for the actuators from the sensor inputs.

Together, these aspects form the control loop, as depicted in Fig. 2.11.

Continuous, dynamic behavior models When the system engineers have
created a first principle solution of the system, the control engineers start vali-
dating this principle solution. They create a simplified, idealistic version of the

3In the literature, these aspects often are further separated into several disciplines, like, for
instance, mechanical engineering, mechatronics, systems theory, or control engineering. Here,
we subsume all these aspects under the term “control engineering”.

28 CHAPTER 2. FOUNDATIONS

Information Processing
(Controllers/Communication)

ActuatorsSensors

System
(Mechanics/Physics, “Plant”)

Environment
(Mechanics/Physics)

Energy Flow
Information Flow

Legend

Material Flow

Figure 2.11: Basic structure of a mechatronic system (“control loop”)

control loop: They identify the physical effects of the system and the environ-
ment, define the interfaces between the system and the environment, and create
simplified controllers. With the help of this idealistic model of the system dy-
namics, the engineers are able to check whether control strategies are realizable
for the planned system concept.

Once the engineers have proven the control concept of the principle solution,
the actual implementation of the controllers starts. This requires a detailed
physical system and environment model. This model is much more detailed than
the early idealistic model and also contains things like environment disturbances,
e.g., wind resistance. Based on this dynamics model, the control engineers design
the control strategies. The controllers are typically implemented using tools like
MATLAB/Simulink4 or Dymola5.

Here, we focus on MATLAB/Simulink, as it is the industrial de-facto stan-
dard. Figure 2.12 shows a cutout of the velocity control strategy implemented
using a MATLAB/Simulink block diagram. It models how information flows
and how it is processed within the different blocks. It resembles the system ele-
ment structure from the principle solution (cf. Fig 2.5). You see that switching
between different inputs for the velocity_ctrl is implemented using a Multiport
Switch block. However, this can cause a sudden step in the value of the input
signal for the velocity_ctrl whenever switching between convoy state. A step in
the input of the block may, in turn, cause a step in the output actuating variable
F ∗. Such a sudden step is uncomfortable to passengers, can make the system
instable or even damage the actuator. Therefore, this change must not happen
immediately. Instead, the system must fade between the output values of two
controllers in a given time period. Thus, an input switch is usually implemented
using a fading function, as depicted in Fig. 2.13. A fading function could be a
simple blending curve (e.g., a linear or sine functions) [BGO06] or flat switching
functions [OMT+08].

4MATLAB/Simulink website: http://www.mathworks.com/products/simulink/
5Dymola website: http://www.3ds.com/de/products/catia/portfolio/dymola

http://www.mathworks.com/products/simulink/
http://www.3ds.com/de/products/catia/portfolio/dymola

2.1. MODEL-BASED DEVELOPMENT OF MECHATRONIC SYSTEMS 29

ref_gen

v_RailCab

d_Leader

v*

d*

convoy_state

v*_RailCab

x*‘v_RailCab

1

d_Leader

1

v*

1

d*

1

convoy_state

1

pos_ctrl

v*_RailCabx*‘

velocity_ctrl

v*_RailCab F*

1

2

*,0
0

Multiport

Switch

1

F*

Legend

pos_ctrl
Block

a a
Signal connecting
two ports

a

1 Inport/Outport

Figure 2.12: Velocity controllers of the RailCab

Fading Function

torque

control

normal_ctrl

distance_ctrl

ref_gen

v_RailCab

d_Leader

v*

d*

convoy_state

v*_RailCab

x*‘v_RailCab

1

d_Leader

1

v*

1

d*

1

convoy_state

1

pos_ctrl

v*_RailCabx*‘

velocity_ctrl

v*_RailCab F* 1

F*

Legend

pos_ctrl
Block

a a
Signal connecting
two ports

a

1 Inport/Outport

Figure 2.13: Fading between signals with a fading function in the velocity con-
trollers of the RailCab

The control engineers implement these fading functions when designing the
controllers. In particular, the duration of such a fading is to be determined. This
fading duration also influences the discrete software models: When applying
timed model checking methods on the discrete software models, the duration
of a transition (which corresponds to such a fading function) is an important
factor. Other factors that may influence timing aspects in the discrete software
models are worst-case execution times (WCET) of calculations that the control
engineers implement in MATLAB/Simulink.

State-based behavior MATLAB also allows implementing state-based be-
havior using Stateflow6. Figure 2.14 shows a Stateflow chart, which is sim-
ilar to UML statecharts. Stateflow charts have a very limited expressiveness.
In particular, it is difficult to specify complex timing constraints, as Stateflow
has no clock concept. Furthermore, neither Stateflow nor Simulink have con-
cepts for message-based communiction. For this reasons, these aspects of a
system are typically implemented using special software engineering languages,
like MechatronicUML, as explained in Sect. 2.1.4.1.

6MATLAB/Stateflow website: http://www.mathworks.com/products/stateflow/

http://www.mathworks.com/products/stateflow/

30 CHAPTER 2. FOUNDATIONS

convoyFollower noConvoy convoyLeader

fading_N2F fading_N2L

fading_F2N fading_L2N

send(create
Convoy)

send(break
Convoy)

receive(create
Convoy)

receive(break
Convoy)

12

Legend

State Transition Default transition

Figure 2.14: MATLAB/Simulink chart for controller reconfiguration

2.1.5 Further Disciplines

In this thesis, we focus on the discipline-spanning models of the system and
the discipline-specific models of software engineering and control engineering.
Other disciplines are typically also involved in the development of mechatronic
systems. Most prominent, there are mechanical engineering and electrical/elec-
tronic engineering. Both disciplines use different types of modeling languages.

Techniques, tools, and models used in mechanical engineering include (be-
sides others) computer aided design (CAD), finite element analysis (FEA),
and computational fluid dynamics (CFD). According to Zorriassatine et
al. [ZWPG03], the main categories are:

• “mechanical design, e.g. two-/three-dimensional drafting, sketching and
solid modelling;

• shape design and styling to address innovative forms and complex shapes
such as freeform curves;

• analysis and simulation solutions including stress analysis, design opti-
mization in terms of mass, displacement and principle stresses, and kine-
matic and dynamic simulation.” [ZWPG03]

This constitutes a wide range of models with complex dependencies between
them and to the system model. For instance, the mechanical design determines
mass distribution and total weight of a system. This, in turn, has an influence
on material/stress simulations. Also the system model and other discipline can
be affected, e.g., when a control strategy depends on the weight.

In electrical engineering, a common modeling language is circuit diagrams.
They are used to describe electrical or electronic circuits from a logical point
of view. A circuit diagram abstracts from the real-world appearance of the
circuit by using a) simplified standard symbols for the elements, and b) a layout
that does not correspond to the physical locations of the elements. The goal
is to make engineers recognize the function of the circuit more easily. There
are several standards for the syntax of circuit diagrams. Figure 2.15 shows
an example of a circuit diagram using the IEC 60617 standard [IEC96]. The
underlying physical/electrical laws define the semantics of a circuit diagram.
Because circuit diagrams only represent the logical function and abstract from

2.2. MODEL TRANSFORMATIONS 31

the physical layout, we need further models that represent the physical design.
These models also include information like the size and arrangement of wires.

R1

R2

C

UaUe

+

-

Legend

Resistor

Amplifier

Input/Output

Ground

Capacitor

+

-

Figure 2.15: Circuit diagram of an active low-pass filter (according to
IEC 60617)

2.2 Model Transformations
With the growing importance of model-driven software development approaches,
the need for model transformation also increases, since different models have to
be mapped onto each other. There exist many different approaches and for-
malisms for model transformation; moreover, the Object Management Group
(OMG) has proposed a model transformation standard [OMG08]. In ad-
dition, several model transformation tools have emerged in the last years.
Model transformation remains an area with intensive research activities (e.g.,
see [GRR13, bx12, bx13, EEKR12, DK13, MSG+13]). Next, we introduce the
fundamental concepts of model transformations in Sect. 2.2.1 and present a
classification of model transformation features in Sect. 2.2.2.

2.2.1 General Concepts and Terms

Figure 2.16 shows the fundamental concepts of model transformation. In gen-
eral, a model transformation is an operation that takes a model as input and
produces a (typically different) model as output. Multiple models are possible
as input or output, too.

All the models conform to metamodels. It is possible that the source and
target metamodels are the same, and also the source and target models can be
identical. The metamodels of the source and target models also serve as a basis
for the transformation definition. This means that the transformation definition
does not argue on concrete instances (models), but on their modeling concepts
(metamodels). We say that the transformation refers to or is typed by these
metamodels. The transformation definition itself also conforms to a metamodel
(or grammar).

This definition applies to many different formalisms, approaches, and tools,
and they serve many different purposes and applications. Next, we present an

32 CHAPTER 2. FOUNDATIONS

Source
Model

Target
Model

Transformation

Source
Metamodel

Target
Metamodel

Transformation
Definition

Transformation
Metamodel

reads writes

refers torefers to

conforms to

executesconforms to conforms to

Figure 2.16: Fundamental concepts of model transformation (adapted
from [CH06]

approach to classify the different approaches that exist in the field of model
transformation.

2.2.2 Feature-Based Classification of Model Transformation
Approaches

To structure the large area of model transformations, Czarnecki and
Helsen [CH03, CH06] present a classification framework based on feature dia-
grams. They analyze 30 different model transformation approaches/languages/-
tools, and derive a classification scheme from them.

We have adapted this classification in some aspects that we found imprecise
or uncovered due to the results of our research. This adapted feature diagram is
shown in Fig. 2.17. The features shaded in yellow have been modified or added;
the rationale for the modification is explained in the footnotes.

On the top level, Czarnecki and Helsen propose eight features [CH06].
Here, we describe the features that are relevant in the scope of this thesis.

• Specification: The way the transformation is defined, e.g., using pre- and
post-conditions that are not (immediately) executable or a directly exe-
cutable specification.

• Transformation Rules: Transformation rules form the smallest units of a
transformation. For instance, these could take the form of a function or
graph rewrite rules.
– Domain: The part of a transformation (rule) that refers to a model.

Usually, there are a source and a target domain, which refer to the
source and target (meta-)model, respectively. For in-place transfor-
mations, there is only a single domain.

∗ Body: The body of a transformation rule can contain different
constructs. Variables hold elements or values from the models.
Patterns represent model fragments using variables. Depending
on the type of model transformation, they can have the form of
string patterns, term patterns, or graph patterns. Their represen-
tation can be based upon the abstract syntax of the domain’s
language (e.g., in the style of object diagrams or abstract syntax

2.2. MODEL TRANSFORMATIONS 33

...
...

...
...

M
odelGT

ransform
ation

S
pecifica

tion
T

ransform
ation

GR
ules

R
uleGA

p
plication

GC
ontrol

R
uleGO

rga
nization

S
ource[T

argetGR
elatio

nship
Increm

e
ntality

D
irectio

nality
T

racin
g

FF

M
anda

toryGF
eature

O
ptionalGF

ea
ture

x
o
rGG

roup

o
rGG

roup

L
eg
en
d

M
ultidirec[
tionality

R
ule

S
chedu

ling
Interm

ed
iate

S
tructures

Location
D

eterm
ination

D
om

ainB
ody

V
ariables

P
atterns

Logic

S
yntax

A
bstract

C
oncre

te

...

D
eterm

inistic
N

on[
D

eterm
inistic

Interactive

O
ne[P

o
int

C
oncurrent

R
ule

S
electio

n

N
on[

D
eterm

inistic
C

onflict
R

esolutio
n

Interactive

E
xisting

T
arge

tU
pdate

In[P
la

ce
E

xtension
O

nly

N
ew

T
arge

t

D
estructive

Increm
e

ntal
C

hange
GP

rocessing
P

rop
agation

P
rese

rvation
ofGU

serGE
dits

M
ulti[

directio
nal

U
ni[

directio
nal

...

F
C

hange
dGF

eature
vdifferingGtoG[C

H
66]E

[]HHU]

Figure 2.17: Features of Model Transformation (adapted from [CH06])

34 CHAPTER 2. FOUNDATIONS

graphs) or re-use the concrete syntax of the domain’s language
(which can be graphical or textual). The logic feature describes
the programming paradigm behind the transformation logic. For
instance, a transformation definition can be imperative, func-
tional, or declarative.

– Multidirectionality: Multidirectional rules can be executed in more
than one direction, i.e., the same rule can be used for transformations
from source to target and vice versa. Typically, multidirectional rules
accompany multidirectional transformations (cf. the top-level feature
“Directionality” described later); however, a transformation can be
multidirectional but have only unidirectional rules.

– Intermediate Structures: A transformation can create intermediate
data structures during the transformation run, e.g., to perform cal-
culations that are only needed during the actual transformation.

• Rule Application Control: How the approach determines the locations
in the model(s) to which transformation rules are applied, and how it
schedules the order of the transformation rules.
– Location Determination: In general, there is more than one place in

the models where a rule is applicable. Therefore, the transformation
algorithm has to decide where to apply a rule. A transformation
definition can either deterministically declare where to apply rules or
randomly. In addition, a transformation can involve the user in de-
ciding where to apply a rule (interactive). However, unless different
rules can be applied for the same model elements (“rule conflict”, cf.
“Rule Scheduling”), this decision does not influence the transforma-
tion result.

– Rule Scheduling: “Scheduling mechanisms determine the order in
which individual rules are applied” [CH06]. Most important aspect
here is how to select the rule that is applied next (Rule Selection).
As stated above, there can be more than one rule that is applicable
for certain model elements. If applying a rule will render other rules
inapplicable, we call this a “rule conflict”. A transformation could use
conflict resolution strategies like explicit priorities. It can also non-
deterministically decide which rule to apply. This potentially lets the
transformation become non-functional, as different transformation
runs could lead to different results. Also the user could be involved
in deciding which rule to apply.

• Rule Organization: How rules could be structured or modularized.
• Source-Target Relationship: Whether the source and the target models

are the same, and whether the transformation creates a new target model.
– New Target: A transformation creates a new target model. This is

typically called a batch or initial transformation.
– Existing Target: An already existing target model may be processed

by the transformation as follows.

2.3. GRAPH GRAMMARS AND GRAPH TRANSFORMATIONS 35

∗ In-Place: If source and target model are the same, this is called
an in-place transformation.7

∗ Update: A transformation changes the existing target model,
typically in an incremental transformation when it propagates
changes (cf. “Incremental Change Processing”)8.

• Incrementality: An incremental approach can update an existing model
with changes that occurred in another model. Typically, the model that
was changed is called the source model, and the updated model is the
target model. However, changes may also happen to both models simul-
taneously. Not every model transformation approach/tool supports in-
cremental updates – a transformation tool can also completely rerun the
transformation and create new (target) models afresh.
– Incremental Change Processing9: When a model that is involved

in the transformation changes, these changes have to be processed
by the transformation engine. Incremental change processing means
that the engine only processes model parts that are affected by the
changes, but not the whole model that has changed.

– Propagation10: Changes have to be propagated to other models that
are part of the transformation. A destructive propagation mechanism
will also delete target model parts if they have no corresponding
parts in the source model any more. In contrast, extension only will
just propagate new elements. Transformation engines differ in their
strategies to preserve user edits; for instance, target model elements
that have been edited by the user can be ignored during propagation.

• Directionality: A unidirectional transformation can only be executed from
source to target, whereas bi- or multidirectional transformations can ex-
change the notion of source and target.

• Tracing: Whether the mapping between the source and the target model
elements (i.e., which source element(s) correspond to which target ele-
ment(s)) is explicitly stored in a trace model.

We refer to Czarnecki and Helsen [CH06] for a detailed description of the
remaining features. We use these features to classify our approach and compare
it to related work (cf. Sects. 2.4.4, 4.1.1, 4.2.1, and 4.3.2).

2.3 Graph Grammars and Graph Transformations
Many model transformation techniques base on the concept of graph transforma-
tions. Graphs are the underlying data structure on which graph transformations

7Note that a transformation engine incapable of performing in-place transformations can
emulate them by copying the source model to the target model and altering it. However, we
consider such a transformation as a “New Target” transformation.

8The subfeatures “Destructive” and “Extension Only” have been moved to the
“Incrementality—Propagation” feature, because they do not describe the relation between
the source and the target model, but how propagation of changes works.

9Originally, this feature was called “Source Incrementality”. To avoid confusion with the
typical notion of incremental updates and to reflect that changes may happen both in source
and target model simultaneously, we renamed it to “Incremental Change Processing”.

10Equivalently, “Target Incrementality” was renamed to “Propagation”.

36 CHAPTER 2. FOUNDATIONS

work. Before discussing graph transformations in detail in Sect. 2.3.2, we first
give a brief introduction to graph theory.

2.3.1 Graphs

A graph is a data structure that consists of nodes and edges, where each edge
connects two nodes [ERD+97, EEPT06]. When working with models in terms
of MOF [OMG06], graphs can be used as a representation for object structures.
Then, graphs are typically typed and attributed. In typed graphs, nodes and
edges have a type associated, which is defined in an additional type graph. I.e.,
this type graph contains different possible types for nodes and edges; addition-
ally, it constrains how these types can be used in combination. In attributed
graphs, nodes can also have attributes. In terms of MOF, a type graph to-
gether with the attributes is a metamodel that contains classes (i.e., types for
nodes), which may have references (types for edges) and attributes (attributes
for nodes).

Here, we follow the definitions of Ehrig et al. [EEPT06], modified and
extended for our needs.

Definition 1 (graph). A graph G is defined as G = (V, E, s, t), where
• V is the set of vertices,
• E is the set of edges, and
• s, t ∶ E → V are the source and target functions of edges, i.e., iff e ∈ E, v ∈

V ∶ (e, v) ∈ s then the edge e has the vertex v as a source; t respectively.

As noted above, in the context of MOF models we usually deal with at-
tributed and typed graphs. A typed graph is typed over a type graph.

Definition 2 (type graph). Let P be the set of primitive attribute types, and
let M = (MV , ME , MA) be a mark alphabet over vertices, edges and attributes.
MV contains the class names and ME the names of the references. MA contains
the attribute names. A type graph T is defined as T = (VT , ET , sT , tT , cT , rT , aT),
where

• VT is the set of vertices (i.e., “classes” in terms of MOF),
• ET is the set of edges (i.e., “references”),
• sT , tT ∶ E → V are the source and target functions of edges, i.e., e ∈

E, v1, v2 ∈ V ∶ (e, v1) ∈ sT ∧ (e, v2) ∈ tT iff the reference e has the class v1
as a source and the class v2 as target,

• cT ∶ VT →MV is the class naming function, i.e., v ∈ VT , m ∈ MV ∶ (v, m) ∈
cT iff the class v has the name m,

• rT ∶ ET → Mr is the reference naming function, i.e., e ∈ ET , m ∈ ME ∶

(e, m) ∈ rT iff the reference e has the name m, and
• aT ∶ VT → (MA × P) is the attribute function, i.e., v ∈ VT , m ∈ MA, p ∈ P ∶

(e, m, p) ∈ aT iff the class v has an attribute with the name m and the
primitive type p.

Usually, we also want to include inheritance relations to the type graph,
such that an object is also an instance of the superclasses of its class, and that

2.3. GRAPH GRAMMARS AND GRAPH TRANSFORMATIONS 37

references and attributes of a superclass are also contained in the subclasses.
As Ehrig et al. [EEPT06, pp. 259–281] show, each graph transformation and
grammar that is based on a type graph with inheritance can be mapped to
an equivalent transformation/grammar without inheritance. Thus, we use type
graphs with inheritance for illustration and simplification, but formally argue
only on type graphs without inheritance.

Definition 3 (typed and attributed graph). Let T = (VT , ET , sT , tT , cT , rT , aT)

be a type graph. A typed and attributed graph GT is defined as GT =

(V, E, s, t, c, r), where
• V is the set of vertices (i.e., “objects” in terms of MOF),
• E is the set of edges (i.e., “links”),
• s, t ∶ E → V are the source and target functions of edges, i.e., e ∈ E, v1, v2 ∈

V ∶ (e, v1) ∈ s∧ (e, v2) ∈ t iff the edge e has the node v1 as a source and the
node v2 as target,

• c ∶ V → VT is the vertex typing function, i.e., v ∈ V, vT ∈ VT ∶ (v, vT) ∈ c iff
the vertex v is of type vT ,

• r ∶ E → Mr is the edge typing function, i.e., e ∈ E, eT ∈ ET ∶ (e, eT) ∈ r iff
the edge e is of type eT .

Figure 2.18 shows a type graph with inheritance. It consists of three classes
A, B, C with references (x and y, respectively). Class C has an attribute id of
the simple data type int, and there is an inheritance relation between classes B
and A.

C
id:int

A

B

Legend

Class

Inheritance

A

y

x

Referencex

Figure 2.18: A simple type graph in class diagram syntax

The graph shown in Fig. 2.19 is typed over this type graph. You see that the
nodes and edges are labeled with the classes and references of the type graph,
respectively. Additionally, node :C has a attribute id with a value of 42.

Legend

Node

Edge

:A

:B

:A :C
:y

:x

:x

:xid=42

x=y Attribute
value

Figure 2.19: A simple graph typed over the type graph of Fig. 2.18

In general, a MOF object structure can be represented by a graph. For
instance, the graph in Fig. 2.19 is an equivalent representation for the object
diagram shown in Fig. 2.20.

38 CHAPTER 2. FOUNDATIONS

:C
id=42

Legend

Object:A

y

Linkx

:B

:A

x

x

Figure 2.20: Object diagram of Fig. 2.19

In this way, graph transformation techniques for typed and attributed graph
grammars can be applied to object structure and models. We therefore do
not distinguish between graph transformation and model transformation in this
thesis.

Next, we describe how graph transformations can be used to modify graphs.

2.3.2 Graph Transformations

Modifications to graphs can be specified using graph transformation rules (also
called graph rewrite rules or production rules). When the host graph is typed
and attributed, the graph transformation rule can also be typed and attributed.

Figure 2.21 shows a typed graph transformation rule. Similar to string
rewrite rules, such graph transformation rules consist of a left-hand side (LHS)
and a right-hand side (RHS). The LHS defines the precondition that must be
fulfilled before applying the rule. The RHS describes the post-condition, i.e.,
how the host graph must look like after applying the rule. Furthermore, there
is a morphism from the LHS to the RHS that defines which nodes represent the
same object. This morphism is also called glue graph, as it glues together LHS
and RHS.

:A :A:A

LHS RHS

:A ::= :A

Legend

:x :x :x

Node Edge:x Glue Graph

Figure 2.21: A simple typed graph transformation rule

Definition 4 (morphism). A morphism is a structure-preserving mapping from
one structure to another. The source structure is called domain, the target
structure codomain. A morphism f with domain X and codomain Y is written
as f ∶ X → Y .

When working with graphs, a morphism maps a graph onto another graph.
That means we map all vertices and edges of the domain to vertices/edges in
the codomain:

2.3. GRAPH GRAMMARS AND GRAPH TRANSFORMATIONS 39

Definition 5 (graph morphism). Let G1, G2 be two graphs. A function f ∶=

(fv, fe), fv ∶ V1 → V2, fe ∶ E1 → E2 that maps all vertices and edges of G1 onto
G2 is a graph morphism iff ∀e ∈ E1 ∶ fv(s(e)) = s(fe(e)) ∧ fv(t(e)) = t(fe(e)).

There are several special types of morphisms. A monomorphism is injec-
tive, i.e., it always maps distinct elements of the domain to distinct elements
of the codomain. An isomorphism is bijective, i.e., it builds a complete set of
unique pairs between the domain and the codomain. In contrast to a monomor-
phism, there must not be edges between vertices of the codomain that have no
corresponding edge in the domain.

Definition 6 (graph transformation rule). A graph transformation rule p is a
pair of graph morphisms (L l

←Ð K
r
Ð→ R), where L, R are typed graphs as in

Def. 3 (the LHS and RHS) and K is the glue graph.

Intuitively, you can think of the morphisms l and r as inclusions, i.e., L ⊇

K ⊆ R. With l and r, K glues the corresponding elements of L and R together.
A graph transformation rule is applied as follows. First, we try to find

a matching of L in the host graph H, i.e., we match L with a subset of H
(morphism). Second, we replace L by R in the host graph H. In the following,
we formally define these two steps.

Definition 7 (matching). A matching f is a morphism between the LHS graph
G and the host graph H, i.e., there exists a function f ∶= (fv, fe), fv ∶ VG →

VH , fe ∶ EG → EH such that ∀e ∈ EG ∶ fv(s(e)) = s(fe(e)) ∧ fv(t(e)) = t(fe(e)).
When matching typed graphs, we further require that ∀v ∈ VG ∶ c(v) = c(fv(v))∧
∀e ∈ EG ∶ r(e) = r(fe(e)).

Intuitively, that means that a valid matching ensures that a) each node in
the graph G must be mapped to a node in the host graph that has the same
type, b) the edge structure between the nodes must be preserved, and c) the
edges’ types must also be the same.

Typically, a matching is a monomorphism, i.e., f is a injection. Such a
matching is shown in Fig. 2.22. However, such a matching can also just be a
morphism, i.e., f can be not injective. Such a matching is depicted in Fig. 2.23,
where both nodes :A of the LHS are matched to the same node :A in the host
graph.

As most graph transformation formalisms use an monomorphic matching,
whenever we speak of “matching” in this thesis, we refer to an monomorphic
matching unless stated otherwise. Monomorphism as well as subgraph isomor-
phism is an NP-complete problem [Coo71, GJ90] in general. However, “both
the enumeration and decision problems can easily be solved in polynomial O(nl)

time” for fixed patterns with l vertices (and n host graph vertices) [Epp95].

2.3.3 Graph Grammars

A graph transformation rule, as described in the previous subsection, defines
how to modify a host graph that satisfies a certain (pre)condition. A set of such
graph transformation rules together with a start graph form a graph grammar.

40 CHAPTER 2. FOUNDATIONS

:A :A:A

LHS RHS

:A ::= :A
:x :x :x

:A :C

:B

:A :C

:A :B

Host graph before: Host graph after rule application:

Matching

:x

:x

:x

:x
:y:y

Legend
Node Edge:x

Glue Graph

Figure 2.22: Finding an monomorphism (“matching”) and applying a graph
transformation rule

:A

Host graph before: Host graph after rule application:

:A :A:A

LHS RHS

:A ::= :A
:x :x :x

:A :C

:B

:A :C

:B
:x

:x

:x

:x

:y:y
:x

Matching
Legend

Glue GraphNode Edge:x

Figure 2.23: Matching with a non-injective morphism

Definition 8 (graph grammar). A graph grammar is a pair G = (G0, P) where
G0 ∈ G is the start graph and P = {p ∶ (L

l
←Ð K

r
Ð→ R)}n∈N is a set of graph

transformation rules.

Similar to a string grammar, a graph grammar G defines the language L(G),
which is the set of graphs that can be derived from G0 using P. Thus, a graph
is a word of the graph language if and only if it can be derived from the start
graph using the graph transformation rules of the graph grammar.

Definition 9 (word of a graph language). A graph g is ∈ L(G) iff

∃(p1, p2, ..., pn ∈ P) ∶ G0
p1
Ð→ G1

p2
Ð→ ...

pn
Ð→ g

2.3. GRAPH GRAMMARS AND GRAPH TRANSFORMATIONS 41

In other words, a graph grammar is a constructive way to describe a graph
language: Consecutively applying its graph transformation rules, starting with
the start graph, only words of the graph grammar are created.

Identifying graph derivation sequence To find out whether a given graph
g is contained in the language induced by a graph grammar, we have to find
out whether it if possible to derive g from the start graph. Similar to string
grammars, this is a complex problem in general (depending on the class of the
grammar). We have to explore all possible rule applications sequences that can
possibly lead to g. Basically, this means that we have to compute a derivation
tree: For every alternative rule that we can apply in a certain situation, we have
to branch and – in the worst case – compute all respective subtrees. Typically,
this is performed using a heuristics-guided depth-first search. If this depth-first
search reaches a leaf in the tree, and this tree does not lead to the given graph
g, we have to backtrack in the tree, computing other alternative sequences.

For string grammars, we know several restrictions (like LR(k) or LL(k) gram-
mars) that make the problem practically solvable. Similarly, to allow finding a
derivation sequence for large graphs in practice, a graph grammar can be re-
stricted in different ways. On the other hand, only allowing a restricted class of
graph grammars reduces expressiveness.

No conflicting rules: For every step of the derivation sequence, there is
never more than one rule that can be applied to a certain element. In other
words, there are no conflicting rules11. This means that an algorithm that tries
to determine the graph derivation sequence that leads to g always knows which
rule to apply next. As a result, the computation tree is a simple linear list; no
backtracking is required.

Maximum backtracking depth: Restricting the maximum depth of nec-
essary backtracking provides a compromise between expressiveness and compu-
tation complexity. Assume a maximum backtracking depth of bd. This means
that after bd further rule applications after the application of rule R, it must
be certain whether rule R will eventually lead to g. bd = 0 is the same as “no
conflicting rules”.

Monotonic productions: If all rules in a graph grammar only produce
vertices and edges and do not delete them, all rules are monotonic productions;
we call such a ruleset monotonic. Such a ruleset also reduces the computational
complexity, because the derivation search algorithm knows when to stop: If the
size of the (intermediate) derived graph exceeds the size of the graph g, applying
further rules will never result in g.

11Note that most related work call these rule application conflicts simply conflicts. In
this thesis, we are also dealing with editing conflicts that occur when different developers
contradictorily change the same model element. Thus, we explicitly distinguish between rule
(application) conflicts and editing conflicts where necessary for clarification.

42 CHAPTER 2. FOUNDATIONS

In this case, “a given graph directly contains all necessary information about
its derivation history, and graph parsing simply means covering a given graph
with right-hand sides of productions” [Sch95]. However, it still may require to
compute the whole derivation tree up to the size of the host graph (cf. Fig. 2.24).
This has a worst-case runtime of O(nk⋅l), where n is the size of the host graph,
k is the number of rules, and l is the maximum size of the rules. When there
are no conflicting rules, this is reduced to O(k ⋅ n ⋅ nl), because we always know
which rule to apply, and only the pattern matching has to be performed O(k ⋅n)
times. Assuming that both k (the number of rules) and l (the maximum size of
the rules) are fixed, the time complexity is polynomial in the size of the input
host graph n.

Start Graph

Graph Size 3

Graph Size 1

Graph Size 2

Apply
Rule A

Apply
Rule B Apply

Rule C

Graph Size 6

Graph Size 4

Graph Size 5

A
B C

Host Graph Size 5

Graph Size 4

Graph Size 2

Graph Size 3

A
B C

Figure 2.24: Derivation tree created by sequentially applying rules

Triple Graph Grammars, the model transformation approach used in this
thesis, only uses monotonic productions to allow efficient graph transformation
algorithms. Furthermore, most TGG implementation do not allow conflicting
rules. We will give details on Triple Graph Grammars in the next section.

2.4 Triple Graph Grammars
The section describes the syntax and semantics of Triple Graph Grammars
(TGGs), which are used as the model transformation technique throughout this
thesis.

Triple Graph Grammars have been introduced by Schürr [Sch95] in 1994
as an extension to pair grammars. They are a rule-based, declarative formalism
that allows specifying how two models evolve in parallel. Every TGG rule
consists of two graph grammar rules which describe how each of the models can
be modified. These two rules are linked by third, a so-called correspondence
graph grammar rule, which allows to explicitly store the links between the two
models.

TGGs can be used for different model transformation and synchronization
scenarios. More specifically, TGGs can be used for bidirectional transformation,
i.e., to produce a target model from a given source model and vice versa. Fur-

2.4. TRIPLE GRAPH GRAMMARS 43

thermore, they can be applied to synchronize the models in situations where a
pair of corresponding models exists and changes to one of the models occur.

To execute model transformations specified by TGGs, we developed the
TGG Interpreter tool suite. It is a set of Eclipse plug-ins based on the
Eclipse Modeling Framework (EMF). It consists of a graphical specification tool
for TGGs and a TGG execution engine. Details of the implementation can be
found in Sect. 6.

Before we describe how TGGs can be applied to transform and synchronize
models in Sect. 2.4.2 and 2.4.3, we explain the basic syntax and semantics of
TGGs in the next section.

2.4.1 Basic TGG Syntax and Semantics

Figure 2.25 shows a TGG rule using the traditional graph production syntax.
This rule is part of the TGG ruleset that defines the mapping between a CON-
SENS system specification and a MechatronicUML software model.12 TGG
rules are non-deleting graph grammar rules that consist of a left-hand side (lhs)
and a right-hand side (rhs). TGG rules can also be represented using a compact
notation, where left-hand side and right-hand side are combined into a single
pattern. Fig. 2.26 show this notation; for brevity, this notation is also used in
the further course of this thesis.

MML Corresp. Mechatronic UML

pm:Package pu:Package:Pack2Pack

se.continuousPorts>0
&& se.discretePorts>0

se.isSERelevant

c:Component:SE2Comp

pm:Package pu:Package:Pack2Pack

packagedElement
packagedElement

h:Hybridstereotype

name=se.name

++

name=c.name

se:SystemElement

::=

x=y
Attribute constraint /
application conditionname:type Node Domain separatorUnidirectional /

bidirectional edge

Legend

Figure 2.25: TGG Rule SystemElement2HybridComponent: relating system ele-
ments (CONSENS) to hybrid components (MechatronicUML)

Basically, a TGG rule describes how two models satisfying a certain pre-
condition can evolve simultaneously. In terms of graph grammars, this precon-
dition is called context graph (or lhs) of the rule. Accordingly, the nodes in

12This rule is slightly simplified for illustration purposes. The complete TGG ruleset for
the transformation, including the full version of this rule, can be found in Appendix A.

44 CHAPTER 2. FOUNDATIONS

MML Corresp. Mechatronic UML

se:SystemElement c:Component:SE2Comp

pm:Package pu:Package:Pack2Pack

packagedElement packagedElement++

++
++ ++

++

h:Hybrid

stereotype

++

name=c.name

se.continuousPorts>0
&& se.discretePorts>0

name=se.name

++
++

++

co
nt

ex
t

(lh
s)

pr
od

uc
ed

gr
ap

h

rh
s

se.isSERelevant

x=y Attribute constraint /
application conditionname:type Context

node

Domain separator

Unidirectional /bidirec-
tional context edge

Legend

Unidirectional / bidirec-
tional produced edge

Produced
node

name:type++

++
++

Figure 2.26: Compact notation of the TGG Rule SystemEle-
ment2HybridComponent (cf. Fig. 2.25)

the context graph are called context nodes (displayed as white boxes with black
borders), the edges are called context edges (displayed as black arrows or con-
nections). In Fig. 2.26, there are three context nodes (pm:Package, :Pack2Pack,
and pu:Package) and two context edges (the edges originating in the context
correspondence node :Pack2Pack).

Whenever there is a valid matching for the context graph, i.e., it can be
found in the models, the rule can be applied. This is done by creating the
so-called produced graph of the rule. The produced part contains everything
from the rhs that is not element of the lhs. Elements of the produced graph
are called produced nodes and produced edges, respectively, and are displayed in
green color and marked with a “++”.

The columns in a TGG rule are called domain. Each domain contains one
of the three graph grammar rules for the three models. Usually, the domain on
the left is called source and the domain on the right target. The correspondence
domain links the source and target domain.

Each domain is assigned a metamodel. The nodes of this domain are typed
over the classes in this metamodel, the edges over the respective references of
the classes.

In Fig. 2.26, you can further see attribute constraints and application condi-
tions, both depicted as yellow rounded rectangles.

Attribute constraints constrain the attribute value of objects that are
matched by the corresponding node (denoted by an arrow). They are given
in the form ⟨prop⟩ = ⟨expr⟩, where ⟨prop⟩ is a property of the node’s class.
We use OCL [OMG12] as an expression language in our TGG Interpreter.
Thus, ⟨expr⟩ is an OCL expression whose result must conform to the type of
⟨prop⟩. When a TGG rule is applied, it must be ensured that the expression’s
result is equal to the value of the attribute. If this is not the case, the rule
must not be applied. For instance, in Fig. 2.26, the constraint name=c.name

2.4. TRIPLE GRAPH GRAMMARS 45

ensures that the name of the object that is matched by node se:SystemElement
in CONSENS must be equal to the name of the object of node c:Component in
MechatronicUML.

Application conditions allow restricting the application of a rule to certain
conditions. They are also specified as OCL expression that must evaluate to
a boolean value. Before applying a TGG rule, it the application condition is
evaluated. The rule may only be applied if the application condition holds.
For instance, in Fig. 2.26, the application condition se.continuousPorts>0 &&
se.discretePorts>0 ensures that the rule is only applied in situations where
at least one continuous port and one discrete port exists in the matched system
element. Note that application conditions are not invariants. Thus, they must
only hold during rule application, and not during later transformation stages.
See Sect. 5.1 for further details.

Like every graph grammar, a TGG also contains a start graph. This so-called
axiom is the starting point for the derivation of all consistent model pairs. That
means that a pair of two models is consistent in terms of the TGG if and only
if there is a chain of productions applied on the start graph that produces this
models pair. More formally, given a set of TGG rules M and an axiom A, a
pair of two models H = H1 ×H2 is consistent iff

∃p1, p2, ... ∈ M ∶ A
p1
Ð→ G1

p2
Ð→ G2

...
Ð→H

As described in Sect. 2.1.4.1, MechatronicUML distinguishes between
software components, hybrid components, and controllers. The underlying idea
of the transformation is that every system element that has only continuous in-
coming or outgoing information flows becomes a controller component, which is
implemented in control engineering. System elements with discrete information
flows become software components, and system elements with both continuous
and discrete flows become hybrid components. The rule shown in Fig. 2.26 is for
the third case, i.e., mapping system elements with both continuous and discrete
flows to hybrid components. Figure 2.27 shows another TGG rule from the
CONSENS-MechatronicUML TGG ruleset. It deals with the first case, i.e.,
mapping system elements with only continuous flows to controller components.

2.4.2 Model Transformation with TGGs

In its default graph-transformation semantics described in the previous section,
TGGs produce two consistent graphs in parallel. However, TGGs are mostly
used in model-to-model transformations scenarios where a target model is cre-
ated afresh from an existing source model. The general idea to apply TGGs in
such a scenario is to find a chain of TGG rules whose source production rules
would produce the source model. If such a chain of rule applications exists, you
can create the corresponding correspondence and target models by also apply-
ing the correspondence and target production rules. By following this approach,
only valid consistent model pairs are created.

46 CHAPTER 2. FOUNDATIONS

cc:CodeContainer

MML Corresp. Mechatronic UML

c:Component:SE2Comp

pm:Package pu:Package:Pack2Pack

packagedElement
packagedElement

++

++
++ ++

++

ct:Controllerstereotype
++

name=se.name cd:CodeDescriptor++

opaqueBehavior

++
++

++

++

name=c.name

se.continuousPorts>0
&& se.discretePorts=0

se.isSERelevant

se:SystemElement

++
++

x=y Attribute constraint /
application conditionname:type Context

node

Domain separator

Unidirectional /bidirec-
tional context edge

Legend

Unidirectional / bidirec-
tional produced edge

Produced
node

name:type++

++
++

Figure 2.27: TGG Rule SystemElement2Controller: relating system elements
(CONSENS) to controller components (MechatronicUML)

2.4.2.1 Application Scenarios

We can interpret TGGs for different application scenarios.
The application scenario most frequently used is called forward transforma-

tion, in which case we create a “target” model corresponding to a given “source”
model. In this case, TGG rules are interpreted as follows: First, the context
pattern and the produced source domain pattern of the rule are matched in the
(source, target and correspondence) models, adhering to the following condi-
tions. The context pattern of the rule must only be matched to bound model
elements, which are objects and links that were previously matched by a pro-
duced node of another rule application. The source produced pattern is matched
to yet unbound parts in the source model, i.e., elements that have not been cov-
ered by previous rule applications. If a matching respecting these conditions
is found, we create the produced target and correspondence patterns, and we
create bindings for all newly matched and created elements.13

The backward direction works accordingly, reversing the notion of source and
target.

If both the target and the source model are given, we can identify the cor-
respondence between them. In this application scenario, the source and target
produced pattern is matched to yet unbound parts in the source or target mod-
els. Only elements for the correspondence graph are created. As a result, given
two corresponding models, we have created the missing correspondence graph.
If the source and the target models are not corresponding according to the TGG,
some corresponding model parts are linked with the correspondence graph.

13In the following, we use the term binding when referring to a single node-to-object or
edge-to-link match, and matching for a set of those bindings (i.e., when a whole pattern is
matched to several elements).

2.4. TRIPLE GRAPH GRAMMARS 47

Fig. 2.28 shows the binding semantics of TGG nodes in the different ap-
plication scenarios. We refer to Greenyer and Kindler [GK10] for further
details on TGGs and the binding semantics that we use in this thesis.

(i) forward:

(ii) backward:

++ ++++ map to bound
element

bind to unbound
element

create and bind
to new element++

++

context:

produced graph:

++ ++++

(iii) correspondence:

++ ++++

Legend

Figure 2.28: The binding semantics of the TGG nodes in the application sce-
narios

2.4.2.2 Formal Properties

There are several formal properties for transformation algorithms and TGGs.
Here we focus on the properties that are relevant for this thesis.

Properties of a Transformation Algorithm A transformation algorithm
should have certain properties that ensure that it works as expected. The defi-
nitions we use in this thesis are adapted from Hildebrandt et al. [HLG+13].

The most important property is correctness:

Definition 10 (correctness of a transformation result). A result of a TGG
transformation is correct iff the resulting model triple (consisting of the al-
ready existing source model, the newly generated correspondence model, and
the newly generated target model) can also be produced by a sequence of TGG
rule applications starting from the axiom.

In other words, this means that a transformation result is correct if it is an
element of the language that is defined by the TGG. This definition can be ex-
tended for all transformation results that a transformation algorithm produces:

Definition 11 (correctness of a transformation algorithm). A TGG transfor-
mation algorithm is correct iff all model triples that it will produce can also be
produced by a sequence of TGG rule applications starting from the axiom.

Schürr [Sch95] shows that interpreting a TGG for model-to-model trans-
formation in the way described above ensures correctness.

48 CHAPTER 2. FOUNDATIONS

In several practical cases, requiring strict correctness can be too restricting:
When transforming between two models, the aspects or viewpoints that these
two models contain may differ. Therefore, only parts of the information that
both models contain overlap. Consequently, the model transformation also only
maps between these overlapping parts, but does not consider model-specific in-
formation. If, for instance, the source model contains information that is not
subject to the transformation, the complete source model could never be pro-
duced by applying rules of the TGG.

Another relevant formal property is completeness.

Definition 12 (completeness). A TGG transformation algorithm is complete
iff it is able to derive the consistent correspondence and target models C, T for
the given source model S for every model triple A ∈ (S ×C × T).

Basically, this property describes how powerful the transformation algorithm
is: A complete algorithm is able to transform every valid source model correctly,
regardless how difficult it is to find the correct TGG rule sequence to derive the
source model.

As already described in Sect. 2.3.3, finding such a rule sequence is a com-
plex problem. TGGs only produce vertices and edges and do not delete them;
they are “production-only rulesets” by construction. Although this reduces the
complexity with no severe impact on the expressiveness [Sch95], it still may re-
quire computing the whole derivation tree up to the size of the host graph (cf.
Fig. 2.24). At worst-case, this requires O(nk) steps, where n is the size of the
host graph and k is the number of rules. In each of the steps a monomorphism
(pattern matching) has to be found (O(nl), where l is the size of the rule). Thus,
the overall worst-case runtime is O(nk⋅l).

Transformation approaches and tools therefore have to find a reasonable
compromise between expressiveness on the one hand and efficiency on the other
hand. Most transformation approaches therefore restrict the class of TGGs they
support [HLG+12], i.e., they require a TGG to fulfill certain properties.

Properties of a TGG The TGG itself also has certain properties, which are
independent from the transformation algorithm that is used.

A property that is often required by transformation algorithms is functional
behavior.

Definition 13 (functional behavior of a TGG). A TGG has functional behavior
if for every source model S there exists at most one rule sequence (besides
permutation) that produces this source model.

If there are different rule sequences leading to a single source model, these
alternative rule sequences could possibly produce a differing result on the target
side. This means that transformation would not be a function, as it has more
than one result for a single input.

A TGG is likely to be non-functional if – in a forward transformation – there
is more than one rule that is applicable for the same source model element. Such

2.4. TRIPLE GRAPH GRAMMARS 49

a condition is called rule application conflict. Rule application conflicts can be
identified using critical pair analysis [HEGO10, HEOG10].

We must distinguish functional behavior of a TGG from functional behav-
ior of a transformation algorithm. Most transformation algorithms will always
produce the same result even if the TGG is non-functional. That means, even if
more than one rule is applicable, the transformation algorithm will always select
the same. This is due to the deterministic design of most algorithms. However,
using the same TGG with another transformation algorithm is likely to produce
a different target model.

Most transformation algorithms do not support backtracking over rules, i.e.,
they do not compute the complete rule derivation tree, but just run until they
reach the first leaf. Especially, they do not search for another derivation path
even if the computed leaf does not correctly produce the source model. Using
such an algorithm requires the TGG to have no conflicting rules (cf. Sect. 2.3.3,
“conflict-freeness” [GHL14]), which we call local functional behavior :

Definition 14 (local functional behavior of a TGG). A TGG has local func-
tional behavior if for every source model S, there exists at most one rule that
translates a source model element in its respective context.

Given a TGG with local functional behavior, every rule derivation tree will
be a linear list. I.e., a transformation algorithm cannot make wrong choices
when computing the derivation sequence of the source model and, thus, will
never run into a “dead end”.

There are also relaxed forms of local functional behavior. For instance,
eMoflon supports TGGs with a so-called look-ahead of 1 by checking for “edges
that can no longer be translated if a wrong choice is made (Dangling Edge
Check)” [HLG+13]. This is equivalent to allow backtracking one step (bd = 1,
cf. Sect. 2.3.3).

2.4.3 Incremental Updates and Model Synchronization

After transforming a source model into a target model, changes to these models
may occur. In cases of a strictly linear development process like a waterfall-like
process model without any loops, this does not cause any problems. However, in
practice, such linear processes are almost non-existing. Not synchronizing such
changes between the different models may at best cause the documentation to
be outdated (if models are used for documentation purposes only). Worse, it
causes bugs and faults in the developed product that are detected not before
integration tests, or at worst, when the system is already deployed. Thus, we
want to propagate such changes to the other models so that the models are
consistent to each other again.

Assume we have a source model and run a transformation to create the
target model. Both models are consistent according to the transformation.
Next, changes to one or both models occur. If only one model has changed, we
can incrementally update the other model with these changes, which is described
in Sect. 2.4.3.1. If both models have been changed, we speak of simultaneous
bidirectional synchronization, as explained in Sect. 2.4.3.2

50 CHAPTER 2. FOUNDATIONS

2.4.3.1 Incremental Updates

Assume that we have transformed a source model into a target model using a
certain TGG. As the transformation is correct, the source and the target model
are consistent to each other in terms of the TGG then. If changes occur to
one of these models after the transformation, these changes may cause that the
models are not consistent any more.

In such a situation, we often would like to restore the consistency between
these models. A simple approach is to delete the unchanged model and re-create
it using the changed model. If, for instance, the target model was changed, we
delete the source model and run the transformation in backward direction with
the changed target model as input. The resulting new source model will now
contain all changes from the target model.

Such an approach has two main disadvantages. First, if only small parts of
the target model were changed, we still run a complete transformation, although
we could reuse the results of the first transformation run to a large extend.
Second, there may be parts of the source model that are not subject to the
transformation (cf. Sect. 2.4.2 and 4.2.2). These parts have no corresponding
counterparts in the target model. Thus, if we deleted the source model, these
parts of the source model are inevitably lost.

To address these issues, Schürr suggested to use incrementally working
translation processes in 1994 [Sch95]. Several algorithms for this incremental
update problem have been described since (e.g., [GW09, GH09, HLR06]). In
general, these approaches work in a similar way: First, we revoke rule appli-
cations that do not hold any more by deleting the produced part of the target
models; second, we try applying new rules like in a batch transformation.

In the following, we describe the basic principles of the approach of Wag-
ner [Wag09, GW09, GW06].14

Fig. 2.29 shows the activities of the incremental update algorithm. The idea
is that, before applying new rules, we first check all existing rule applications
(created during the previous transformation run). First, we check whether the
rule structure still holds: Do all nodes of the applied TGG rule still have correct
object counterparts in the model, and do all edges have matching links? If
not (i.e., the changes invalidated the rule application) we have to revoke the
rule application. If the structure is still ok, we check whether all attribute
conditions still hold. Changed attributes can be propagated without revoking
the rule application by simply re-evaluating the attribute conditions. After this
check, we apply new rules, as during a normal batch transformation. For rule
applications that have been revoked we also try to find new rules that match.

Wagner [GW09] argues that this incremental update algorithm produces
the same results as the batch transformation described by Schürr and, thus, is
correct. Hermann et al. [HEO+13] provide a formal synchronization frame-

14Note that Wagner and other authors also speak of “model synchronization” when only
the changes of one model are propagated to another. In this thesis, we distinguish between
“incremental updates” (when updating just one model) and “synchronization” (when simulta-
neously synchronizing changes in both models).

2.4. TRIPLE GRAPH GRAMMARS 51

checkGpattern
structure

revokeGrule
application

checkGattribute
values

propagate
attributeGchanges

applyGnewGrulefindGrule
matching

[noGmoreGunchecked
rulesGleft]

[uncheckedGrule
applicationsGleft]

[noGmoreGrules
applicable]

[patternGstructure
invalid]

[matchingGfound]

name Action

[condition]

ControlGflow
DecisionG/
mergeGnode

FinalGnode
InitialGnode

Guard

Legend

Figure 2.29: Incremental update algorithm (adapted from [Wag09])

work for this incremental update approach and present a proof for correctness,
completeness, termination, and functional behavior.

We use Wagner’s approach [GW09] as a basis in this thesis. We extend
and improve the approach to fulfill the requirements for model transformation
and synchronization in the development of mechatronic system.

2.4.3.2 Simultaneous Bidirectional Model Synchronization

If both models have changed since the last transformation or incremental update,
we cannot simply propagate changes from the source model to the target model,
as the changes in the target model may be overwritten then. In general, model
synchronization is prone to conflicts. Two approaches have been suggested to
address this issue.

Körtgen [Kör09] uses pre-generated repair actions that will put the models
in a consistent state at that specific position. Several repair actions may be
possible in a certain situation. Körtgen argues that the user should manually
select one of these actions to propagate the change.

Xiong et al. [XLH+07, XSHT09] propose to propagate simultaneous
changes by first incrementally updating the last synchronized state of the target
model. Second, they perform a 3-way merge to combine the updated target
model with the user-edited target mode. Finally, their algorithm incremen-
tally updates the source model using this merged target model. Conflicts are
processed by the model merger.

For a more in-depth discussion on these model synchronization approaches,
we refer to Sect. 4.3.2.

52 CHAPTER 2. FOUNDATIONS

2.4.4 Model Transformation Features

In the following, we classify TGGs according to the (adapted) classification by
Czarnecki and Helsen [CH06] presented in Sect. 2.2.15

• Specification: A model-to-model transformation is specified using a formal
graph grammar that defines a language of model triples. To compute the
result of the transformation, the transformation engine has to derive such
a valid model triple given only the source domain of that triple.

• Transformation Rules: Each rule defines how two models may evolve si-
multaneously. Thereby, a rule provides a declarative specification of a
mapping between a source and a target modeling construct.
– Domain: Typically, two domains are used as source and target.

However, the number of domains is not limited (“multi-graph gram-
mars” [KS06, KS05]), but there must be at least two (one source and
one target domain).16

∗ Body: The nodes and edges of the rule’s pattern serve as vari-
ables. A rule consists of a graph pattern containing typed nodes
and edges. Concerning the rules’ logic, each rule specifies a map-
ping between a source and a target modeling construct.

– Multidirectionality: In general, rules are multidirectional by construc-
tion17.

– Intermediate Structures: A correspondence model connect the do-
mains. It can be used as a trace model and to store intermediate
information.

• Rule Application Control: The rule application control highly depends on
the strategy of the transformation algorithm that is used for the trans-
formation. However, if the transformation does not contain rule conflicts,
the only difference between different approaches is performance. If there
are conflicts, different solution strategies are used. We refer to Hilde-
brandt et al. [HLG+13] for further details on the differences between
existing TGG approaches. Here, we describe the algorithm of the TGG
Interpreter, which is used in this thesis.
– Location Determination: The Interpreter uses the concept of a

front [KW07]. This front maintains a (first-in-first-out) list of source
model objects that have unprocessed links left. New objects are
added to the list whenever a rule is applied.

– Rule Scheduling: Prior to the implementation of the additional con-
cepts of this thesis, the TGG Interpreter selected the next rule
to apply by the order in which they are contained in the ruleset. As
optimization, the TGG Interpreter applies the same rule as long

15We only consider TGGs as a model-to-model transformation approach here, i.e., we do
not regard the “simultaneous evolution” semantics of TGGs.

16Sometimes the correspondence links are also regarded as a domain, as they can be stored
in the form of a model. In contrast to the source and target domains, the correspondence
domain’s (meta-)model is under control of the transformation developer.

17A rule has to be well-formed, such that it contains produced nodes for all domains and
possible attribute constraints are also multidirectional.

2.4. TRIPLE GRAPH GRAMMARS 53

as it is applicable, then switching to the next rule in the list. It con-
tinuously cycles through the list until no further rule can be applied.
See Chap. 4 for details on rule selection within the novel approaches
presented in this thesis.

• Rule Organization: Rules are contained in a ruleset, but do not have
explicit relationships between them.

• Source-Target Relationship: TGGs can be used for batch and incremental
model-to-model transformations.
– New Target: Creating a new target model from a give source model

is usually described with the terms “batch transformation” or “initial
transformation” (the latter mainly to denote that later incremental
updates will follow).

– Existing Target: TGGs support incremental updates (see, e.g., Giese
and Wagner [GW09]), but no in-place model transformations.

• Incrementality: Schürr already suggested incremental updates in his
original publication [Sch95]. Since then, several approaches for incremen-
tal updates have been presented.
– Incremental Change Processing: Given the change set that happened

to a model since the last transformation run, the transformation en-
gine can compute possibly affected rule application and, therefore,
only has to check these rule applications. This reduces the runtime
especially for large models [GH09].

– Propagation: Different incremental update / change propagation ap-
proaches have been described in the literature, which differ in their
amount of user-edit preservation (see Sect. 4.1.1 for a detailed dis-
cussion).

• Directionality: If all rules are multidirectional, a TGG ruleset is also mul-
tidirectional without further requirements.

• Tracing: The correspondence model that links the source and target pat-
tern of a rule is typically persisted with the generated target model and
can be used as trace information (and for further incremental updates).

CHAPTER 3
Synchronizing

Mechatronic System
Development Models

Contents
3.1 Example Scenario Overview . 56
3.2 Deriving Initial Discipline-Specific Models from the System Model . . . 59

3.2.1 Defining Discipline Relevance . 59
3.2.2 Transformation from CONSENS to Software Engineering

Models . 60
3.2.3 Transformation from CONSENS to Control Engineering

Models . 63
3.2.4 Transformation to Other Disciplines 69

3.3 Synchronizing Models During the Discipline-Specific Refinement Phase . 69
3.3.1 Updating the System Model . 70
3.3.2 Updating Control Engineering Models 71
3.3.3 Tackling the Challenges of Synchronizing Models for Mecha-

tronic System Development . 71
3.4 Comparison with Other Scenarios . 72

3.4.1 Summary . 74

In this chapter, we describe the running example used in this thesis in de-
tail. It contains exemplary, but characteristic situations and scenarios for model
transformations and synchronizations. In Chap. 4, we will refer to these situ-
ations to illustrate the different model synchronization extensions developed in
this thesis. Furthermore, we will explain the different transformations that are
used to map between the system model and the discipline-specific models.

After giving an overview about the example scenario process in Sect. 3.1, we
describe how to derive initial discipline-specific models in Sect. 3.2, and how to
later synchronize models in Sect. 3.3.

55

56
CHAPTER 3. SYNCHRONIZING MECHATRONIC SYSTEM

DEVELOPMENT MODELS

3.1 Example Scenario Overview
As a running example, we use the RailCab system in this thesis. The RailCab
– “Neue Bahntechnik Paderborn”1 – is based on the vision that, in the future,
the schedule-based railway traffic will be complemented or replaced by small,
autonomous RailCabs that transport passengers and goods on demand, being
more energy-efficient by dynamically forming convoys. A prototype has been
developed at the University of Paderborn and served as an extensive case study
for the Collaborative Research Center (CRC) 614 “Self-Optimizing Concepts
and Structures in Mechanical Engineering”. A test track at the scale of 1:2.5
was built at the campus of the University of Paderborn.

When a RailCab drives separately, it calculates the desired speed based on a
reference value. The reference value depends on several factors like the necessity
for a quick arrival, desired user comfort, energy availability etc. It is calculated
using self-optimization methods (see Gausemeier et al. [GRS14a] for details).
The velocity controller compares this reference value to the current speed and
calculates the operating point for the traction system.

In a convoy, the RailCabs drive closely together to optimally make use of
the slipstream, but there is no mechanical connection between the RailCabs.
The participating RailCabs therefore have to drive at exactly the same speed.
To achieve this, RailCabs negotiate the convoy driving speed using WiFi com-
munication before entering a convoy, as depicted in Fig. 3.1. Within a convoy,
all RailCabs (except for the convoy leader) control their velocity based on the
distance to the RailCab traveling in front of them. To measure the distance,
there is a distance sensor mounted in the front of each RailCab. When entering
a convoy, the RailCab reconfigures its velocity controller such that it now uses
the data from the distance sensor. The controller tries to maintain a stable
distance between the RailCabs by adjusting the acceleration/deceleration of the
traction unit.

Convoy coordination
using WiFi connection

Distance measurement
by distance sensor

Figure 3.1: Convoy coordination concept of the RailCab system

Obviously, this distance sensor is a highly safety-critical element, as a failure
(i.e., it outputs wrong distance data or no data at all) can result in two RailCabs
colliding, putting the lives of humans at risk. Thus, a redesign of the distance

1Neue Bahntechnik Paderborn/RailCab: http://www-nbp.uni-paderborn.de/

3.1. EXAMPLE SCENARIO OVERVIEW 57

measurement concept may be necessary even later in the development, as it may
turn out that the original concept is not safe enough. Such a redesign poten-
tially affects several disciplines. As the engineers of all these disciplines have
already started the development, it is crucial to influence existing disciplines’
development artifacts as less as possible.

In the conceptual design phase, experts from all disciplines design the prin-
ciple solution. This principle solution covers all discipline-spanning relevant
information, i.e., all interfaces and overlaps between different disciplines are de-
scribed in this model. Thus, the principle solution can serve as a starting point
for the discipline-specific design and development phase.

Model transformation techniques can be applied to automatically derive ini-
tial discipline-specific models that are consistent with the principle solution and
all other discipline-specific models. Basically, these initial models contain skele-
tons that are filled by the discipline engineers in the following design and de-
velopment phase. We explain how a model transformation generates software
engineering models from a principle solution in Sect. 3.2.2. In Sect. 3.2.3, we
show how initial control engineering models can be generated.

Ideally, the principle solution covers all discipline-spanning aspects. Thus,
there should be no need for further discipline-spanning coordination. However,
in practice, the principle solution rarely captures all discipline-spanning con-
cerns. Additionally, changes to the overall system design may become necessary
later, e.g., due to changing requirements, or, as explained before, to improve the
safety of the system. Therefore, cross-discipline changes may become necessary
during the discipline-specific design and development phase.

To illustrate transformations and synchronizations that may become nec-
essary throughout the development, assume the following exemplary process.
Fig. 3.2 shows how the different models evolve in this exemplary process.2 The
numbers in the red circles denote the different process steps. They are used in
all following figures to refer to the respective process step.

After the system engineers designed the principle solution, model transfor-
mations can be applied to generate the different discipline-specific models (step
1). The engineers from the different disciplines start implementing the con-
trollers (step 2). For instance, the control engineers elaborate on the velocity
control strategies for driving in a convoy as a follower based upon the distance
measured by the distance sensor. Software engineers implement the communi-
cation and reconfiguration behavior when a RailCab enters or leaves a convoy.
These are discipline-specific refinements that have no direct influence on the
models of other disciplines.

In the meantime, the system engineers notice that the current structure of
system elements does not resemble the functionality of the system well. Thus,
they restructure the system model such that the Distance Sensor and the Distance
Calculation elements are now sub-system elements of a new Distance Measure-
ment system element.

2This example is a modified and extended version of an exemplary process published in
Gausemeier et al. [ADF+14].

58
CHAPTER 3. SYNCHRONIZING MECHATRONIC SYSTEM

DEVELOPMENT MODELS

v1.0SEv1.0EE v1.0CE v1.0ME

v1.2SE

v1.1CE

v1.2

v1.2CE

Initial transformation and mapping of
corresponding design artifacts

1

Discipline-specific refinements
(implementation of reconfiguration,

implementation of control strategies)

2

Discipline-spanning relevant change
(restructuring of the system model)

3

Synchronization of the system model
and the software model

5

Update of other
discipline-specific models

6

v1.0

v0.9

v0.8

Principle
Solution

v1.1

Discipline-spanning relevant change
(additional distance sensor)

4

v1.3SE

v1.1SE

SE

EE

CE

ME

Discipline-Spanning System Model

Electrical Engineering Models

Software Engineering Models

Control Engineering Models

Mechanical Engineering Models

Manual Change

No or Automatic Change

Legend

Model Transformation/
Incremental Update

Figure 3.2: Evolution of different models during the development process

Modern mechatronic systems incorporate self-healing to repair the system in
case of failure. It is the duty of the software engineers to define and analyze this
self-healing. Amongst others, the software engineers perform an analysis of the
self-healing operations in order to judge whether they reduce the probability of
hazards successfully. In our example, the distance sensor may fail or send bad
data. It may turn out that even with self-healing the hazard probability cannot
be reduced to an acceptable level: The hazard of two RailCabs colliding during
convoy mode due to a failing distance sensor exceeds the acceptable hazard
probability of the system.

Thus, software engineers propose to add redundancy by adding a second
distance sensor. In this way, the system can detect when a sensor sends bad
distance data, as this data then differs with the data of the other sensor. If this
happens, the system can initiate fail-safe behavior like emergency convoy break-
up.3 They add a new sensor measurement component to their software model
(step 4) to implement this. This is a discipline-spanning relevant change, i.e., it
affects the discipline-spanning system model as well as several discipline-specific
models. In particular, the velocity control strategy must be modified.

Thus, the change is propagated to the system model, and the system model
changes are incorporated into the software model (step 5) using model syn-

3Note that with two sensors one can just detect a sensor failure, but not resolve it. To
eliminate the bad data (i.e., still know which data is correct), three sensors are required – also
called “triple modular redundancy” pattern.

3.2. DERIVING INITIAL DISCIPLINE-SPECIFIC MODELS FROM THE
SYSTEM MODEL 59

chronization techniques. In contrast to model transformation that translates
complete models, the idea is to modify only the model elements that have been
changed after the initial model transformation. Thus, this is also called incre-
mental update. Version 1.2 of the system model now contains a second distance
sensor, and version 1.2 of the software model was restructured according to the
new system model structure.

To allow all engineers reacting to the discipline-spanning relevant changes
from the software model, they are propagated further from the system model
to all affected discipline-specific models. For instance, the control engineering
model is incrementally updated (step 6). The control engineers can now modify
their control strategy to use both sensor data as input.

In steps 5 and 6, it is crucial that the discipline-specific models are updated
in a way so that all refinements and implementations that have been added to it
in the meantime are retained. In our case, the changes to the control-engineering
model (see step 2) and to the software-engineering model (see step 4) must not
be removed, overridden or otherwise affected.

Next, we describe in detail a) how to derive initial discipline-specific mod-
els, and b) how to propagate changes to the system model and further on to
discipline-specific models.

3.2 Deriving Initial Discipline-Specific Models from
the System Model

In this section, we present two example transformations from the system model
to discipline-specific models. Here, the principle solution serves as the input to
create models for the discipline-specific design and development phase. However,
these transformations can also be used during the conceptual design to generate
discipline-specific models, for instance, for early simulation and verification.

Before transforming to the discipline-specific models, engineers define which
parts of the system model are relevant to which discipline; we describe this in
Sect. 3.2.1. Next, we show how the active structure can be used to derive initial
software component models in Sect. 3.2.2, and how the behavior–states model
is transformed to an initial software statechart. Last, we describe how control
engineering models can be derived from the system model in Sect. 3.2.3.

3.2.1 Defining Discipline Relevance

Not all models and aspects of the system model are relevant to each discipline.
Even only parts of a single partial model may be relevant to a certain disci-
pline. For instance, system elements in the active structure solely representing
mechanical parts are irrelevant to software engineering, but sensors or actuators
are. To define this relevance, we use the concept of relevance annotations, which
we introduced in previous work (cf. Rieke [Rie08]).

You can regard these annotations as stereotypes (as used in UML [OMG10b])
that are assigned to elements of the system model. Each discipline has its
own kind of relevance annotations. Whenever there is a relevance annotation

60
CHAPTER 3. SYNCHRONIZING MECHATRONIC SYSTEM

DEVELOPMENT MODELS

attached to an element of the system model, this annotation marks this element
as relevant to the respective discipline. Mechatronic Systems usually consist
of mechanic parts, electrical parts, controllers, and software. Therefore, we
distinguish between Mechanical Engineering (denoted by “ME” in the relevance
annotations), Electrical Engineering (“EE”), Control Engineering (“CE”), and
Software Engineering (“SE”).

For instance, consider the active structure of the RailCab (as shown in
Fig. 2.5). Figure 3.3 shows this active structure (modeled in the CONSENS
language) with these relevance annotations. The Drive Control is only relevant
to software engineering, as it contains only state-based behavior and discrete
communication. Although it communicates with other RailCabs and the Track
Section Control using the Communication Module, this module is transparent to
software engineering, as it just implements the hardware levels of the commu-
nication. Thus, it is only relevant to mechanical engineering (as it must be
physically integrated into the chassis) and electrical engineering (as it must be
powered).

Although we describe a method to automatically derive such relevances in
previous work [Rie08], practice shows that this is still a largely manual process
that has to be performed by systems engineers and discipline experts [GSG+09].

Next, we describe how to transform the relevant system model parts to the
different discipline-specific models.

3.2.2 Transformation from CONSENS to Software
Engineering Models

Here we describe our concept to map between the system model and software
models defined in MechatronicUML (cf. Sect. 2.1.4.1). Figure 3.4 shows the
basic principles of the transformation from CONSENS to MechatronicUML
software models. In the active structure, you can see small colored annotations
above the system elements. These so-called relevance annotations define which
element is relevant to which discipline-specific model. For instance, “SE” and
“CE” denotes software engineering and control engineering, respectively.

The central idea of the mapping is that every system element that has a soft-
ware engineering relevance annotation (i.e., it fulfills software functions) should
be represented by a software component in the MechatronicUML model. The
information flows between system elements are mapped to ports and connectors
in MechatronicUML.

In general, MechatronicUML only defines the discrete software. How-
ever, MechatronicUML allows to integrate continuous components, e.g., con-
trollers from control engineering. Continuous components are black-box compo-
nents in MechatronicUML, i.e., no actual behavior is attached to continuous
components in MechatronicUML. In this way, they can be used to define the
interface to control engineering in a MechatronicUML software model.

In contrast, the behavior of discrete components is implemented using
MechatronicUML. Discrete components communicate with each other via
discrete ports using asynchronous, message-based communication. This com-
munication is implemented in using real-time statecharts (see Sect. 2.1.4.1).

3.2. DERIVING INITIAL DISCIPLINE-SPECIFIC MODELS FROM THE
SYSTEM MODEL 61

R
a

ilC
a

b

C
o

m
m

u
n

ic
a

-

tio
n

 M
o

d
u

le

D

D
riv

e
 C

o
n

tro
l

H
a

z
a

rd

D
e

te
c

tio
n

c
o

n
v

o
y

c
o

o
rd

in
a

tio
n

d
*

c
o

n
v

o
y

 s
ta

te

 d
e

te
c

te
d

 h
a

z
a

rd
s

v
le

a
d

e
r

 d
S

a
fe

V
e

lo
c

ity
 C

o
n

tro
l

P
o

s
itio

n

C
o

n
tro

lle
r

V
e

lo
c

ity

C
o

n
tro

lle
r

R
e

fe
re

n
c

e

G
e

n
e

ra
to

r

v
*

R
a

ilC
a

b

P
o

s
itio

n

O
b

s
e

rv
e

r

 F
*

x
R

a
ilC

a
b ,v

R
a

ilC
a

b

x
*’

T
ra

c
tio

n
 U

n
it

 F
tra

c
tio

n

v
*

R
a

ilC
a

b

D
is

ta
n

c
e

P
ro

c
e

s
s

in
g

d
le

a
d

e
r

d
*

d
le

a
d

e
r

 T
ra

c
k

 S
e

c
tio

n

F
fc

IL
3 *

R
a

ilw
a

y
S

ta
to

r
T

ra
c

k
 S

e
c

tio
n

C
o

n
tro

l

tra
c

k
 s

e
c

tio
n

n
e

g
o

tia
tio

n

c
o

n
v

o
y

c

o
o

rd
in

a
tio

n

D
is

ta
n

c
e

S
e

n
s

o
r

d
is

ta
n

c
e

d

a
ta

v
*

v
*

S
E

C
E

M
E

E
E

C
E

M
E

E
E

M
E

E
E

M
E

E
E

S
E

S
E

C
E

C
E

C
E

C
E

S
E

S
E

S
E

C
E

M
E

E
E

S
E

M
E

E
E

M
E

E
E

S
E

M
E

E
E

x
R

a
ilC

a
b ,v

R
a

ilC
a

b

v
R

a
ilC

a
b

S
y
s
te

m
 E

le
m

e
n

t

J
o

in

In
fo

rm
a

tio
n

 F
lo

w

E
n

e
rg

y
 F

lo
w

P
o

rt

L
e

g
e

n
d

S
E

R
e

le
v
a

n
c
e

A

n
n

o
ta

tio
n

Figure 3.3: Excerpt of the active structure of the RailCab (from Fig. 2.5) with
relevance annotations

62
CHAPTER 3. SYNCHRONIZING MECHATRONIC SYSTEM

DEVELOPMENT MODELS

R
ailC

ab

C
onfiguration

C
ontrol

H
azard

D
etection

d*

convoy
state

detected
hazards

x
leader , v

leader

x
R

ailC
ab , v

R
ailC

ab

Velocity
C

ontrol

Traction U
nit

I*

SESE

CE
SE

R
ailC

ab

D
rive C

ontrol

Velocity
C

ontrol

M
E

EE

H
azard

D
etection

D
rive C

ontrol

R
ailC

abTo
R

ailC
ab

C
om

m
unication

M
odule

x
R

ailC
ab ,

v
R

ailC
ab

refD
ist

convoy
state

m
em

ber

detected
hazards

coordinator

SE
CE

M
E

EE

convoy coordination

DS

DSDS

DS

refS
peed

x
R

ailC
ab ,v

R
ailC

ab

x
R

ailC
ab , v

R
ailC

ab

x
R

ailC
ab ,

v
R

ailC
ab

v*

convoy
coordinationdistance

distance

D
istance

Sensor

DS
D

istance
Sensor SE

CE
M

E
EE

I*

SE
CE

D
istance

Processing

distance
data

D
istance

Processing DS
distance

data

initial transform
ation

1

M
E

EE

C
orrespondence

link

Legend

Figure 3.4: Initial transformation from the active structure to a software com-
ponent diagram

3.2. DERIVING INITIAL DISCIPLINE-SPECIFIC MODELS FROM THE
SYSTEM MODEL 63

Discrete components can also send or receive signals to or from continuous
components using hybrid ports. In Fig. 3.4, the components Drive Control and
Velocity Control have both discrete and continuous ports.

Figure 3.5 shows the main concepts of the mapping between the system
model (modeled in the CONSENS language) and the software model (mod-
eled in the MechatronicUML language). For instance, the transformation
creates components for every system element that should be implemented in
MechatronicUML. Most mappings are rather straightforward. As described
in Sect. 2.1.4.1, we distinguish between discrete, state-based behavior imple-
mented in MechatronicUML and continuous behavior implemented using
MATLAB/Simulink. The mapping also resembles this distinction: System
elements that are relevant to software engineering become discrete components,
and elements relevant to control engineering become continuous components.
System elements relevant to both disciplines become hybrid components, which
integrate both continuous and discrete behavior. Note that the concrete syntax
of MechatronicUML does not distinguish between component types; there-
fore, we added three notes to Fig. 3.5 to show the differences.

We use Triple Graph Grammars (TGGs, cf. Sect. 2.4) for precisely defin-
ing the model transformations to the different discipline-specific models. The
complete TGG ruleset for the transformation can be found in Appendix A.

3.2.3 Transformation from CONSENS to Control Engineering
Models

Next, we present the transformation from the system model to control engi-
neering models in MATLAB/Simulink and Stateflow (cf. Sect. 2.1.4.2).
Figure 3.6 shows the basic principles of the transformation from CONSENS to
MATLAB/Simulink control engineering models. Generally, every system ele-
ment that is relevant to software engineering or control engineering is mapped to
a Simulink block. System elements relevant only to software engineering, how-
ever, are just placeholders. They are later filled with the implementation from
software engineering. This is because a MATLAB/Simulink model is used at
the end of the development process as a combined software/control engineering
model from which code is generated.

MATLAB/Simulink neither has built-in means to define asynchronous,
message-based communication, nor does it allow dynamically instantiating/de-
stroying blocks or rewiring connectors. Nevertheless, such functions are neces-
sary for the simulation of reconfigurable systems like self-optimizing systems.
In such systems we find changing communication structures, rerouting of in-
formation flows (signals), and dynamic instantiation/destruction of software
components/controllers.

MATLAB supports defining state-based behavior using its toolbox State-
flow. Stateflow only provides basic means for defining timed behavior.4 For

4There are only simple temporal logic operators like after(amount, unit), before(),
and at(). More importantly, these operators are state-local, i.e., they can only measure time
relative to the activation of the current state. Furthermore, when a subsystem is disabled,
time does not progress for these operators. [TMW14]

64
CHAPTER 3. SYNCHRONIZING MECHATRONIC SYSTEM

DEVELOPMENT MODELS

Name «hybrid»
Name

CONSENS System Model
Active Structure

MechatronicUML Software Model
Component Diagram

message-based
communication

discrete
communication

signal-based
communication

continuous
communication

signal-based
communication

hybrid
communicationCESE

SE SE

CECE

state
state

trigger / action
trigger / action

x ms

[0;x]

Name «continuous»
Name

Name «discrete»
Name

SE

SE

CE

CE

Figure 3.5: Mapping from CONSENS to MechatronicUML

3.2. DERIVING INITIAL DISCIPLINE-SPECIFIC MODELS FROM THE
SYSTEM MODEL 65

R
ailC

ab

C
onfiguration

C
ontrol

H
azard

D
etection

d*

convoy
state

detected
hazards

x
leader , v

leader

x
R

ailC
ab , v

R
ailC

ab

Velocity
C

ontrol

Traction U
nit

I*

SE

SE

CE
SE

M
E

EE

D
rive C

ontrol

R
ailC

abTo
R

ailC
ab

C
om

m
unication

M
odule

SE
CE

M
E

EE

convoy coordination

x
R

ailC
ab ,v

R
ailC

ab

x
R

ailC
ab , v

R
ailC

ab

v*

convoy
coordinationdistance

D
istance

Sensor SE
CE

M
E

EE
SE

CE

D
istance

Processing

distance
data

V
elocity C

ontrol
C

om
m

unication
S

w
itch

O
perating P

oint
C

ontroller

I* convoy
state

d*
I*

x
R

ailC
ab

v
R

ailC
ab

in
out

H
azard D

etection

detected
hazards

D
rive C

ontrol

convoy
stated*v*

v*
detected
hazards

D
istance P

rocessing

distance
to object

distance
to object

D
istance S

ensor

distance
data

distance
data

initial transform
ation

1

C
orrespondence

Link

Legend

M
E

EE

Figure 3.6: Initial transformation from the active structure to a MAT-
LAB/Simulink control engineering model

66
CHAPTER 3. SYNCHRONIZING MECHATRONIC SYSTEM

DEVELOPMENT MODELS

safety-critical mechatronic systems, time constraints often require more sophis-
ticated expressions that are also able to deal with absolute time5.

It is, however, possible to implement these concepts using helper structures
and custom blocks. This is a time-consuming and error-prone task if performed
manually. Thus, we developed a concept for automatically generating these
helper structures. This is most important when integrating software and con-
trol engineering models by generating this final combined software/control en-
gineering model at the end of the of the system development. However, to allow
early integration and testing, it is important that the control engineering model
resembles this structures from the beginning of the design and implementation
phase.

To allow the integration of discrete software components that use asyn-
chronous, message-based communication and reconfiguration, we use a message
bus. The communication between two discrete components is implemented us-
ing a Communication Switch. This switch connects to every component and is
responsible for forwarding sent messages to the correct recipient.

Similar to most low-level communication protocols like Ethernet, a
message consists of a header and a body, which contains the actual
data. The header is a five-tuple (message_id, sender_id, receiver_id,
message_type, timestamp). Messages have sequential integer numbers
(package_id) that can be used to track lost messages. The sender_id is the
network address of the sender; the receiver_id is the address of the intended
receiver. The type of message is encoded in the message_type field. timestamp
contains the time at which the message was sent by the sender. Simulink does
not support variable-sized data buses. Thus, messages with more than one
parameter (or parameters of variable length like strings) need to be split into
several messages. A message is sent via the Communication Switch, which for-
wards the message to their intended receiver [HPR+12, HRB+14].

Signal-based information flow, like the I∗ value signal from Velocity Control
to Operating Point Controller, is mapped to connected outputs and inputs of the
respective blocks.

As MATLAB/Simulink does not support instantiating/destroying blocks,
we have to emulate this behavior when mapping reconfiguration to MAT-
LAB/Simulink. First, we compute the maximum number of possible instances
of a component type using the reconfiguration rules.6 We generate this number
of enabled subsystems in Simulink. An enabled subsystem is only active if its
control input is greater than 1. By setting this control input to 0, we can switch
off the computation for this block. In contrast to a true destruction of a com-
ponent, this does not free the memory required by this block; however, it does
not consume any computation time for disabled blocks, because their transfer
functions are not evaluated.

When reconfiguring communications, we simply change the target net ad-
dress in sent messages. The communication bus then automatically routes the

5The Stateflow documentation [TMW14] mentions “absolute-time temporal logic”, but
this denotes that the time measured since entering the current state is not influenced by the
sample time of the model.

6We set an upper instance limit in case the maximum number of instances is infinite.

3.2. DERIVING INITIAL DISCIPLINE-SPECIFIC MODELS FROM THE
SYSTEM MODEL 67

messages to the correct component.
Furthermore, behavioral models of the principle solution can be used to gen-

erate Stateflow models. As described above, Stateflow does not provide
the necessary temporal logic operators. Therefore, we also generate helper func-
tions that can be used in Stateflow to, for example, reason about absolute
time. Furthermore, we include direct access to the message-based communica-
tion described above by generating helper functions for sending and receiving
messages. We describe the principles of this transformation of state-based mod-
els in [RDS+12].

Figure 3.7 shows such a transformation. CONSENS states are mapped to
Simulink states, and transitions to transitions. Events, actions and time con-
straints (clocks etc.), however, cannot be simply translated, as Mechatron-
icUML is far more expressive than MATLAB/Stateflow. Again, we solve
this issue by automatically generating helper constructs that deal with events,
actions and time constraints.

v1.0

convoyFollower
noConvoy

/breakConvoy breakConvoy/

createConvoy//createConvoy

noConvoy convoyLeader

state event
logical

relationship

200 ms200 ms

500 ms500 ms

time attributes

Discipline-spanning System Model (CONSENS)

Control Engineering (Stateflow)

 v1.0CE

convoyFollower

send(createConvoy)

send(breakConvoy)

createConvoy

breakConvoy

1

name state
event Transition with

execution order
Default
transition1

noConvoy convoyLeader

1initial
transfor-
mation

Legend – CONSENS

Legend – Stateflow

2

Figure 3.7: Initial transformation from Behavior–States to a MAT-
LAB/Stateflow model

Figure 3.8 shows the main concepts of the mapping between the system
model (modeled in the CONSENS language) and the control engineering model
(modeled in MATLAB/Simulink and Stateflow). It also shows how triggers
and actions are represented in MATLAB/Stateflow (the bottom-most map-

68
CHAPTER 3. SYNCHRONIZING MECHATRONIC SYSTEM

DEVELOPMENT MODELS

Name

CONSENS System Model
Active Structure

MATLAB/Simulink and Stateflow
Control Engineering Model

message-based
communication

signal-based
communication

signal-based
communication

CESE

SE SE

CECE

state

trigger / action

x ms

signalsignal

Name

signalsignal

Communication
Switch

messagein out

A

messagemessage message

B

state

@maxduration:x

[trigger_checkQueue(EVT_TRIGGER_COUNT, triggerReadOut)]
{[triggerReadOut, triggerParamReadOut] =
 trigger_dequeue(EVT_TRIGGER_COUNT, triggerReadOut, triggerParamReadOut);
send(action);}

Figure 3.8: Mapping from CONSENS to MATLAB/Simulink and State-
flow

3.3. SYNCHRONIZING MODELS DURING THE DISCIPLINE-SPECIFIC
REFINEMENT PHASE 69

ping). Even for this simple trigger/action combination, the generated MATLAB
code for the transition is barely human-comprehensible. Thus, we use an abbre-
viated form for events and messages in the Stateflow model in Fig. 3.7 and
throughout this thesis.

Furthermore, Stateflow does not include concepts for specifying the max-
imum duration of a transition, as MechatronicUML does. However, this
information is still important in later phases, so we add it to the Stateflow
model as an annotation.

For further details on the generation of MATLAB/Simulink and State-
flow models we refer to Heinzemann et al. [HPR+12].

3.2.4 Transformation to Other Disciplines

Concerning electrical engineering, initial circuit diagrams that model the power
distribution in a system can be generated from the system specification, espe-
cially from the active structure and its energy flows and energy-related system
elements. Here we also find interconnections with models from other disciplines.
For instance, the size of a wire or a cable conduit and its arrangement influences
the mechanical design. Mass distribution and weight of a system, as defined by
mechanical engineering, influence other disciplines in turn. However, it is diffi-
cult to automatically generate initial model for mechanical engineering, as the
design of a product is a highly creative process.

Consequently, ensuring the consistency also for models of mechanical en-
gineering and electrical engineering is crucial. Thus, we also need mappings
between these types of models – and as these models are heterogeneous, such a
mapping is complex. Applying sophisticated model-transformation techniques
is therefore reasonable, too.

3.3 Synchronizing Models During the
Discipline-Specific Refinement Phase

Although most discipline-spanning relevant information should already be
present at the end of the conceptual design phase, changes to the system under
development may become necessary during the discipline-specific design and
development phase. For instance, requirements may still change during later
phases, or it may turn out that some aspect of the system must be implemented
in another way. This easily leads to changes that affect both the discipline-
spanning system model and several discipline-specific models. Furthermore,
early discipline-specific models may have already been generated during con-
ceptual design to allow early checks and simulations of different concepts and
ideas. It is reasonable to keep these early models, so that engineers can reuse
and refine them during the design and development phase.

This requires keeping the development models consistent during all phases of
the development. Manually checking and restoring the consistency of all models
is a time-consuming and error-prone task. Therefore, we apply similar methods

70
CHAPTER 3. SYNCHRONIZING MECHATRONIC SYSTEM

DEVELOPMENT MODELS

as with the derivation of initial models (described in the previous section) to
synchronize models during the development.

First, we describe how the system model can be updated when changes in
a discipline-specific model occur. Next, we show how discipline-specific models
can be update with respect to these system model changes.

3.3.1 Updating the System Model

As described in Sect. 3.1, an extra distance sensor measurement component is
added to the software model (step 3 in Fig. 3.2). This change must be propa-
gated to the system model (step 4 in Fig. 3.2). Figure 3.9 shows how adding
the extra sensor of the software model (marked with 2) to the system model (3)
achieves this.

RailCab

Configuration
Control

Hazard
Detection

d*

convoy
state

detected
hazards

xleader, vleader

xRailCab, vRailCab

Velocity
Control

Traction Unit

I*

SE

SE

CE SE

RailCab

Drive Control

Velocity
Control

MEEE

Hazard
Detection

Drive Control

RailCabTo
RailCab

Communication
Module

xRailCab,
vRailCab

refDist
convoy
state

member

detected
hazards

coordinator

SECEMEEE

convoy coordination

DS

DS

DS

DS

refSpeed

xRailCab,vRailCab

xRailCab, vRailCab

xRailCab,
vRailCab

v*

convoy
coordination

distance

distance

Distance
Sensor

distance data
DS

Distance Measurement

distance
data

SECEMEEE

SECE

Distance
Processing

Distance
Sensor

SECEMEEE

Distance
Sensor

DS

Distance
Processing

DS

I*

restructuring
the system

model

adding the
distance
sensor3

4

MEEE

Figure 3.9: Simultaneous changes to both the system model and the software
engineering model

We again use TGGs (cf. Sect. 2.4) to perform such model synchronization
operations. TGG rules can be applied bidirectionally, i.e., transformation and
synchronization operations can be performed both from the system model to the
software model and vice versa. Here, we apply the TGG rules backwards, allow-
ing the change to be propagated from the software model to the system model.
Furthermore, we perform an incremental model transformation to update only
the affected parts of the system model. The added Distance Measurement system
element is shown on the left side of Fig. 3.10.

3.3. SYNCHRONIZING MODELS DURING THE DISCIPLINE-SPECIFIC
REFINEMENT PHASE 71

RailCab

Configuration
Control

Hazard
Detection

d*

convoy
state

detected
hazards

xleader, vleader

xRailCab, vRailCab

Velocity
Control

Traction Unit

I*

SE

SE

CE SE

RailCab

Drive Control

Velocity
Control

MEEE

Hazard
Detection

Drive Control

RailCabTo
RailCab

Communication
Module

xRailCab,
vRailCab

refDist
convoy
state

member

detected
hazards

coordinator

SECEMEEE

convoy coordination

DS

DS

DS

DS

refSpeed

xRailCab,vRailCab

xRailCab, vRailCab

xRailCab,
vRailCab

v*

convoy
coordination

distance

Distance Measurement
DS

distance

Distance
Sensor

distance data
DS

Distance Measurement

distance
data

dist-
ance
data

SECEMEEE

SECE

Distance
Processing

Distance
Sensor

Distance
Sensor

SECEMEEE SECEMEEE

Distance
Sensor

DS

Distance
Processing

DS
distance

I*

synchronizing
principle solution and

software model

5

MEEE

Figure 3.10: Updating the active structure using the altered software component
diagram

3.3.2 Updating Control Engineering Models

After updating the system model, the changes must be propagated to other
affected discipline-specific models (step 5 in Fig. 3.2). Figure 3.11 shows how the
added Distance Measurement system element can also be added to the control
engineering model. This is again achieved by rerunning the transformation
incrementally, leaving the unaffected parts untouched, and only adding a new
block with its respective inputs, outputs and lines.

3.3.3 Tackling the Challenges of Synchronizing Models for
Mechatronic System Development

We have developed an improved model synchronization approach, which is one
of the core contributions of this thesis. It prevents the loss of information in
models during the synchronization process. For instance, the Stateflow model
shown in the lower part of Fig. 3.7 is later refined such that it contains details
of controller reconfigurations that happen when switching convoy states. Thus,
the Stateflow model now contains information that is not relevant to (and,
thus, not present in) the abstract system model. When the system model is
changed later on, this change may affect parts of the Stateflow model that
has been refined. This refinement must not be affected or lost when updating
this discipline-specific model.

The approach allows to minimize the necessary user interaction by using
expert knowledge encoded by metrics. When changes to a model occur, we are
able to update other affected models automatically in most cases, using this

72
CHAPTER 3. SYNCHRONIZING MECHATRONIC SYSTEM

DEVELOPMENT MODELS

RailCab

Configuration
Control

Hazard
Detection

d*

convoy
state

detected
hazards

xleader, vleader

xRailCab, vRailCab

Velocity
Control

Traction Unit

I*

SE

SE

CE SE

MEEE

Drive Control

RailCabTo
RailCab

Communication
Module

SECEMEEE

convoy coordination

xRailCab,vRailCab

xRailCab, vRailCab

v*

convoy
coordination Velocity ControlCommunication

Switch

Operating Point
Controller

I*

convoy
state

d*

I*
xRailCab vRailCab

in out

Hazard Detection

detected
hazards

Drive Control

convoy
state

d*

v*

v*detected
hazards

Distance Processing

distance
to object

distance
to object

Distance Sensor

distance
data

distance
data

distance

Distance Measurement

distance
data

dist-
ance
data

SECEMEEE

SECE

Distance
Processing

Distance
Sensor

Distance
Sensor

SECEMEEE SECEMEEE

Distance Measurement
Distance Sensor

distance
data

distance
data

propagating
the change

6

updated
principle
solution

5

MEEE

Figure 3.11: Updating the MATLAB/Simulink control engineering model us-
ing the updated active structure diagram

improved model transformation and synchronization technique. However, there
might be cases where user decisions are indispensable, for instance when there
are different possibilities to propagate a specific change, and the metrics do not
provide a clear weighting. We describe this approach in detail in Chap. 4.

3.4 Comparison with Other Scenarios
Similar model transformation and synchronization scenarios appear in several
development scenarios. For instance, modern software development is heavily
based upon models, which are used throughout the whole software life-cycle.
This is described with the term “model-driven engineering” (MDE).

Model-Driven Architecture (MDA) [OMG01] is an initiative of the Object
Management Group (OMG) that uses such an MDE approach. In MDA, devel-
opers create different models of the software during the development process.
Starting from platform-independent models (PIM) to platform-specific models
(PSM) to the platform code, the level of abstraction continuously decreases.

The original MDA approach only uses one-time transformations when
switching between the levels of abstraction, e.g., we transform from a PIM to a
PSM only once. Changes may occur later to the PSM which would also affect
the PIM. When developing just for one platform, it is not strictly required to
update the PIM, although it is reasonable to do so for documentation purposes.
More importantly, software is often to be deployed on several platforms – de-
velopers have to create different PSMs for all these platforms (cf. Fig. 3.12).
Therefore, changes to a PSM should be propagated to the other PSMs via the
PIM to keep the different platforms interoperable.

3.4. COMPARISON WITH OTHER SCENARIOS 73

v1.0A v1.0B

v1.1A

v1.0

v0.9

v1.1

PIM PSM for

Platform A

PSM for

Platform B

v1.1B

Manual Change

No or Automatic Change

Legend

Model Transformation/
Synchronisation

Figure 3.12: Models used in Model-Driven Architecture development

A simple example of such an MDA-like process is implementing object persis-
tence, i.e., storing the objects of a program in a relational database management
system (RDBMS). In this example, the PIM would be a class diagram of the
classes that have to be stored in the database. Next, we transform this class
diagram to a entity-relationship (ER) model, which serves as the PSM; this is
where the actual object-relational mapping takes place. The PSM is then used
to generate the (SQL) code for the respective RDBMS to create the different
tables.

There are multiple ways to implement an object-relational mapping. The
most common mappings are “table per class hierarchy”, “table per subclass”,
and “table per concrete class”, but there exist several more [Fow03]. Each of
these mappings validly maps a class hierarchy to a database schema and allows
storing objects in a RDBMS. However, the different mappings have particular
advantages and disadvantages regarding performance and memory efficiency.

For instance, “table per class hierarchy” just uses a single table for a class and
all of its subclasses. All properties of all classes in this hierarchy will be added
as columns in that table. This works efficiently for class hierarchies in which
subclasses that only add methods, but no (or only few) additional properties.
But when subclasses add a large number of properties, storing instances of the
base class will waste memory, because the unneeded columns for the subclass
properties will still use space.

Furthermore, not all object-relational mappings may be available for every
RDBMS, because they may depend on features the RDBMS does not provide.
As we would like to support several different kinds of RDBMS, we will need a
PSM and, therefore, a transformation for each RDBMS.

For each RDBMS-specific transformation to the ER model, we have to de-
fine which types of mappings are available and which is the default mapping.
Hence, the ER model (PSM) is more concrete than the class diagram (PIM);
for instance, the software engineer may decide to use a performance optimized
mapping only for “time-critical” classes. Such a refinement will not influence

74
CHAPTER 3. SYNCHRONIZING MECHATRONIC SYSTEM

DEVELOPMENT MODELS

the class diagram. Nevertheless, when updating the ER model after changes to
the class diagram, the refinement shall not be lost.

3.4.1 Summary

Model-based development scenarios typically have certain properties, which are
• models with differing levels of abstraction,
• models with differing viewpoints,
• information shared between several models, and
• changes occurring to these models at almost any time during the develop-

ment.
Therefore, in all these development scenarios we face complex model consistency
challenges.

In the next section, we present a novel approach for model transformation
and synchronization. It explicitly supports mapping between models of different
viewpoints and abstraction levels. It can be customized with respect to the
scenario and in its amount of automation. Depending on the level of system
and transformation engineers available, it may be run fully automatic or with
more or less user interaction. Using metrics and heuristics, we encode expert
knowledge and guidelines that have proven successful previously.

CHAPTER 4
Model Synchronization

Contents
4.1 Incremental Updates . 76

4.1.1 Related Work . 77
4.1.2 General Approach . 81
4.1.3 Example . 84
4.1.4 Concept of the Incremental Update Algorithm 89
4.1.5 Selection of Elements to be Reused 90
4.1.6 Selection Metrics . 91
4.1.7 Partially Reusable Pattern Matching Algorithm 94
4.1.8 Formal Properties of the Approach 98
4.1.9 Summary . 98

4.2 Abstraction and Concretion Relations . 99
4.2.1 Related Work . 102
4.2.2 Problem Formalization . 103
4.2.3 Definition of the Initial Transformation Function I 104
4.2.4 Definition of Refinement Operations 105
4.2.5 Derivation of the Consistency Relation R 108
4.2.6 Model Synchronization with a 1-to-n Consistency Relation . . 109
4.2.7 Generalization to n-to-n Consistency Relations 113
4.2.8 Summary . 115

4.3 Synchronizing Concurrent Modifications 116
4.3.1 Conflict Categorization . 117
4.3.2 Related Work . 122
4.3.3 Model Comparison for Merging Concurrent Modifications . . . 123
4.3.4 Improving Conflict Resolution 126
4.3.5 Summary . 131

In this chapter, we present the main contribution of this thesis. First, we
introduce our novel, improved incremental update algorithm that prevents un-
necessary loss of information in Sect. 4.1. Second, we describe a technique
to allow incorporating abstraction and refinement relations that exist between
models into the model transformation in Sect. 4.2. Third, we describe how to
synchronize concurrent changes to both models in Sect. 4.3.

75

76 CHAPTER 4. MODEL SYNCHRONIZATION

Parts of the techniques described in these sections have already been pub-
lished at several conferences and other occasions [GSG+09, SEH+10, GPR11,
GR12, RS12, RDS+12].

4.1 Incremental Updates
In the development process of mechatronic systems, developers use several in-
dependent, but related models. For instance, while the system model provides
a discipline-spanning viewpoint on the system as a whole and also reflects the
basic software architecture, it is not suited to design the details of the soft-
ware. Thus, the system model is used to create a first version of the software
model. As a result, the system model and the software model partially overlap in
their information. In particular, structural/architectural information is subject
to both models, but only the software model contains the specification of the
detailed state-based behavior (including clocks, deadlines, and transition con-
ditions). Figure 4.1 visualizes this. Whenever an engineer changes one of these
models in the course of the development, we must ensure that these changes are
also applied to the other model if they affect the overlapping parts.

System Model

Software Model

Mapping

Figure 4.1: Partially overlapping models in the system development

Each of these models also contains information that is not subject to the
transformation (cf. Fig. 4.1). This means that it is only contained in this single
model, therefore also called model-specific information. For instance, a software
engineering model contains implementation details of the software, which are –
in general – unimportant for the systems engineering and for other disciplines.
However, this discipline-specific information is still linked with other information
in the discipline-specific model that is subject to the transformation.

In this section, we present an new algorithm to incrementally update related
models if such a change occurs. We specifically designed this algorithm to allow
dealing with models of different scopes or aspects, like the different discipline-
specific models used in the development of mechatronic systems. As basis, we
use an approach we developed in previous work [Rie08].

4.1. INCREMENTAL UPDATES 77

The general issue is that most incremental update algorithms do not deal
with such model-specific information. More specifically, when updating models,
they often unnecessarily delete such information, as they simply ignore the fact
that there is information which is not in the scope of the transformation.1

Our algorithm solves this issue as follows. When propagating changes, our
approach tries to apply rules in a way that comes close to the state of the target
model, thereby retaining as much information of the target model as possible.
More technically speaking, we do not delete elements right away when propagat-
ing changes, but instead we mark them for deletion. In this way, the algorithm
can reuse them later in the incremental update process.

In general, there can be several different possibilities to reuse elements; these
possibilities may vary in how much information they retain in a reasonable way.
It is not always worthwhile to automatically decide on how to reuse elements.
However, asking the user every time is also not a good solution. We use heuris-
tics based on metrics to estimate the quality of the different reuse possibilities
according to their success in retaining information. Basically, these metrics are
a representation of expert know-how, as they formalize reuse guidelines that
have proven successful previously. We discuss when these heuristics can be au-
tomatically used and where expert decisions are indispensable. In particular,
our approach can be tailored from performing a fully-automatic incremental
update to a complete user-interactive proceeding.

4.1.1 Related Work

After running an initial (batch) transformation, the related models are linked
with each other. I.e., there exists a triple of corresponding models (the source
model, the correspondence graph, and the target model). When a change occurs
in one domain model, this change can be propagated by re-running the complete
transformation from scratch, replacing the “opposite” domain model.

Re-running the entire transformation is very costly and, more importantly,
specific information that was added to the target model would be lost. Instead,
it is more reasonable to incrementally update only the affected parts of the
model, and to keep the existing, unaffected parts. Algorithms for this problem
have been described before [GW09, GH09, XSHT09, HLR06]. In the following,
we explain existing incremental update approaches and their shortcomings.

First, we describe how model-to-text transformations implement incremen-
tality. Next, we focus on model-to-model transformation approaches that (ac-
cording to the classification of Czarnecki and Helsen, cf. Sect 2.2.2) follow
a declarative paradigm, are able to update existing targets and to propagate
changes, and have pattern-based rules.

1Note that such algorithms are correct, anyway, because transformation correctness is de-
fined in terms of the transformation relation between the models. Thus, information that is not
subject to the transformation will never affect correctness of the transformation (algorithm).

78 CHAPTER 4. MODEL SYNCHRONIZATION

4.1.1.1 Model-to-Text Transformations

Incremental updates are often used in model-to-text transformations, e.g., for
generating source code. A typical example is code generation from class dia-
grams. Class diagrams mainly contain information about properties and meth-
ods of classes and inheritance. After generating code, software engineers imple-
ment the behavior of each method manually using the generated source code.
When the class diagram is changed, regenerating the code must not overwrite
the manually implemented methods. The solution that is most frequently used
is user-editable blocks. In the case of code generation from a class diagram, each
method body is defined as such a user block. When regenerating the code, this
block remains untouched.

While this works well for simple changes (like adding a method), it does
not work more complex refactorings (like renaming a class or moving a method
between classes). Moreover, it is generally not suitable for models due to the
(typically large) amount of links in a model; a model could easily become invalid
when simply ignoring parts of it.

4.1.1.2 Goldschmidt and Uhl (2008/2011)

Goldschmidt and Uhl [GU08, GU11] suggest using so-called retainment poli-
cies. Retainment policies specify “how a transformation rule should handle
manual changes in target models.” [GU08] The approach is implemented for
QVT-R [OMG08], but will work for most transformation approaches that con-
sist of transformation rules and use a declarative logic (cf. Sect. 2.2.2). They
present a classification of changes that may occur, like additions or deletions
of elements. Based on this classification, policies specify possible retainment
actions for types of changes. Possible actions are: overwriting manual changes,
only updating when there was no manual change, always retaining the manual
change, or never updating the target. A retainment policy has a scope, which
defines for which rules this policy should be applied. In situations where a policy
advices to retain the target, it basically switches off the respective transforma-
tion rules.

The retainment rules of Goldschmidt and Uhl operate on the level of
transformation rules. Thus, defining retainment rules requires knowledge of the
ruleset. This approach is similar to manually defining user-editable blocks in
model-to-text transformations, but provides a more fine-grained control. When
larger change sets are propagated, however, this approach will likely cause in-
formation loss (in situations where no policy advises a retainment) or generate
inconsistent models (due to mappings that are switched off by a retainment
policy).

4.1.1.3 Giese and Wagner (2008/2009)

Giese and Wagner suggest the following algorithm [GW09] (see also
Sect. 2.4.3.1 and Fig. 2.29). Let us assume we have a valid model triple, i.e.,
the source and target model and the correspondence graph are consistent ac-
cording the TGG. When a change occurs in the source model, there may be

4.1. INCREMENTAL UPDATES 79

rule applications that are no longer valid, because its graphs do not match any
longer, or its attribute constraints or application conditions are violated. In
this case, the rule application(s) that are violated by the change are revoked.2
Revoking a rule application means that the target model elements created by
the revoked rule applications are destroyed, and the source model elements be-
come unbound. There may be rule applications that depend on the revoked rule
application(s), i.e., rule applications that have one or more model elements that
have been destroyed or unbound by the revocation. These rule applications are
also revoked, potentially leading to a huge chain of necessary revocations.

Finally, the transformation is re-run for the unbound source model elements.
During that re-run, new model elements may be created in the target model,
as new rules are applied at the previously unbound source model elements. In
this way, existing information that is not subject to the transformation is only
retained in model parts that are untouched by the incremental update.

4.1.1.4 Giese and Hildebrandt (2009)

Giese and Hildebrandt present another algorithm [GH09] that builds upon
the algorithm of Giese and Wagner described before. It tries to deal with the
problem of chained rule revocations, however, mainly considering performance
aspects. When there is a long chain of rule revocations, it often happens that
the rules that are then applied are the same that were applied before. This is
because changes are often local and only affect a few rules directly.

Observing this, Giese and Hildebrandt suggest that when a change oc-
curs in the source model, the algorithm should try to repair the rule applications
that are violated by the change. For instance, if the change is a move of an el-
ement on the source side, a rule application can be repaired by changing the
link from the corresponding (target-side) element to its old (target-side) parent
such that it is now linked to the new corresponding parent on the target side.

In their approach, pre-generated repair operations that are automatically
derived from the TGG rules attempt these repairs. Only if such a repair opera-
tion is not possible, the rule application is revoked. In this case, the algorithm
tries to apply another rule to these unbound source model elements.

However, these repair operations are only able to modify links. Whenever it
is not possible to repair a rule application by changing a link, the rule is revoked
and the target model elements are destroyed and cannot be reused anymore. For
instance, this is the case when new elements have to be created to make another
rule applicable. Thus, this approach can only prevent revoking rules in simple
cases, but does not provide a general solution to the problem.

2Attribute changes can sometimes be propagated without revoking the rule application.
Thus, the algorithm by Giese and Wagner checks whether the violation is just due to a changed
attribute. If this is that case, it re-evaluates the attribute constraints of the rule and assigns
them to the target model attributes. In this way, a costly revocation of the complete rule
application can be avoided. Our algorithm uses a similar optimization.

80 CHAPTER 4. MODEL SYNCHRONIZATION

4.1.1.5 Körtgen (2009/2010)

Körtgen [Kör09] also describes an approach for dealing with incremental up-
dates. She first presents a categorization of different inconsistency types that
user modifications to a model can cause. Based upon this categorization and
given the ruleset, she derives pre-computed repair operations, each of which can
deal with a specific inconsistency type in a certain situation and a certain rule.

When changed models are synchronized, the different pre-computed repair
operations are checked for applicability stepwise for each changed model ele-
ment. Typically, several repair operations can be applied for a single change.
In Körtgen’s approach, the user has to decide every time more than one re-
pair operation is possible. Gradually, the approach guides the user through all
decisions, finally ending up in a consistent state of the models again.

Although the approach provides change operations for each type of change
in the categorization, it remains unclear whether this categorization is complete.
In other words, the approach covers usual changes that can happen to a model
by providing corresponding operations, but no prove is given that it is able to
cover all changes that may happen, especially for complex modeling languages.

Furthermore, the approach requires a large amount of user-interaction and
a tight integration with the model editing tools in use. Körtgen, however,
mentions adding certain analyses to reduce the amount of user-selectable repair
operations as a possible extension to the approach [Kör10].

4.1.1.6 Model Merging

Instead of running an incremental update, we could completely retransform the
source model and thereby create a new target model afresh. This target model
will obviously not contain any model-specific information. We could use a model
merger to combine the freshly created target model with the previous target
model. Conceptually, this will also create a target model that still contains
model-specific information.

However, there are severe drawback to such a approach. Most importantly,
model differencing and merging still is a difficult problem in practice, and exist-
ing tools suffer from bad merging results especially when the models and their
differences become large [ELHN+10, LAS+14]. The model merger also cannot
simply use the correspondence or source model to help improving the merging
process. Moreover, running a complete re-transformation takes much more time
than just incrementally updating changed model parts. A TGG transformation
has worst-case runtime of O(nk⋅l), where n is the size of the host graph, k is the
number of rules, and l the maximum rule size (cf. Sect. 2.3.3). An incremental
update only has to check changed model elements; its worst-case runtime is
therefore depends on the number of affected elements3 na: O(na

k⋅l). Also the
model merging gets slower when models are large.

3Note that “affected elements” is not the same as “changed elements”: A (user) change
can affect several more elements in a model transformation scenario, when it requires revoking
rule applications which, in turn, cause other rule applications to be revoked.

4.1. INCREMENTAL UPDATES 81

4.1.1.7 Summary

Many existing approaches are not able to deal with complex changes and there-
fore cause loss of information in the target model. Körtgen’s approach [Kör09]
can also deal with changes that are more complex. However, as the models to
be synchronized differ in their viewpoints and abstraction levels, allowing for
complex changes in a incremental update algorithm quickly leads to the need
for making decisions how to propagate a certain change. Körtgen’s approach
therefore requires the user to decide at every atomic decision point, leading to a
high amount of fine-grained user interaction. This represents one extreme; the
other is full automation, where the algorithm makes every decision.

Although we could aim for designing an algorithm that does the model
synchronization fully automatically, this is not reasonable in most scenarios.
Engineers should have control over all design decisions in their models, and this
includes changes that are caused by other disciplines, when several alternatives
are possible to implement this change. On the other hand, deciding at each
atomic step of an incremental update – besides the high effort – easily leads to
wrong choices, because the decisions are performed for atomic modeling elements
(objects and links): Engineers may not foresee the consequences of a single
decision, as they do not see the effect to larger, semantically connected units.

In the next section, we present an incremental update algorithm that tackles
these drawbacks. In previous work, we presented the idea of reusing elements
when revoking/applying rules, instead of immediately deleting them [Rie08].
This previous approach focuses primarily on a certain scenario (when model el-
ements are hierarchically restructured or moved, i.e., get a new containing par-
ent model element) and therefore lacks general applicability. It does not satisfy
the completeness property for transformations with conflicting rules. Further-
more, it requires manual adaptation of the TGG ruleset by the transformation
engineer. However, this previous algorithm is the basis for the approach pre-
sented in this thesis. In particular, we generalize it to make it applicable for
all kinds of changes, remove the need for manual ruleset adaptations, extend
it with means for incorporating expert knowledge, and allow customizing the
automation amount.

4.1.2 General Approach

We present an improved incremental update algorithm
• that is able to deal with cases of complex changes,
• in which user decisions are not based on atomic elements but on larger

semantic units,
• that incorporates expert knowledge encoded in metrics, and
• that is customizable in its amount of automation.

It generalizes the idea of structurally repairing rule applications such that com-
plete structures can be repaired, independent of what kind of changes appeared.
Nonetheless, it neither changes the general TGG semantics nor impairs the for-
mal properties of a TGG.

When incrementally updating, there may be several alternatives to propa-
gate a change. Our algorithm first calculates these different alternatives. As

82 CHAPTER 4. MODEL SYNCHRONIZATION

quality estimation heuristics, it uses (customizable) metrics that assign weight-
ings to these alternatives. These weightings reflect how good a certain propa-
gation possibility is in restoring the consistency without loss of data.

The algorithm may be run in full-automation mode, where it automatically
chooses the “best” way to synchronize changes based on that weighting; i.e.,
it selects the propagation option with the best weighting. It may also run in
user-interaction mode, where it asks the user for alternatives whose weight-
ings are within a given threshold. Without a threshold, it offers fully man-
ual change propagation, comparable with the user interaction of approach like
Körtgen [Kör09]. In this way, users can influence the amount of interaction
according to their trust in the heuristics.

Figure 4.2 shows the activities of the algorithm. The basic loop (top of
Fig. 4.2) is similar to the activities of most incremental update approaches,
e.g., Giese and Wagner [GW09] (cf. Sect. 2.4.3.1 and Fig. 2.29). The main
extensions and improvements constitute themselves within the action apply rule
(bottom of Fig. 4.2).

search for partially
matching patterns

find rule
matching

[matching
found]

[> 1 possibilities found &&
user decision required]

reuse pattern &
create remainder

create
rule remainder

[else]

user decision

apply rule

check pattern
structure

revoke rule
application

check attribute
constraints

propagate
attribute changes

[no more unchecked
rules left]

[unchecked rule
applications left]

[pattern structure
invalid]

check constraints

[constraints
invalid]

[locally]
apply rule

[no more rules applicable]
apply rule

[rules applicable]

destroy elements still
marked for deletion

name Action
[condition] Control flow

with guard
Decision /
merge node Final node

Initial node

Legend

Call behavior
action

name

[rules applicable]

[for each
pattern found]

[look-ahead]
apply rule

Figure 4.2: Activities of the new incremental update algorithm

The algorithm works as follows. In the first phase of the algorithm – sim-
ilar to the approach Giese and Wagner [GW09] –, we check for each rule
application whether it may have become invalid. This includes checking the
pattern structure and the constraints. Checking constraints is separated into
checking for general context constraints and attribute constraints. In contrast

4.1. INCREMENTAL UPDATES 83

to attribute constraints, general context constraints cannot be re-enforced; a vi-
olation therefore results in a rule revocation. Each rule application that cannot
be repaired by propagating attribute changes is revoked.

As the deletion of elements should be prevented if possible, it is not rea-
sonable to immediately destroy elements when a rule application is revoked,
as we describe in previous work [Rie08]. When a rule application is revoked,
we remove the bindings for all (context and produced) model elements on the
one hand. On the other hand, and in contrast to other approaches, we do not
actually delete the produced model elements, but mark them for deletion.4

Our algorithm can reuse these removed and marked objects and links during
later rule application by explicitly searching for matches in the set of elements
that are marked for deletion. (In order to reuse elements, the new rule of course
must have an intersection with the revoked rule in the produced correspondence
and target graph.) In particular, after revoking a rule application, the algorithm
immediately checks if other rules are applicable as a replacement for the revoked
rule. This avoids revoking subsequent rule applications that depend on the
revoked rule in many cases – if we find another matching rule, the context of
subsequent rule may still be valid for the new rule.5 After that, the algorithm
continues checking existing rule applications.

In the second phase, the algorithm tries applying new rules. Here, we again
use the set of elements that are marked for deletion to find suitable objects, so
that we do not have to create new objects. Only if deletion-marked elements
cannot be reused (i.e., bound again) by a new rule application, they will be
ultimately destroyed. As described before, the problem is that there may be
several ways of how the elements marked for deletion can be reused. A particular
challenge is therefore to determine the “best” way to reuse these elements.

The core of the approach is the search for partially matching patterns, which is
described in detail in Sect. 4.1.7. It identifies which elements could potentially
be reused. Optionally, we can perform a look-ahead if there is more than one
possibility of reusing elements. In this way, we also identify effects of a particular
reuse possibility on further rule applications. We use metrics to estimate how
well the possibilities preserve information; for ambiguous cases, we ask the user
to select one (see Sect. 4.1.6 for details).

Next, we present an example and overview our incremental update algo-
rithm. Then we give an extended example with different ways of reusing ele-
ments and we discuss metrics to determine which reusable pattern may be best.
Finally, we discuss the details of the partially reusable pattern search.

4At first glance, it seems that such a proceeding changes the TGG semantics. In Sect. 4.1.8
we argue why this is not the case. Furthermore, existing transformation specifications (TGG
rulesets) do not have to be modified for our approach to work.

5Note that this is mainly an optimization: Even if we would revoke all dependent rule
applications, we could still reuse their elements later in the second phase. This would yield
the same results. However, the computational complexity would increase due to a larger set
of elements marked for deletion. Furthermore, there are more ways of reusing elements, which
may result in a greater chance of selecting a bad one. Our evaluation shows that such a
procedure will in fact improve the runtime for some cases (cf. Sect. 6.3.1).

84 CHAPTER 4. MODEL SYNCHRONIZATION

4.1.3 Example

The example we use in this section is based on the general exemplary process
described in Sect. 3.1 and shown in Fig. 3.2. Figure 4.3 shows the parts of this
general process that are relevant to this section.

v1.0SEv1.0EE v1.0CE v1.0ME

v1.2SE

Initial transformation and mapping of
corresponding design artifacts

1

Discipline-specific refinements
(implementation of reconfiguration)

2

Discipline-spanning relevant change
(restructuring of the system model)

3

Propagating changes from the system
model to the software model

5

v1.0

v1.1

v1.3SE

SE

EE

CE

ME

Discipline-Spanning System Model

Electrical Engineering Models

Software Engineering Models

Control Engineering Models

Mechanical Engineering Models

Manual Change

No or Automatic Change

Legend

Model Transformation/
Update

Figure 4.3: Evolution of different models during the development process (ex-
cerpt of Fig. 3.2)

After the initial transformation to the discipline-specific models has been
performed in step 1, our models are in a consistent state, as depicted in Fig. 4.4.
In particular, all elements are bound by TGG rule applications.

Next, the engineers from the disciplines start refining their models in step 2.
In particular, a software engineer adds a reconfiguration chart to the Mecha-
tronicUML model. This change only affects software engineering, i.e., it is
irrelevant to other disciplines and does not have to be propagated.

In parallel, a systems engineer deletes the information flow convoy state to
the system element velocity controller from the CONSENS model, and with it its
corresponding port (step 3 in Fig. 4.5). In contrast to the change in the software
mode, this change does have an impact on other disciplines. For instance, the
velocity controller in the software model must not be a hybrid component any
more, but has to become a controller component.

We propagate this change to the software model in step 5 as follows. The
rule applications that previously translated the (now deleted) information flow
and the information flow port are now structurally invalid.6 Therefore, these
rule applications have to be revoked. All its bindings are deleted, and the

6We refrain from showing these TGG rules, as they simply map one information flow (resp.
one information port) to one connector (resp. one port). The complete ruleset can be found
in Appendix A.

4.1. INCREMENTAL UPDATES 85

Velocity C
ontrol

«hybrid»
R

eference
G

enerator

«continuous»
Position

C
ontroller

«hybrid»
Velocity

C
ontroller

refS
peed

DS

DSDS

DS
targetS

peed

F*

Velocity C
ontrol

Position
C

ontroller

Velocity
C

ontroller
R

eference
G

enerator

v*R
ailC

ab

 F*

Dd*
v*R

ailC
ab

d*

d
leader

v*

CE

CE

CE

CE

SE

SE
SE

v
R

ailC
ab

convoy
state

refD
ist

d
Leader

convoy
state

v
R

ailC
ab

deltaTargetD
ist

targetS
peed

initial transform
ation

1
C

orrespondence
link

Legend

Figure 4.4: Initial transformation from the active structure to a software com-
ponent diagram, here: transforming the Velocity Control system elememt

86 CHAPTER 4. MODEL SYNCHRONIZATION

Velocity C
ontrol

«hybrid»
R

eference
G

enerator

«continuous»
Position

C
ontroller

«hybrid»
Velocity

C
ontroller

refS
peed

DS

DSDS

DS
targetS

peed

F*

Velocity C
ontrol

Position
C

ontroller

Velocity
C

ontroller
R

eference
G

enerator

v*R
ailC

ab

 F*

Dd*
v*R

ailC
ab

d*

d
leader

v*

CE

CE

CE

CE

SE

SE
SE

v
R

ailC
ab

convoy
state

refD
ist

d
Leader

convoy
state

v
R

ailC
ab

deltaTargetD
ist

targetS
peed

deleted in step 3

added in step 2
R

econfiguration

affected by step 5

«hybrid»

C
orrespondence

link

Legend

A
ffected m

odel
parts

Figure 4.5: Changes to the CONSENS system model and the Mechatron-
icUML software engineering model (step 2) after the initial transformation

4.1. INCREMENTAL UPDATES 87

correspondence and target produced objects and links are marked as deleted
(denoted by dashed lines in Fig. 4.6). Figure 4.6 shows the abstract syntax of
the situation after the rule revocation.

:InformationFlow
name = 'convoy state'
type = discrete

CONSENS Corresp. Mechatronic UML

vc:SystemElement
name = 'velocity controller'
isSERelevant = true

vc:Component
name = 'velocity controller'

:SE2Comp

:Package :Package:Pack2Pack

packagedElement
packagedElement

:Hybrid

stereotype

:InformationFlowPort
name = 'convoy state'
type = discrete

:InformationFlowPort
name = 'v*RailCab'
type = continuous

ownedPort

ownedPort
:Port

name = 'v*RailCab'
type = continuous

:Port2Port

ownedPort

:Reconfiguration

:Parttype

:Port2Port

:Flow2Conn

:Port
name = 'convoy state'
type = discrete

:Connector
name = 'convoy state'

ownedPort

name:type Object

Domain separator

Unidirectional /
bidirectional link

Legend

Link marked
for deletion

Object marked
for deletion

name:type

Deleted by username:type Model-specific
information

Figure 4.6: Abstract syntax after rule revocation due to deletion of a flow

The application of SystemElementToHybridComponent (Fig. 2.26) that
mapped the velocity controller system element to a hybrid component also be-
comes invalid: continuousPorts>0&&discretePorts>0 is violated, as there is
no discrete port any more. So this rule application has to be revoked by marking
its produced part (vc:Component and :Hybrid) as deleted, too.

The produced parts of the revoked rule applications served as context for
other rule applications. Traditional incremental update algorithms would also
revoke these dependent rule applications. Instead, we try to apply new rules
immediately as a replacement for the revoked rule application. By doing so,
we may be able to restore the context of depending rule applications, thereby
avoiding their revocation. Besides the immanent performance increase, this
reduces the risk of information loss, because less target elements are affected.

In this case, we can apply rule SystemElementToController (see Fig. 4.7). Its
context is matched onto the package objects in CONSENS and Mechatron-
icUML and the correspondence :Pack2Pack. Incrementally updating in for-
ward direction, the produced source (CONSENS) pattern (se:SystemElement)
is matched onto the velocity controller system element, as this element is now
unbound due to the revocation of the rule SystemElementToHybridComponent
previously. Also the constraints hold, as they require no discrete port. A nor-
mal rule application would simply create the correspondence and target pat-
terns. Instead, our incremental update first searches for a pattern matching
in the set of elements marked for deletion. Two elements in this set can be

88 CHAPTER 4. MODEL SYNCHRONIZATION

reused: Starting the search from the velocity controller system element, our al-
gorithm finds and reuses the (deletion-marked) :SE2Comp correspondence and
the velocity controller component.

CONSENS Corresp. Mechatronic UML

vc:SystemElement
name = 'velocity controller'
isSERelevant = true

vc:Component
name = 'velocity controller'

:SE2Comp

:Package :Package:Pack2Pack

packagedElement
packagedElement

:InformationFlowPort
name = 'v*RailCab'
type = continuous

ownedPort

:Port
name = 'v*RailCab'
type = continuous

:Port2Port

ownedPort

type

:Controller

:CodeDescriptor

:Hybridstereotype

:Reconfiguration

:Part

:CodeContainer

CONSENS Corresp. MechatronicUML

pm:Package pu:Package:Pack2Pack

packagedElement
packagedElement

++

++
++ ++

++

stereotype
++

name=se.name
++

opaqueBehavior

++
++

++

++

name=c.name

se.continuousPorts>0
&& se.discretePorts=0

se.isSERelevant

++
++

se:SystemElement :SE2Comp c:Component
ct:Controller

cd:CodeDescriptor

cc:CodeContainer

name:type Object

Domain
separator

Unidirectional /
bidirectional link

Legend (object diagram)

Link marked
for deletion

Object marked
for deletion

name:type

Deleted by user

name:type Reused object name:type New object

Reused link New link

x=y Attribute constraint /
application conditionname:type Context

node

Domain separator

Unidirectional / bidirec-
tional context edge

Unidirectional / bidirec-
tional produced edge

Produced
node

name:type++
++
++

Legend (TGG rule)

Matching

name:type Model-specific
information

name:type Model-specific
information

Figure 4.7: Abstract syntax after applying the rule SystemElementToController
(with reusing elements)

No other previously deleted element can be reused by this rule. However,
the matching is not complete yet, as there are no existing objects to match the
Controller, CodeDescriptor, and CodeContainer nodes of rule the SystemElement-
ToController. The algorithm uses this partial pattern matching anyway. Now we
can apply the rule as follows. First, removing the “deleted” flag from everything
that has been reused and binding these elements again. Second, because the
match of the TGG rule is not yet complete, additional links and objects are
created. Non-fitting links of single-valued references are moved. In this way,

4.1. INCREMENTAL UPDATES 89

the target model is modified so that it matches the rule that is applied. We call
this process repair operation.

Figure 4.7 shows the situation after the rule application. The algorithm
reused the :SE2Comp correspondence and the velocity controller component
(shaded in Fig. 4.7). It created new instances of Controller, CodeDescriptor,
and CodeContainer, and set the appropriate links (dashed in Fig. 4.7), as no
reusable element could be found for them.

The Hybrid stereotype object, which was deleted when revoking the previous
rule application, could not be reused. Thus, the algorithm ultimately destroys
it (crossed-out in Fig. 4.7).

By reusing the velocity controller component, which was previously marked
for deletion, the algorithm prevents a dangling edge from the model-specific
reconfiguration specification (hatched in Fig. 4.6 and 4.7). It also preserves
any further model-specific information that is attached to the component (for
instance, safety requirements). Furthermore, a deletion and recreation of the
component would have rendered the context invalid for the PortToPort rule
that translated the v∗RailCab InformationFlowPort. Thus, traditional incremental
update algorithms would have to revoke this and possibly further dependent
rule applications.

4.1.4 Concept of the Incremental Update Algorithm

Let us assume we are propagating changes from source to target (forward incre-
mental update). Then, in summary, our algorithm works as follows:
1. Iterate over all TGG rule applications in the order they were applied, and if

the application has become invalid due to changes in the source model
a. Remove the bindings of the produced graph, and mark the correspon-

dence and target produced elements previously bound to this graph
as deleted.

b. If the same or other rules are applicable in the forward direction, i.e.,
the context and the source produced graph match,
i. search for a pattern of elements marked for deletion that “best”

matches part of the rule’s correspondence/target graph structure
ii. apply the rule by reusing this pattern, creating the remaining

correspondence/target pattern, and enforcing attribute value
constraints.

Continue checking the next rule application or terminate if all applications
have been checked.

2. Finally, effectively destroy elements that are still marked for deletion.

The concept to “mark for deletion” allows us to remember the elements that
might be reusable. These elements can then be reused in step 1b-ii, and only
the remainder of the pattern has to be created. This concept is the basis for
intelligently reusing model elements during the update.

In the example above there was only one possible partially reusable pattern.
Often there are several available partial matchings that reuse more, less or other
elements. In fact, some partial matchings may reuse elements in an unintended
way. Therefore, we calculate all possible partial matchings. We use heuristics

90 CHAPTER 4. MODEL SYNCHRONIZATION

to choose the most reasonable of these reuse possibilities. In the following,
we present an extended example in which two reuse possibilities occur. Next,
we discuss the implementation details of the partially reusable pattern search,
which computes the different reuse options (step 1b-i).

4.1.5 Selection of Elements to be Reused

The heuristic for the “best” partial matching is generally to take the partial
matching that reuses most elements. However, also considering existing corre-
spondence information and object properties can be vital, as we show in the
following example. Let us assume that we start with a consistent state, as in
the previous example, i.e., all model elements are bound by rule applications.

First, an engineer deletes the discrete port and its information flow from the
CONSENS velocity controller (as in the previous example). Second, the engi-
neer removes the position controller’s relevance flag for the software engineering
discipline. Therefore the application of rule SystemElementToHybridComponent
for the velocity controller and the application of rule SystemElementToController
for the position controller is revoked. Figure 4.8 shows the result in form of an
object diagram, with user deletions crossed-out and deletion-marked elements
depicted by dashed lines.

CONSENS Corresp. Mechatronic UML

vc:SystemElement
name = 'velocity controller'
isSERelevant = true

vc:Component
name = 'velocity controller':SE2Comp

:Package :Package:Pack2Pack

packagedElement packagedElement

:Controller

:CodeDescriptor

:Hybrid

pc:SystemElement
name = 'position controller'
isSERelevant = true false

pc:Component
name = 'position controller'

:SE2Comp

:InformationFlowPort
name = 'v*RailCab'
type = continuous

ownedPort

ownedPort

:InformationFlow
name = 'convoy state'
type = discrete

:InformationFlowPort
name = 'convoy state'
type = discrete

ownedPort

:CodeContainer

name:type Object

Domain separatorUnidirectional /
bidirectional link

Legend (object diagram)

Link marked
for deletion

Object marked
for deletion

name:type Deleted by userElement of partial
matching

Change required
to fit into matching

Figure 4.8: Revocation of two rules and a subsequent “wrong” partial pattern
match

Again, rule SystemElementToController is now applicable at the CONSENS
velocity controller. When trying to apply this rule, our algorithm searches for
partial matches in the set of deleted elements. In addition to the partial pattern
matching of the previous example (see Fig. 4.7), there is a second promising
partial matching here. It is marked with

√
s in Fig. 4.8. The partial pattern

matching search finds it by starting from the context :Package object of Mecha-
tronicUML. This partial matching reuses the deleted position controller compo-
nent, its controller, code descriptor and code container. However, the existing
correspondence node does not fit (marked with a ⊛): It points to the CON-

4.1. INCREMENTAL UPDATES 91

SENS position controller, but it must be connected to the CONSENS velocity
controller (because the node se:SystemElement is already matched to the velocity
controller). Additionally, the attribute constraint must be repaired, changing
the component’s name to “velocity controller” (also marked with ⊛).

Although this alternative partial matching reuses more elements than the
partial matching in Fig. 4.7, it is in fact an example where the reuse is un-
intended: Using this partial matching would create a correspondence between
elements that did not correspond to each other before. At first glance, this may
not seem to be a problem, because the change propagation will adapt all links
and attribute values in the target model to satisfy the constraints posed by the
TGG. Thus, using this matching will also lead to a consistent state. However,
as already described before, the target model may contain elements that refer-
ence these reused elements, but that are not subject to the transformation. A
“wrong” reuse means that these elements now reference completely altered ob-
jects that have changed their semantics significantly. Therefore, it is reasonable
to favor such partial matchings where a correspondence node is reused without
changing its correspondence links. In this way, only previously corresponding
elements are reused, typically resulting in the intended reuse of elements.

Note that in terms of the TGG semantics it is not relevant which of these
alternatives is actually selected, i.e., in which way the algorithm reuses previ-
ously deleted elements (or whether it reuses elements at all). In every case the
synchronization results in a consistent rule application. A particular reuse of
elements may only be more or less harmful to the elements that are not subject
to the transformation. See Sect. 4.1.8 for further information on the formal
properties of our algorithm.

4.1.6 Selection Metrics

The reuse possibilities may vary in how much information they retain in a
reasonable way. In this section, we describe the metrics we use to order the
reuse possibilities according to their success in retaining information. These
metrics represent the knowledge of experts, as they formalize reuse guidelines
that have proven successful previously.

Simply counting the number of elements that will be reused is not the best
way of selecting a reuse possibility, as described in the previous section. There-
fore, our algorithm uses several distinct metrics to compute how to reuse ele-
ments. In our experiments, we have determined default values for these metrics
that performed well in our scenario. However, as other scenarios may differ, the
metrics can be customized. Table 4.1 shows the metrics that measure the reuse
quality. A lower value corresponds to a higher quality.

Furthermore, we allow different amounts of user interaction when making
a decision about the reuse. In particular, our approach can be tailored from
performing a fully-automatic incremental update (i.e., relying completely on
the metrics) to a complete user-interactive proceeding. We use a concept of
certainty here: The more distant the (metrics-measured) quality of two reuse
possibilities is, the more certain we are which one of them is better suited.

92 CHAPTER 4. MODEL SYNCHRONIZATION

Table 4.1: Metrics for measuring the quality of a reuse possibility

Name Description Default
Value

Object
Creations

The number of (target model) objects that will
be created in order to complete the produced
pattern of the rule.

0.5

Attribute
Modifications

The number of attributes (of target model ob-
jects) that will be changed.

0.5

ID
Modifications

The number of identifying attributes (of target
model objects) that will be changed. Identify-
ing attributes are attributes like qualified names
or unique identifiers.

1

Link Creations The number of (target model) links that will
be created in order to complete the produced
pattern of the rule.

0.5

Link
Modifications

The number of (target model) links that will be
altered.

0.75

Correspondence
Modifications

The number of links from the correspondence
model that will be altered.

2

Disconnected
Components

The number of reused model parts with no links
to other reused parts.

4

The thresholds that are used to determine whether to ask the user are sum-
marized in Tab. 4.2.

As an example, consider the following situation. There are two reuse possi-
bilities; the first reuses more elements and is therefore considered “better” than
the second. However, if both weightings are similar, it may be reasonable to ask
the user. We use an adjustable threshold “Good Quality” to determine in which
cases the user has to decide which reuse possibility to use. In other words, this
threshold determines how close the estimated quality of both reuse possibilities
has to become in order to not to rely on this metrics-based quality measure-
ment. Its default is qurel(p) < 0.2, i.e., we ask the user to decide between all
possibilities whose quality is within the best 20%.

Such a threshold accounts for the inherent uncertainty of an automated,
heuristics-based approach. On the other hand, the metrics have to be related
to the actual quality; otherwise, such a threshold is effectively useless. We have
evaluated our metrics using several examples. Nevertheless, further evaluations
seem reasonable as future work, especially in application scenarios other than
mechatronic system design and model-driven software development.

It may still happen that target model elements are deleted eventually, i.e.,
their information is lost. This can be intended, e.g., in cases where elements in
the source model have also been deleted. However, it may also be due to wrong
(automatic or manual) reuse decisions.

We analyze the amount of information loss in the target model at the end

4.1. INCREMENTAL UPDATES 93

Table 4.2: Thresholds for manual decisions

Name Formula/Description Default
Threshold

Good
Quality

quworst = max(p ∈ P ∶ quabs(p))

qubest = min(p ∈ P ∶ quabs(p))

qurel(p) =
quabs(p)−qubest

quworst−qubest

where P is the set of reuse possibilities, and
quabs(p) is the sum of all metrics (cf. Tab. 4.1)

Let the user decide between all reuse possibil-
ities p ∈ P whose quality is close to the maxi-
mum quality.

qurel(p) < 0.2

Relative
Information
Loss

ilrel =
delt

unbounds

where dels is the number of deleted target el-
ements, and unbounds is the number of newly
unbound source model element

Eventual loss of information in the target
model due to deletion of elements in relation
to uncovered source model parts due to user
changes

ilrel > 0.8

Reuse
Ratio

rr = reuset

reuset+createt

where reuset is the number of reused target
elements, and createt is the number of created
target elements

Eventual ratio of reused target model elements
(prevented loss of information)

rr < 0.5

of the incremental update process and compare it to the information loss in the
source model (threshold “Relative Information Loss”). The rationale behind
this is that the greater the information loss in the target model is compared
to the loss in the source model, the more likely it is that a previous decision
could have been wrong. Furthermore, we compare the amount of reused target
model elements with the amount of newly created elements (“Reuse Ratio”). If
only few elements are reused, this also indicates a bad reuse decision. If both
conditions are met, we ask the user if he/she would like to revise previous reuse
decisions7.

7At the time of that earlier decisions, we cannot predict whether a certain decision will
negatively affect future reuse possibilities without calculating all reuse possibilities of the
complete incremental update run. Although it is theoretically possible to do so, we did not
implement such an approach due to the huge negative impact on performance: The runtime
and space complexity are exponential in the number of elements in every single rule, and – on
top – exponential in the number of rules to reapply.

94 CHAPTER 4. MODEL SYNCHRONIZATION

4.1.7 Partially Reusable Pattern Matching Algorithm

In the following, we discuss how the algorithm searches for partial matchings and
describe the data structure the algorithm builds during the partially reusable
pattern search.

The algorithm computes all possible partial matchings by creating a rooted
tree structure. Each vertex of the tree represents a partial matching. Each edge
of the tree represents a step of the pattern matching which binds a new node.

The partially reusable pattern matching algorithm starts with the matching
of the context and source produced domain pattern (computed in step 1b).
Thus, the root of the tree is a vertex that represents this matching. Each other
vertex is labeled with a single node binding (a node-object tuple). Each vertex of
the tree therefore represents a (partial) matching of the rule, recursively defined
by the node binding of the vertex and those of its parent. Additionally, a vertex
is labeled with its pattern matching depth, which is the depth in the recursion
of a depth-first pattern matching algorithm, i.e., how long the taken path in the
TGG rule from the start of the search to the current node is.

The resulting tree reflects the pattern-matching search: When traversing the
rule, the algorithm adds a new child vertex for each successful pattern-matching
step (i.e., whenever it finds a new candidate object for a node). Thus, a vertex
has more than one child when there are different possibilities to match a node.

Figure 4.9 shows a part of the matching tree that is the result of a partial
pattern-matching search of rule SystemElementToController (see Fig. 4.10) in
the set of deleted elements from Fig. 4.8. As described, the root of this tree
contains the matching of the context and the source produced domain pattern.
The different bindings of this matching are shown in the form “Node:NodeType
→ Object:ObjectType”, where Node represent a node from the TGG rule and
Object is the matched object.

pm:Package → :Package, :Pack2Pack → :Pack2Pack,
 pu:Package → :Package, se:SystemElement → vc:SystemElement

c:Component → pc:Component

ct:Controller → :Controller

step back to: c:Component

cd:CodeDescriptor→:CodeDescriptor

1

2

1

2

:SE2Comp → :SE2Comp

step back to: c:Component
2

1

c:Component → vc:Component

ct:Controller → ?

cd:CodeDescriptor → ?

1

:SE2Comp → :SE2Comp 2

0

 Repair name constraint

 Repair link to SystemElement

cc:CodeContainer→:CodeContainer 3

step back to: cd:CodeDescriptor 2

 Create new object for node ct:Controller

 Create new object for node cd:CodeDescriptor

cd:CodeContainer → ?
 Create new object for node cc:CodeContainer

matching
depth

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

w=0.5

w=0.5

w=0.5

w=2

w=0.5

weight

Figure 4.9: Matching tree resulting from searching the produced pattern of
SystemElementToController in the set of deleted elements from Fig. 4.8

To be able to find every possible partial matching, the algorithm starts a
search from every binding in the root. Let us assume it first tries to match

4.1. INCREMENTAL UPDATES 95

cc:CodeContainer

MML Corresp. Mechatronic UML

c:Component:SE2Comp

pm:Package pu:Package:Pack2Pack

packagedElement
packagedElement

++

++
++ ++

++

ct:Controllerstereotype
++

name=se.name cd:CodeDescriptor++

opaqueBehavior

++
++

++

++

name=c.name

se.continuousPorts>0
&& se.discretePorts=0

se.isSERelevant

se:SystemElement

++
++

x=y Attribute constraint /
application conditionname:type

Context
node

Domain separator

Unidirectional /bidirec-
tional context edge

Legend

Unidirectional / bidirec-
tional produced edge

Produced
node

name:type++

++
++

Pattern-matching
sequence

Figure 4.10: Sequence of pattern-matching steps for the left subtree of Fig. 4.9
within the TGG rule SystemElementToController

the TGG rule node pu:Package. It finds the not yet bound outgoing edge pack-
agedElement to c:Component (see Fig. 4.10). The algorithm now has two options
on how to match this node: Both the objects position controller and the velocity
controller components match. So a new vertex is created for both (the left one is
marked with (i) in Fig. 4.9), each with depth = 1 (denoted as the circled number
in the upper right corner of the vertices in Fig. 4.9).

The left subtree of Fig. 4.9 contains the “wrong” partial matching possibility
(marked with ✓s in Fig. 4.8). Figure 4.10 shows the matching sequence of this
subtree. Here, the algorithm continues with matching the ct:Controller node
to the controller object and adding a vertex with depth = 2 for it (ii). Then,
as there is no unbound node connected to the ct:Controller node, the search
must be continued at the previous node, decreasing the depth (iii). Here, the
previous node is simply the node of the parent vertex, c:Component. Next, the
cd:CodeDescriptor (iv) and the cc:CodeContainer (v) is matched. Again, as no
unbound node connected to cc:CodeContainer exists, the algorithm steps back in
the pattern matching, i.e., returns to the previous node, cd:CodeDescriptor (vi).
There is also no unbound node connected to cd:CodeDescriptor. At this point,
the previous node is not the node of the parent vertex. Therefore, the previous
node is identified using the depth counter: we walk up the tree and select the
first vertex v with v.depth < currentV ertex.depth, which is c:Component (vii).

The :SE2Comp correspondence node matches (viii), but its link to the posi-
tion controller system element does not, because there is already a binding for
the node se:SystemElement that binds a different object. This must be repaired
if this partial matching should be applied, denoted with the ⊛. Furthermore, the
attribute constraint that ensures the equality of the system element’s and the
component’s name must be enforced by changing the name of the pc:Component
(again marked with a ⊛ at the first vertex (i) of the left subtree).

The right subtree represents the other (more reasonable) partial match-

96 CHAPTER 4. MODEL SYNCHRONIZATION

ing from the previous example, where the ct:Controller, cd:CodeDescriptor, and
ct:CodeContainer nodes could not be matched. Note that there are no real
vertices for these unmatchable nodes in the tree. They are depicted dashed in
Fig. 4.9 only to illustrate the repair operations needed to be performed to create
a valid rule matching.

In fact, there is a third subtree (only adumbrated in the right of Fig. 4.9).
The search starts at every node of the root’s matching (remember it contains
bindings for all context and produced source graph nodes). Thus, starting from
the se:SystemElement node, the algorithm would create this third subtree which
contains the same matching as the second subtree, just in opposite direction.
To avoid presenting the same partial matching to the user twice, the algorithm
checks whether there already is a vertex in the search tree that represents the
very same matching. If this is the case, the algorithm does not add a new vertex,
but instead creates an edge to the already existing vertex.8

Every vertex of the matching tree represents a partial matching and, at the
same time, a possible repair operation. The number of reused elements is equal
to the depth of a vertex in the tree (not the value of the depth counter), not
counting the “step back to” vertices.

Listing 4.1 shows the pseudo-code of the partial pattern matching algorithm.
The algorithm is an iterative depth-first search. It pushes each identified possible
next matching step onto a stack. It starts a search for every binding in the
context and produced source graph matching (lines 3–4). (The constructor “new
Vertex(Vertex parent, Binding binding, int depth)” creates a new child vertex in
parent, labeling it with binding.) In contrast to a regular pattern matching, it
creates a new vertex for every node-binding possibility, as described above (line
10). When the pattern-matching algorithm does not find any new matching
possibility (i.e., it has matched a complete subpattern), it searches the path to
the root for the next vertex to continue the pattern matching (lines 11–15).

Once the tree is computed, we have to decide which of the several partial
matchings (i.e., which vertex of the tree) should be used as a reuse possibil-
ity. We have discussed above that a reasonable heuristic is to select a partial
matching that does not damage reusable correspondences and which reuses most
elements, i.e., will require the least repair operations. In this way, it is likely that
only previously related elements are reused, which is probably the intention of
the user. This is also the rationale behind the high value of the “Correspondence
Modification” metrics (cf. Tab. 4.1).

Using the default metrics, we have the following values for our two reuse
possibilities. For the left subtree in Fig. 4.9, we have to modify an attribute
(0.5) and to modify a correspondence link (2), resulting in an overall weight
of 2.5. For the right subtree, we have to create three new objects, leading to
an overall weight of 3 ⋅ 0.5 = 1.5. Using the default metrics, the right reuse
possibility has a better (lower) weighting. With the default threshold of 0.2 for
Good Quality, the algorithm will automatically select this possibility.

8In this case, the data structure is no tree any more, but becomes a directed acyclic graph
(DAG).

4.1. INCREMENTAL UPDATES 97

Listing 4.1 Building the partial pattern matching tree

1:
pr
oc
ed

ur
e

bu
il

dP
at

te
rn

M
at

ch
in

gT
re

e(
Ve

rt
ex

ro
ot
,D

el
et
ed

El
em

en
ts

d
el
)

2:
St
ac
k
s;

▷
St
ac
k
fo
r
no

n-
re
cu

rs
iv
e
im

pl
em

en
ta
tio

n
of

de
pt
h-
fir
st

se
ar
ch

3:
fo
r
al
lB

in
di
ng

s
b
∈

ro
ot
.b
in
di
ng

s
do

4:
s.p

us
h(
ne

w
Ve

rt
ex
(r

oo
t,

b,
0)
);

▷
St
ar
t
a
se
ar
ch

fr
om

ea
ch

co
nt
ex
t
an

d
pr
od

uc
ed

so
ur
ce

no
de

5:
en

d
fo
r

6:
w
hi
le

s
is

no
t
em

pt
y
do

7:
Ve

rt
ex

cu
rr

en
tV

er
te

x
←

s.
po

p(
);

▷
G
et

po
sit

io
n
fr
om

w
he

re
th
e
se
ar
ch

tr
ee

is
ex
pl
or
ed

ne
xt

8:
Ve

rt
ex

cu
rr

en
tN

od
e
←

cu
rr

en
tV

er
te

x
.b
in
di
ng

.n
od

e;
9:

fo
r
al
lN

od
es

n
∈

cu
rr

en
tN

od
e.
ne

ig
hb

or
∶n

∉
cu

rr
en

tV
er

te
x
.b
ou

nd
N
od

es
do

10
:

fo
r
al
lE

le
m
en
ts

el
em

∈
d
el
∶e

le
m

m
at
ch
es

n
∧

el
em

∉
cu

rr
en

tV
er

te
x
.b
ou

nd
El
em

en
ts
do

11
:

s.
pu

sh
(n
ew

Ve
rt
ex
(c

u
rr

en
tV

er
te

x
,(

n
,e

le
m
),

cu
rr

en
tV

er
te

x
.d
ep

th
+

1)
);

▷
A
dd

ne
w

le
af

to
th
e
se
ar
ch

tr
ee

fo
r
ev
er
y
po

ss
ib
le

bi
nd

in
g
of

ne
ig
hb

or
in
g
no

de
s

12
:

en
d
fo
r

13
:

en
d
fo
r

14
:

if
no

ne
xt

N
od

e
n
or

no
ne

xt
El
em

en
te

le
m

w
as

fo
un

d
th
en

▷
N
o
fu
rt
he

rm
at
ch
in
g
po

ss
ib
le

fr
om

cu
rr
en
tv

er
te
x?

15
:

Ve
rt
ex

v
←

cu
rr

en
tV

er
te

x
;

16
:

w
hi
le

v
.d
ep

th
≥

cu
rr

en
tV

er
te

x
.d
ep

th
do

17
:

v
←

v
.p
ar
en
t;

▷
St
ep

ba
ck

in
th
e
pa

tt
er
n
m
at
ch
in
g
by

st
ep

pi
ng

ba
ck

in
th
e
“r
ec
ur
sio

n”
18
:

en
d
w
hi
le

19
:

s.
pu

sh
(n
ew

Ve
rt
ex
(c

u
rr

en
tV

er
te

x
,(

n
,e

le
m
),

v
.d
ep

th
−

1)
);

20
:

en
d
if

21
:

en
d
w
hi
le

22
:
en

d
pr
oc
ed

ur
e

98 CHAPTER 4. MODEL SYNCHRONIZATION

4.1.8 Formal Properties of the Approach

As described in Sect. 2.4.2.2, there are two main formal properties of a TGG
transformation algorithm: correctness (i.e., all produced model triples are words
of the TGG) and completeness (i.e., for every valid source model, the algorithm
will produce a valid model triple). It is important – especially when applying our
improved model transformations techniques in a safety-critical context – that
these formal properties are fulfilled. Otherwise, unexpected and/or defective
transformation results could impair the safety of the system, eventually putting
lives at risk if such errors remain undetected until the end of the development.

We argue that our improved incremental update algorithm fulfills these prop-
erties. The algorithm computes different possible alternatives to propagate a
changes. One of these is then selected, either by the algorithm itself or by the
user. At first glance, this may look like a contradiction to correctness, as there
may be different results possible, even for TGGs that have functional behavior.

However, the core argument is that different ways in which we revoke and
apply rules mainly affect the parts of the models that are not subject to the
transformation, i.e., those parts that the TGG rules “do not speak of”. Thus, a
functional TGG still has functional behavior if we only consider the parts that
are subject to the transformation. With the same argument, completeness is
also not affected by our approach. We can employ a look-ahead for cases where
a certain reuse possibility will negatively affect the applicability of certain rules.

Our algorithm only produces triples of models where the elements that are
subject to the transformation form a valid triple model according to the TGG.
That is because (a) when a rule is applied, reused objects and links will be
modified so that they fit the rules, and (b) at the end of a incremental update
run, unused objects that are marked for deletion will be actually destroyed.
Therefore, after a successful run, every rule holds and no remainders of revoked
rules exist. Thus, arguing informally, the fundamental TGG transformation
properties correctness and completeness are unaffected by our new algorithm.

4.1.9 Summary

In this section, we presented a novel incremental update algorithm
• that is able to deal with cases of complex changes,
• whose user decisions are not based on atomic elements but on larger se-

mantic units, and
• that is customizable in its amount of automation.

It generalizes the idea of structurally repairing rule applications such that com-
plete structures can be repaired, independent of the kind of change. The al-
gorithm tries to apply rules in way that comes close to the state of the target
model, thereby retaining as much information of the target model as possible.

The algorithm may be run in full-automation mode, where it automatically
chooses the “best” way to synchronize changes based on certain metrics. These
metrics are a representation of expert knowledge, as they formalize reuse guide-
lines that have proven successful previously. It may also run in user-interaction
mode, where it asks the user for alternatives whose metrics values are within a
given threshold.

4.2. ABSTRACTION AND CONCRETION RELATIONS 99

4.2 Abstraction and Concretion Relations
When translating between two models, the modeling languages of these models
typically differ in their levels of abstraction and their purpose and viewpoint.
As a result, not all changes to a model will affect the other model; the two
models may still consistent in terms of the model transformation.

For instance, consider the transformation from the discipline-spanning sys-
tem model to a discipline-specific model. The discipline-specific model con-
tains more and detailed information from the discipline, whereas the discipline-
spanning system model only deals with interdisciplinary information. That
means that the discipline-spanning system model has a higher level of abstrac-
tion than the discipline-specific model. Such transformations are also called
vertical transformations9.

Thus, there exist several consistent concrete models for one abstract model.
In other words, a consistency mapping from the discipline-spanning system
model to the discipline-specific model is in fact a 1-to-n mapping.

As a consequence, if an engineer performs a change to their discipline-
specific model, such a change may either be a discipline-specific refinement or a
discipline-spanning relevant change. A discipline-specific refinement is a change
to the discipline-specific model such that the consistency relation still holds.
Thus, it must not be propagated to the discipline-spanning system model. In
fact, most of the changes that occur during the development are discipline-
specific refinements, for instance, the implementation of a software component
or the specification of a controller. In contrast, a discipline-spanning relevant
change places the discipline-specific model “outside” of the consistency relation.
Therefore, such a change also affects the discipline-spanning system model (and
possibly other disciplines’ models) and must be propagated to the system model.

In the previous section, we used the notion of information that is not subject
to the transformation. The distinction between refinements and relevant changes
generalizes this concept. Changes that only affect information that is not subject
to the transformation are refinements.

An illustration of such a consistency relation and how it is applied in a exem-
plary process is shown in Fig. 4.11. You see version 1.0 of the discipline-spanning
system model in the upper left of that figure. From this version, we generate
a first version 1.0 of the discipline-specific model (bottom left). Then, an en-
gineer performs a refinement on that discipline-specific model, creating version
1.1. For instance, this change affects a model part that has no counterpart in
the system model; hence, it is not subject to the consistency relation. Conse-
quently, this version 1.1 of the discipline-specific model is still element of the
consistency relation with version 1.0 of the discipline-spanning system model.
That means no change propagation or consistency restoration has to be per-
formed. Performing a relevant change, however, causes the consistency relation
not to hold any more. Thus, the change to version 1.2 of the discipline-specific
model must be propagated to the discipline-spanning system model in order to

9Horizontal transformations map between models of the same abstraction level, vertical
transformations map between models of different abstraction levels [MG06].

100 CHAPTER 4. MODEL SYNCHRONIZATION

restore the consistency, forming version 1.1 of the system model.

v1.0

v1.0

v1.1 v1.2

v1.1

Discipline-Spanning
System Model

Discipline-Specific
model

v1.0

v1.0

Vertical Consistency
Relation (1-to-n)

Manual Change

Relevant
ChangeRefinement

Interdiscipliniary
Relevant Model Part

Discipline-Specific
Model Part

Legend

Figure 4.11: Refinements and relevant changes in a discipline-specific model and
its effects on the discipline-spanning system model

The problem, however, is that when using a 1-to-n mapping in a model trans-
formation, the transformation becomes non-functional, i.e., there exist several
consistent target models for a single source model. Control algorithms of ex-
isting model transformation approaches will either arbitrarily select one of the
valid (i.e., consistent according to the consistency relation) possibilities (e.g,
Giese and Hildebrandt [GH09]), or ask the user for every single decision
(e.g., Körtgen [Kör09]). Obviously, the first is not feasible, especially when
developing safety-critical systems where the transformation results must be de-
terministic and reproducible. The latter would massively increase manual tasks
when transforming and synchronizing models, potentially outweighing the in-
creased automation by using model transformation techniques.

More importantly, creating such a 1-to-n mapping is time-consuming and
error-prone, as all possible refinements have to be modeled directly in the con-
sistency relation manually. As most changes constitute refinements, the consis-
tency relation will quickly get verbose. As existing transformation languages do
not provide first-class support for modeling such non-functional relations, such
a large 1-to-n consistency relation is also difficult to maintain.

To sum up the problem, defining such a mapping between two model of
different abstraction levels requires a non-functional consistency relation. Ex-
isting model transformation approaches (e.g., [OMG08, GW09, HLR06]) do not
provide sufficient support for that, because they mostly work for functional rela-
tions only. Even if the transformation language allows specifying non-functional
mappings, it is a) difficult to develop and maintain, and b) not well supported
by the synchronization algorithm, causing non-determinism or increased user
interaction.

As a solution, we propose to model only a “normal”, functional 1-to-1 trans-
formation mapping first. This transformation serves as the default transfor-
mation used to initially generate the (more concrete) target model. Next, we
describe what changes to a discipline-specific model are considered refinements,
i.e., changes that are not relevant for the discipline-specific system model. Fi-
nally, we combine the functional transformation mapping with the refinement
definitions to automatically derive the 1-to-n consistency relation [RS12]. Fig-
ure 4.12 illustrates this concept.

4.2. ABSTRACTION AND CONCRETION RELATIONS 101

Metamodel
Language A

Metamodel
Language B

Refinements

typed by

Default
Transformation

Consistency
Relation

typed by typed by

combine

typed by typed by

Figure 4.12: Concept overview

This follows the principle of separation of concerns: The initial, functional
transformation describes the general concept of the mapping. All refinement
operations are specified independently from this initial transformation. They
are later integrated automatically into the consistency relation.

A particular advantage is that the discipline’s engineers can define refinement
rules using just constructs from their respective modeling language – they do
not need to know details of the other modeling language in the transformation.
They neither have to explicitly deal with graph transformations nor have to
know details of the (initial) transformation. However, transformation experts
can still access the underlying graph transformations, e.g., to fine-tune a certain
mapping.

Furthermore, we can regard a refinement rule can as a special type of refac-
toring operation. We can use the rules to assist the discipline’s engineers in
finding alternative implementations. To do so, we simply have to check whether
a refinement rule matches at a given model element. Applying this refinement
rule will then refine the model.

When developing safety-critical systems, the semantic correctness of a trans-
formation (i.e., that the semantics of the source model will always be equivalent
to the semantics of the target model) is important. However, “showing [...]
full semantics preservation of a set of model transformation rules [...] is a very
difficult problem” [HKR+10], even if the semantics of both models are defined
with similar means [GL12]. The problem significantly enlarges with large rule-
sets, like a complete consistency relation R. Thus, our approach of separation
may help proving semantics preservation. Transformation engineers only have
to prove the correctness of the initial transformation I. Additionally, all refine-
ments rules for the target model have to be true refinements, i.e., they will never
affect the semantics of the source model. We think that this is easier to prove
than proving semantics preservation for R, because the refinement proof can be
(at least partially) automated. However, it remains to be investigated further
whether this is really the case.

In the remainder of the section, we describe the proposed solution in detail.
First, we formalize the problem in Sect. 4.2.2. The definition of the initial
transformation function is described in Sect. 4.2.3. In Sect. 4.2.4, we present a

102 CHAPTER 4. MODEL SYNCHRONIZATION

technique for describing refinement operations. Based upon these, the overall
consistency relation is derived, as shown in Sect. 4.2.5. Finally, we generalize
the concept in Sect. 4.2.7 so that is applicable also for n-to-n relations.

4.2.1 Related Work

Most model transformation approaches only allow functional transformation
specifications, either because a non-functional transformation will produce non-
deterministic outputs, or because a non-functional specification will not work
at all. The “location determination” and “rule selection” features of the
Czarnecki-Helsen classification (cf. Sect. 2.2.2) describes this. Some ap-
proaches, however, also allow non-functional transformations, for instance, by
letting the user decide when more than one rule is applicable.

4.2.1.1 Goldschmidt and Uhl (2008/2011)

As already described in Sect. 4.1.1, Goldschmidt and Uhl [GU08, GU11] use
so-called retainment policies to deal with manual changes in the target model.
Retainment policies specify “how a transformation rule should handle manual
changes in target models” [GU08]. Policies specify possible retainment actions
for types of changes, like additions or deletions of elements. Possible retainment
actions are to overwrite manual changes, only update when there was no manual
change, to always retain the manual change, or to never update the target. The
policy’s scope defines in which rules this policy should be applied.

The retainment rules of Goldschmidt and Uhl operate on the level of
transformation rules. Thus, defining retainment rules requires knowledge of the
ruleset. If, for instance, changing an attribute of a certain type of object is
a valid refinement, we have to specify retainment rules for all transformation
rules that can will affect this attribute. Furthermore, they can only define
retainment policies for single syntactic elements. It is not possible to define
more complex policies that are valid only for a certain graph structure or that
contain further conditions. However, we also use the idea of separating the
original transformation from the retainment rules (“refinement rules” in our
case).

4.2.1.2 Körtgen (2009)

Körtgen [Kör09] developed a synchronization tool for the case of a simulta-
neous evolution of both models. Although it does not incorporate a concept to
define refinement operations, it also allows having several conflicting rules, i.e.,
rules that are all applicable at the same position. All these rules are contained
in the same ruleset, i.e., there is no separation of concerns (between the gen-
eral transformation concept and possible refinements). In a step-by-step, highly
interactive process, the user may decide which alternatives should be applied.
Our aim is to avoid unnecessary user interaction where that is possible.

4.2. ABSTRACTION AND CONCRETION RELATIONS 103

4.2.1.3 Klar et al. (2010), Lauder et al. (2012)

Klar et al. [KLKS10] and Lauder et al. [LAVS12b] and their tool
eMoflon10 support non-functional TGGs. Similar to Körtgen, there is no
separation of concerns. A look-ahead of 1 is used to resolve local rule choices
using a dangling edge check (i.e., they search for edges that can no longer be
translated if a wrong rule is chosen). As eMoflon only supports a look-ahead
of 1, the class of TGGs is limited to TGGs where DEC 1 is sufficient to re-
solve conflicts. If more than one rule is applicable eMoflon asks a component
(which can be the user, a configuration file, or an algorithm) to decide [HLG+13].
However, they do not give further information on possible algorithms for this.

4.2.2 Problem Formalization

In a conceptual view, we have an abstract language A and a concrete language
B. In our example scenario, A is the system model’s metamodel, and B is the
discipline-specific metamodel.11

To transform a word a ∈ A to a word b ∈ B, we use an initial transformation
function I ⊆ (A → B), as shown in Fig. 4.13. However, as B is more concrete
than A, a consistency relation R contains more elements than I and is not a
function: I ⊆ R ⊆ (A ×B).

b

a

b‘ b‘‘

a‘
Abstract Model
Instance (Word)

Concrete Model
Instance (Word)

a

b

Vertical Consistency
Relation R (1-to-n)

op Change Operation
op2op1

I R R Initial Transformation
Function I (1-to-1)

R

Legend

Figure 4.13: Formalization of vertical model transformations

Paige et al. [PKP05] provide a first, simple formalization of a correct
refinement: A model A is refined by a model B iff A and B are well-formed
and internally consistent, and A and B “obey any cross-model consistency rules
relevant to their context” [PKP05]. In our formalization, these “cross-model
consistency rules relevant to their context” take the form of the final 1-to-n
consistency relation.

Given a change operation op on the model b, i.e., op ∈ (B → B). Then, op is
a consistency-preserving refinement iff ∀a ∈ A, b ∈ B ∶ (a, b) ∈ R⇒ (a, op(b)) ∈ R,
i.e., both the concrete model before and after the operation map to the same
abstract model [RS12]. op1 in Fig. 4.13 is such a refinement.

10eMoflon Website: http://www.emoflon.org
11Note that we use “language” and “metamodel” (as well as “word” and “model”) inter-

changeably here. In general, a language is considered to be a set of derivation rules that define
allowed words of the language in a constructive way, i.e., by consecutively applying those rules
to a start word. In contrast, a metamodel defines constraints that must hold on a word if it is
an element of the language. For a more formal comparison of both concepts, see Amelunxen
and Schürr [AS08].

http://www.emoflon.org

104 CHAPTER 4. MODEL SYNCHRONIZATION

In contrast, op2 is a discipline-spanning relevant change. Model instance
a must be changed (and becomes a′) to make the consistency relation R hold
again.

A refinement op can be a single, exactly defined manual change operation.
However, the idea is to generalize the description of refinements: In this way, it
becomes a universal change definition that is applicable to more than one model
instance, similar to a refactoring operation.

4.2.3 Definition of the Initial Transformation Function I

The first step of defining a 1-to-n relation is to define a functional, initial trans-
formation. This is a traditional transformation definition. It is required that
this transformation is indeed functional.

As example, let as consider a synchronization of state chart behavioral mod-
els, as introduced in Sect. 3.2.3 (cf. Fig. 3.7). When transforming a CONSENS
statechart to a Stateflow chart, the CONSENS states are mapped directly
to Stateflow states, and logical relations in combination with its events are
mapped to transitions. Figure 4.14 shows the rule for the state mapping. It
further ensures that the names of the states are equal in both models.

c_s:State :State2State sf_s:State

:StateChart :StateChart2StateFlow :StateFlow

++

++ ++ ++

++

++ ++

:ownedStates :states

CONSENS Correspondence MATLAB/Stateflow

name = sf_s.name name = c_s.name

Figure 4.14: TGG Rule CONSENS State to MATLAB/Stateflow State

We defined a set of TGG rules to transform between CONSENS and MAT-
LAB/Stateflow. For instance, rule Transition to Transition (Fig. 4.15) de-
scribes how transitions between states in CONSENS map to transitions in
Stateflow. The maximum duration of a transition is represented by an an-
notation in Stateflow.

:Transition :Transition2Transition :Transition

from:State :State2State :State

++

++ ++ ++

++

++ ++

:outgoingTransition :outgoing

to:State :State2State :State

++ ++:incomingTransition :incoming
dur:Duration

++ an:Annotation
++

value =

dur.maxtime

property =

„maxduration“

++ :outgoing

CONSENS Correspondence MATLAB/Stateflow

maxtime = an.value

++ ++

Figure 4.15: TGG Rule Transition to Transition

4.2. ABSTRACTION AND CONCRETION RELATIONS 105

4.2.4 Definition of Refinement Operations

Let us consider the example process from Fig. 3.2 again. Figure 4.16 shows
how the actual models evolve during this process. We use this process to give
an example of a refinement and explain how to define the respective refinement
rules.

After the discipline-specific models have been generated from the system
model (step 1), the control engineers implement the controllers using MAT-
LAB/Simulink and Stateflow (step 2). Especially, they have to define how
the RailCab switches between controller configuration when it enters or leaves
a convoy. To do so, they modify the Stateflow model by incorporating ad-
ditional states that describe the fading behavior when switching between the
configurations Figure 4.16 shows this modification in the first and second row
of the right column “MATLAB/Stateflow” (step 2).

Such a change is considered a discipline-specific refinement, as it does not af-
fect other disciplines. Therefore, it must be propagated neither to the discipline-
spanning system model nor to the other disciplines. When using traditional
model synchronization techniques, these additional states would be neverthe-
less propagated back to the system model: When synchronizing the models, the
TGG Rule State to State (see Fig. 4.14) is applicable for the new intermediate
states. The TGG rule Transition to Transition is also applicable for the new
transitions. Thus, these new states and transitions in the target model, which
should be discipline-specific refinements, will cause a creation of corresponding
states and transitions in the source model. Consequently, we have to find a way
to tag certain changes as refinements, so that they are automatically ignored by
the synchronization.

Dealing with hierarchical refinements (like adding sub-states or subcompo-
nents) can be achieved by simply ignoring everything “below” an existing ele-
ment. Rieke [Rie08] and Gausemeier et al. [GSG+09] show how this can be
achieved using relevance annotations. Relevance annotations mark elements as
subject to a transformation; we have already used this notion in Sect. 4.1. How-
ever, for complex, non-hierarchical refinements as described above, this is not
sufficient: The engine cannot simply ignore this change, as it still corresponds
to constructs in the system model and, therefore, may be affected by future
changes. Thus, we need other means to specify refinements.

We propose that discipline experts define a set of rules that describe which
kinds of changes to a discipline-specific model are regarded as discipline-specific
refinements. We call these refinement rules. A refinement rule is a model
transformation rule that formally describes a particular type of refinement. Its
source and target model is the same model, i.e., they perform an in-place trans-
formation of an existing (target) model according to the Czarnecki-Helsen
classification (cf. Sect. 2.2.2). We further propose to use a graph-based trans-
formation approach, because we would like to combine it with our TGG-based
synchronization, which is also graph-based.

Such a rule defines a refinement by a precondition (left-hand side) and a
replacement (right-hand side). The precondition describes a situation that can
be refined, and the replacement defines the actual refinement that replaces the

106 CHAPTER 4. MODEL SYNCHRONIZATION

v
1
.0

v
1

.0
S

E

v
1
.1

c
o

n
v
o

y
F

o
llo

w
e

r
n

o
C

o
n

v
o

y
c
o

n
v
o

y
L

e
a

d
e

r
0

0
1

0

n
a

m
e

s
ta

te
in

itia
l

tra
n

s
itio

n

tra
n

s
itio

n

w
ith

 p
rio

rity
1

v
1

.1
S

E

c
o

n
v
o

y
F

o
llo

w
e

r
n

o
C

o
n

v
o

y
c
o

n
v
o

y
L

e
a

d
e

r
0

w
a

itF
o

r

R
e

s
p

o
n

s
e

0

0

1

1

re
c
e

iv
e

d
C

o
n

v
o

y

P
ro

p
o

s
a

l
1

0

0

c
o

n
v
o

y
F

o
llo

w
e

r
n

o
C

o
n

v
o

y

/b
re

a
k
C

o
n

v
o

y
b

re
a

k
C

o
n

v
o

y
/

c
re

a
te

C
o

n
v
o

y
/

/c
re

a
te

C
o

n
v
o

y

n
o

C
o

n
v
o

y
c
o

n
v
o

y
L

e
a

d
e

r

s
ta

te
e

v
e

n
t

lo
g

ic
a

l

re
la

tio
n

s
h

ip

2
0

0
 m

s
2

0
0

 m
s

5
0

0
 m

s
5

0
0

 m
s

tim
e

 a
ttrib

u
te

s

c
o

n
v
o

y
F

o
llo

w
e

r
n

o
C

o
n

v
o

y

/b
re

a
k
C

o
n

v
o

y
b

re
a

k
C

o
n

v
o

y
/

c
re

a
te

C
o

n
v
o

y
/

/c
re

a
te

C
o

n
v
o

y

n
o

C
o

n
v
o

y
c
o

n
v
o

y
L

e
a

d
e

r

2
0

0
 m

s
2

0
0

 m
s

5
0

0
 m

s

w
a

itF
o

rR
e

s
p

o
n

s
e

a
c
c
e

p
tC

o
n

v
o

y
/

re
c
e

iv
e

d
C

o
n

v
o

y

P
ro

p
o

s
a

l
/a

c
c
e

p
tC

o
n

v
o

y 5
0

0
 m

s

/re
je

c
tC

o
n

v
o

y

re
je

c
tC

o
n

v
o

y
/

M
e

c
h

a
tro

n
ic

U
M

L
C

O
N

S
E

N
S

M
A

T
L

A
B

/S
ta

te
flo

w

4

v
1

.0
C

E

c
o

n
v
o

y
F

o
llo

w
e

r
n

o
C

o
n

v
o

y
c
o

n
v
o

y
L

e
a

d
e

r
s
e

n
d

(b
re

a
k
C

o
n

v
o

y
)

c
re

a
te

C
o

n
v
o

y

b
re

a
k
C

o
n

v
o

y

1
2

n
a

m
e

s
ta

te
e

v
e

n
t

tra
n

s
itio

n
 w

ith

e
x
e

c
u

tio
n

 o
rd

e
r

in
itia

l

tra
n

s
la

tio
n

1

v
1
.1

C
E

c
o

n
v
o

y
F

o
llo

w
e

r
n

o
C

o
n

v
o

y
c
o

n
v
o

y
L

e
a

d
e

r

fa
d

in
g

_
N

2
F

fa
d

in
g

_
N

2
L

fa
d

in
g

_
F

2
N

fa
d

in
g

_
L

2
N

s
e

n
d

(c
re

a
te

C
o

n
v
o

y
)

s
e

n
d

(b
re

a
k

C
o

n
v
o

y
)

c
re

a
te

C
o

n
v
o

y

b
re

a
k
C

o
n

v
o

y

1
2

v
1

.2
C

E

c
o

n
v
o

y
F

o
llo

w
e

r

n
o

C
o

n
v
o

y

c
o

n
v
o

y
L

e
a

d
e

r

fa
d

in
g

_
N

2
L

fa
d

in
g

_
L

2
N

fa
d

in
g

_
F

2
N

fa
d

in
g

_
N

2
F

re
c
e

iv
e

d
C

o
n

v
o

y
P

ro
p

o
s

a
l

w
a

itF
o

rR
e

s
p

o
n

s
e

s
e

n
d

(re
je

c
t

C
o

n
v
o

y
)

c
re

a
te

C
o

n
v
o

y

s
e

n
d

(b
re

a
k

C
o

n
v
o

y
)

b
re

a
k
C

o
n

v
o

y

s
e

n
d

(c
re

a
te

C
o

n
v
o

y
)

re
je

c
tC

o
n

v
o

y

1

1
1

2
2

2
a

c
c
e

p
t

C
o

n
v
o

y

s
e

n
d

(
a

c
c
e

p
tC

o
n

v
o

y
)

2

c
o

n
v
o

y
U

s
e

fu
l()/

c
re

a
te

C
o

n
v
o

y

!c
o

n
v
o

y
U

s
e

fu
l()/

b
re

a
k
C

o
n

v
o

y

c
re

a
te

C
o

n
v
o

y
/

b
re

a
k
C

o
n

v
o

y
/

c
o

n
v
o

y
U

s
e

fu
l()/

c
re

a
te

C
o

n
v
o

y

!c
o

n
v
o

y
U

s
e

fu
l()/

b
re

a
k
C

o
n

v
o

y c
re

a
te

C
o

n
v
o

y
/

b
re

a
k
C

o
n

v
o

y
/

re
je

c
tC

o
n

v
o

y
/

a
c
c
e

p
tC

o
n

v
o

y
/

!s
a

fe
()/

re
je

c
tC

o
n

v
o

y

s
a

fe
()/

a
c
c
e

p
tC

o
n

v
o

y

L
e
g
e
n
d

N
o

 o
r A

u
to

m
a

tic
 C

h
a

n
g

e

M
o

d
e

l T
ra

n
s
fo

rm
a

tio
n

/
U

p
d

a
te

M
a

n
u

a
l C

h
a

n
g

e

5 1
1

6

s
e

n
d

(c
re

a
te

C
o

n
v
o

y
)

Figure 4.16: Evolution of the different models during the development process

4.2. ABSTRACTION AND CONCRETION RELATIONS 107

precondition. From a viewpoint of the system model, the refinement must not
change the semantics. This means that when we apply the refinement rule, the
discipline-specific model still corresponds to the (unchanged) system model.

Fig. 4.17 shows a refinement rule using the concrete syntax of the modeling
language Stateflow. The rule defines that adding an intermediate state is
a discipline-specific refinement. It describes that a transition may be replaced
by a combination of a transition, a state and another transition. In addition,
a constraint ensures that the new state and transitions must not violate the
maximum duration of the original transition. That means that a change is
only a refinement according to this rule if the overall duration of the transition
from state1 to state2 does not increase. Furthermore, no other incoming or
outgoing transitions are allowed for the intermediate state: Otherwise, it would
be possible that the new statechart allows more behavior than before – which
would obviously be a relevant change.

state1 state2
@maxduration:d1

--

d1 >= d2

++

State

Transition

Constraint

--
++

d1 >= d2

++

state1

intermediateState

after(d2)

state2

++ Addition

Deletion

forbidden

X
X

X

Precondition:

Replacement:
Legend

Figure 4.17: Refinement rule (concrete syntax) for adding intermediate states
in the Stateflow control engineering model

This refinement rule covers the addition of the fading states (described
above). Using this rule, we can identify that such an addition is a refinement.
A model synchronization algorithm can use the set of refinement rules to auto-
matically detect whether a change is a refinement.

Figure 4.18 shows the refinement rule of Fig. 4.17 in short-hand graph trans-
formation rule notation. When choosing the language to define refinements, we
sought to cover as many refinements as possible on the one hand and, on the
other hand, not making the language too complex to make analyses impractical.
We identified several refinements from different disciplines (e.g., fault-tolerance
patterns like triple modular redundancy, functional partitioning of components,
load balancing) which can be described in terms of such graph transformation
rules. However, it remains to be investigated further whether we may need a
more sophisticated language for other refinements that we have not identified,
yet.

Our goal was that these refinement rules should be integrated into the con-
sistency relation R, so that the model transformation engine itself can deal with

108 CHAPTER 4. MODEL SYNCHRONIZATION

tr:Transition:State

++

--:outgoing
:State

:incoming

:State

++

:Transition

:incoming

:outgoing

++ ++

outgoing->size() = 1 and

incoming->size() = 1

++

:Transition
++

:outgoing

:incoming

++

:After

++

tr.maxduration >= time

:exitEvent

d1 >= d2

Legend

Constraintname:type Object
(unmodified)

New object

Deleted object

New link

Deleted linkname:type--
name:type++

Figure 4.18: Refinement rule from Fig. 4.17 in abstract syntax

refinements without fundamental changes to the synchronization algorithm. In
this way, formal properties of TGGs like correctness or completeness are still
valid and we do not have to heavily modify the existing synchronization tool.
We therefore add the information from the refinement rules to the TGG ruleset
that defined the initial transformation I, creating an altered TGG ruleset for
the consistency relation R.

One particular advantage of this approach is the separation of concerns: We
separate the refinement definition from the transformation specification. When
defining a refinement rule, the engineers do not have to think about which parts
of the mapping (i.e., TGG rules) might be affected. Instead, they focus on
defining the actual refinement rules, which are later automatically integrated in
the model synchronization. This also helps maintaining the set of refinements,
as later changes to a refinement rule are consistently and automatically applied
to all affected TGG rules – the transformation engineers do not have to deal
with consistently editing all affected rules manually.

4.2.5 Derivation of the Consistency Relation R

The basic idea is to check where refinement rules match in the original TGG
rules in the target domain. Whenever we find a refinement rule’s precondition
in a TGG rule, we create a copy of that TGG rule and apply the refinement
rule in this TGG rule copy. In this way, we derive new TGG rules which map
the same source pattern to the refined target pattern.

Consider the refinement rule from Fig. 4.17/4.18. This refinement rule’s
precondition (left-hand side) matches in the target domain of the TGG rule
Transition to Transition (Fig. 4.15). We now copy that TGG rule and apply
the refinement rule onto its target domain. That means that we delete every
TGG node and edge that match deleted elements in the refinement rule, and
create new nodes and edges for everything that is created by the refinement rule.

4.2. ABSTRACTION AND CONCRETION RELATIONS 109

Furthermore, we create constraints in the new TGG rule for constraints in the
refinement rules. Fig. 4.19 shows the resulting refined TGG rule. This new TGG
rule now matches whenever a refinement according to the refinement rule took
place in the target model. This rule matches at the respective refined model
elements; thus, the models are consistent in terms of the new synchronization
ruleset.

:Transition :Transition2Transition :Transition

from:State :State2State :State

++

++ ++ ++

++

++ ++

:outgoingTransition :outgoing

to:State :State2State :State

:incoming

:State

++

++

:incoming
Transition

dur:Duration
++

++

out:Transition
++

:incoming

:outgoing

++

++

CONSENS Correspondence MATLAB/Stateflow

dur.maxtime >=

out.after outgoing->size() = 1 and

incoming->size() =1

:duration++

Figure 4.19: TGG Rule Transition to Transition (refined, with intermediate state)

This new rule becomes part of the overall consistency relation R. Next, we
describe how the improved synchronization applies this relation R and deals
with subsequent incremental updates that may affect refinements.

4.2.6 Model Synchronization with a 1-to-n Consistency
Relation

Let us have a look at how the improved model synchronization algorithm deals
with refinements that engineers introduced. First, we discuss how the synchro-
nization detects that a refinement operation was applied in the target model.
Next, we show how this helps avoiding information loss when the synchroniza-
tion has to update refined target model parts due to source model changes.

4.2.6.1 Detecting the Refinement During Backward Update

Control engineers added fading states to the Stateflow model (step 2 in
Fig. 4.16). As the model has changed, we run a (backward) synchronization
to propagate the change to the system model, and from there to all other af-
fected disciplines.

As described in Sect. 2.4.3.1, traditional model synchronization algorithms
work in two steps: First, for everything that has been deleted (or inconsis-
tently changed) in one model, the corresponding elements in the other model
are also deleted. Second, for everything that has been added (or inconsistently
changed), new corresponding elements are created. In this case, the control en-
gineer deleted the transition from the noConvoy to the convoyLeader state and
added a new fading state fading_N2L and two transitions. Thus, the synchro-
nization would also delete the corresponding transition from the system model
and then add new elements, which is what we want to avoid.

110 CHAPTER 4. MODEL SYNCHRONIZATION

In the previous section, we proposed an novel model synchronization ap-
proach. Its main idea is not to delete such corresponding parts right away, but
to mark them for deletion first, so they can be reused later, i.e., in subsequent
rule applications. When creating elements during rule application, our synchro-
nization performs a search in the set of elements marked for deletion and tries
to reuse fitting elements; if they fit, they are not deleted. Only if no fitting
elements that are marked for deletion can be found, new elements are created.
Finally, elements marked for deletion that could not be reused are actually de-
stroyed. For details of the improved synchronization algorithm, please refer to
Sect. 4.1.

We reuse this novel synchronization here to deal with the refinements. In this
example, this improved algorithm works as follows. First, as the transition from
the noConvoy to the convoyLeader state has been deleted from the Stateflow
model, the corresponding transition in the system model is marked for deletion.
Next, we try to apply new rules. Here, the new, refined TGG rule (Fig. 4.19) is
applicable: It matches the transition in the system model that has been marked
for deletion, and it also matches the new fading state and the new transitions
in the Stateflow model. We can now apply this rule: In the CONSENS
model, we reuse the transition marked for deletion, and we bind the elements
of the refinement in the Stateflow model. As result, we have applied the
refined TGG rule in backward direction without performing any changes to the
CONSENS model, just by reusing elements marked for deletion.

The models are now consistent in terms of the TGG. This is what we wanted
to achieve: We have derived a new TGG rule that covers the refinement case
described by the refinement rule. Furthermore, when later changes make the
refinement invalid, e.g., when the time constraint is violated, the model trans-
formation engine can detect this by checking the validity of the application of
the refined TGG rule.

Note that we have to add precedences to the TGG rules. When propagating
changes to the abstract model, we want to use these refined rules primarily.
Applying the original, non-refined TGG rules would propagate the refinement
to the abstract model, which we wanted to avoid.

The consistency relation R is non-functional, because it also contains rules
for all refinements. Each of these additional rules constitutes a rule application
conflict with its ancestor rule, because they have the same produced source part.
When propagating to the concrete model (forward transformation), we have to
exclude the new rules we need a functional, deterministic transformation. Thus,
we only use the initial rule I set.12

4.2.6.2 Propagating Changes to Refined Model Parts

Let us have a look at the next steps in the development process. As explained
before, the software engineers work on their model, too. They change the be-
havior of the software by adding the possibility to reject a convoy proposal (step
4 in Fig. 4.16). This is a discipline-spanning relevant change, as it also affects,

12We could also let the user decide in such rule conflicts, and use backtracking/look-ahead
to show the potential outcome (see Sect. 6.1.4 for details).

4.2. ABSTRACTION AND CONCRETION RELATIONS 111

for instance, the controller implementation in the control engineering. Thus, it
is propagated back to the system model (step 5): Equivalently to the software
model, the state diagram is extended by two states waitForResponse and re-
ceivedConvoyProposal and new transitions and messages (see v1.1 of the system
model in Fig. 4.16). Instead of switching to the state convoyFollower directly
after a createConvoy message is send, the follower RailCab switches to the new
state waitForResponse. There, it waits for the leader RailCab to accept or to
reject the convoy proposal. The leader RailCab receives the createConvoy mes-
sage and changes to the new state receivedConvoyProposal, in which it decides
whether it accepts or rejects the proposal. If the convoy proposal is accepted,
the leader RailCab changes its state to convoyLeader and the follower RailCab
changes to the state convoyFollower. If the proposal is rejected, both RailCabs
return to the state noConvoy.

These changes then must be propagated to other affected disciplines. Thus,
the control engineering model also has to be updated to reflect the changed
communication behavior (step 6). In the example, the createConvoy/ transition
was changed in the system model during the incremental update in step 5. To
transform this change, a naïve synchronization would first revoke the respec-
tive rule application by deleting the corresponding elements in the Stateflow
model, and then try to retransform the affected elements. However, this create-
Convoy/ transition in the system model corresponds to a refinement introduced
in v1.1CE (the combination of the transition createConvoy, the state fading_N2L
and the transition to the convoyLeader state in the control engineering model,
which are bound by the refined TGG rule). Revoking the rule would destroy
the complete refinement (see Fig. 4.20 b)).

As such an information loss must be prevented, we again use our improved
synchronization. First, we revoke rules by marking for deletion. For instance,
the fading_N2L state and its incoming and outgoing transition are marked for
deletion due to the revocation of the refined TGG rule Transition to Transition
(Fig. 4.19).

Next, we transform the new elements in the system model to the control
engineering model by applying new rules, and we try to reuse elements that
have been marked for deletion by the rule revocations. In general, there may
be several possibilities to reuse elements previously marked for deletion, which
lead to differently updated models; all of them are consistent according to the
consistency relation. We already discussed that in Sect. 4.1.5. In our example,
the question is where the newly added states waitForResponse and receivedCon-
voyRequest should be added: before (Fig. 4.20 c)) or after the fading states
(Fig. 4.20 d))? Of course, an expert can recognize that d) is the correct way of
updating, as the controller strategy must not be switched before every RailCab
has actually approved the formation of a convoy. An automatic synchronization,
however, cannot easily decide this.

As described in Sect. 4.1, our improved synchronization algorithm explicitly
computes all reuse possibilities, rates them with respect to information loss, and
asks the user in ambiguous cases which of the update possibilities is the correct
one. In the example, the refinement in the control engineering model that has
been marked for deletion (consisting of the transition createConvoy, the state

112 CHAPTER 4. MODEL SYNCHRONIZATION

a
) b

e
fo

re
 u

p
d

a
te

b
) u

p
d

a
te

 a
lte

rn
a

tiv
e

 1

n
o

C
o

n
v
o

y

c
o

n
v
o

y
L

e
a

d
e

r

re
c
e

iv
e

d
C

o
n

v
o

y
P

ro
p

o
s
a

l

s
e

n
d

(re
je

c
t

C
o

n
v
o

y
)

s
e

n
d

(a
c
c
e

p
t

C
o

n
v
o

y
)

s
e

n
d

(c
re

a
te

C
o

n
v
o

y
)

2

1
2

c
re

a
te

C
o

n
v
o

y

2

n
o

C
o

n
v
o

y
c
o

n
v
o

y
L

e
a

d
e

r

fa
d

in
g

_
N

2
L

fa
d

in
g

_
L

2
N

c
re

a
te

C
o

n
v
o

y

b
re

a
k
C

o
n

v
o

y

1

s
e

n
d

(c
re

a
te

C
o

n
v
o

y
)

2

a
fte

r(5
0

0
m

s
)

a
fte

r(2
0

0
m

s
)

d
) u

p
d

a
te

 a
lte

rn
a

tiv
e

 3
c

) u
p

d
a

te
 a

lte
rn

a
tiv

e
 2

n
o

C
o

n
v
o

y

c
o

n
v
o

y
L

e
a

d
e

r

fa
d

in
g
_

N
2

L
re

c
e

iv
e

d
C

o
n

v
o

y
P

ro
p

o
s
a

l

c
re

a
te

C
o

n
v
o

y

s
e

n
d

(re
je

c
t

C
o

n
v
o

y
)

s
e

n
d

(a
c
c
e

p
t

C
o

n
v
o

y
)

s
e

n
d

(c
re

a
te

C
o

n
v
o

y
)

n
o

C
o

n
v
o

y

c
o

n
v
o

y
L

e
a

d
e

r

fa
d

in
g

_
N

2
L

re
c
e

iv
e

d
C

o
n

v
o

y
P

ro
p

o
s
a

l
c
re

a
te

C
o

n
v
o

y

s
e

n
d

(re
je

c
t

C
o

n
v
o

y
)

s
e

n
d

(a
c
c
e

p
t

C
o

n
v
o

y
)

s
e

n
d

(c
re

a
te

C
o

n
v
o

y
)

1
2

1
2

1

2

2
1

a
fte

r(
5

0
0

m
s
)

a
fte

r(5
0

0
m

s
)

n
a

m
e

S
ta

te
e

v
e

n
t

T
ra

n
s
itio

n
 w

ith

e
x
e

c
u

tio
n

 o
rd

e
r

D
e

fa
u

lt
tra

n
s
itio

n
1

L
e

g
e

n
d

fa
d

in
g

_
N

2
L

D
e

s
tro

y
e

d
e

le
m

e
n

ts

Figure 4.20: Excerpts from Stateflow model: a) before updating; updated in
different ways: b) lost fading state, c) “wrong” propagation of the change, d)
correctly updated

4.2. ABSTRACTION AND CONCRETION RELATIONS 113

fading_N2L and the transition to the convoyLeader state) may be reusable as the
corresponding control engineering part for three new transitions in the system
model v1.1 (createConvoy/, /rejectConvoy, and /acceptConvoy). However, the
deleted refinement is not reusable as is. Some additional modifications have to
be made to make it reusable in the different cases. For instance, when reusing
elements marked for deletion as corresponding part for the new transition cre-
ateConvoy/ (which would result in Fig. 4.20 c)), the target of the outgoing
transition must be modified to point to the state receivedConvoyProposal. Fur-
thermore, we have to remove the after(500ms) exit event, as the createConvoy/
transition does not have a duration.

We can rate the quality of the different update possibilities using the metrics
described in Sect. 4.1.6. The basic idea of the metrics is that the less modifica-
tions must be made, the more likely is that this is a reasonable reuse possibility.
In the example, we can reuse the refinement for the transition createConvoy/
(see Fig. 4.20 c)), as the source of the transition (the noConvoy state) is the
same as before, but we must alter the target state and remove after(500ms). We
can also reuse the refinement for the transition /acceptConvoy (see Fig. 4.20 d)),
as the target of the transition is the same (the convoyLeader state). It is, how-
ever, unreasonable to reuse the refinement for the transition /rejectConvoy (not
shown in Fig. 4.20), as neither the source nor the target state is the same as
before. Using the default metrics, the reuse possibilities that are depicted in
Fig. 4.20 are weighted in the order b)–c)–d), with d) as the “best”. Using the
default values for our thresholds for manual decisions (cf. Tab. 4.2), the user
has to decide between two reasonable reuse possibilities that are depicted in
Fig. 4.20 c) and d), because they are similarly weighted. Alternative b) and
other alternatives not shown in the figure are assigned a lower quality by the
metrics, because they require more modifications to make the rule applicable.
Therefore, those are not presented to the user.

4.2.7 Generalization to n-to-n Consistency Relations

The concept described in this section works only if there is a unidirectional
abstraction level change between the source and the target model, i.e., the
source model more (or at least equally) abstract than the target model in all
of its aspects. However, in practice, we would also like to synchronize models
of different viewpoints. This means that the first model can be more concrete
in its core viewpoint than the other model, but it may be more abstract in
the viewpoint of the second model. Hence, a 1-to-n consistency relation is not
sufficient; we need a n-to-n relation to define the mapping between the two
models.

Typically, we find this type of relations when directly mapping be-
tween two discipline-specific models. In our example of mechatronic sys-
tem development, the overall system simulation is performed using an MAT-
LAB/Simulink/Stateflow model. Besides the controller implementation
(which are implemented using Simulink anyway), this model also includes the
implementation of the discrete behavior and the message-based communication
implemented in MechatronicUML. Both the Simulink and Mechatron-

114 CHAPTER 4. MODEL SYNCHRONIZATION

icUML models contain information that is not relevant to the other model.
For instance, MechatronicUML features sophisticated model checking sup-
port including the specification of safety properties. These safety properties are
only important during the development of the software: The model checker uses
them to prove the safety of the system. Thus, they do not have a direct influence
on the implementation system’s behavior.13 In turn, the details of a controller
implementation are irrelevant to the MechatronicUML model. Each model
has parts of higher and lower abstraction levels than the other.

However, this is not restricted to direct mappings between discipline-specific
models. The MechatronicUML software model takes a logical viewpoint on
the system, whereas the active structure of the system model focuses more on
hardware-related aspects. Refinements in the software models are therefore
typically due to functional aspects. Possible refinements in the system model
often relate to the necessary hardware.

Figure 4.21 shows an abstract view on such a n-to-n consistency relations
and how it maps between two models. The general idea is not only to provide
an initial transformation function If for forward direction, but also to specify a
backward transformation function Ib. TGGs are a bidirectional transformation
language. Thus, we specify both of these functions within one TGG that has
functional behavior for both transformation directions (cf. Sect. 2.4.2.2).

b

a

b‘ b‘‘

a‘‘

Model Instance a
(Word)

Model Instance b
(Word)

a

b

Vertical Consistency
Relation R (n-to-n)

op Change Operation

op3op1

If R R

Initial Forward
Transformation
Function If (n-to-1)

R

Interdiscipliniary
Relevant Model Part

Discipline-Specific
Model Part

op2 a‘

R Ib

Initial Backward
Transformation
Function Ib (1-to-n)

Legend

Figure 4.21: General formalization of n-to-n consistency relations

Similar to the 1-to-n approach, we then use these transformation functions
to derive the n-to-n consistency relation. We do this by using the refinement
rules for the target model to generate the target ruleset extension. Then we do
the same for the source refinement rules: We apply them to the source parts of
the TGG rules, leaving the target parts unaffected. This works as long as there
is no source model refinement that affects a rule that is already refined by a
target model refinement (and vice versa).

13The state-based behavior is specified in MechatronicUML and then model-checked
using the safety properties. When the model checker detects a violation of a safety prop-
erty, the software engineer fixes this violation by modifying the state-based behavior. Once
there are no further violations, the MechatronicUML model is synchronized with the MAT-
LAB/Simulink/Stateflow model. This allows and integrated simulation and efficient code
generation for target platforms.

4.2. ABSTRACTION AND CONCRETION RELATIONS 115

However, it may also happen that both source and target refinement rules
affect the same TGG rule. As an example, again consider the mapping from the
active structure to a software component model. A software component may be
refined in several ways. For instance, we may perform a functional split, i.e., a
component is split up because it fulfills two different functions. Such a change
corresponds to op1 in Fig. 4.21. In the system model, a system element may be
refined such that we apply the triple modular redundancy pattern. We create
three instances of the same system element, so that each of them computes a
result independently. This results in a higher fault tolerance. Such a change
typically is not relevant to the software model, as it does neither influence the
interfaces of the corresponding component nor the component behavior. This
change corresponds to op2 in Fig. 4.21.

Both refinements affect the same rule SystemElement2Component. Simply
creating one refined TGG rule for both source and target side, however, is
insufficient: None of the rules would cover the case where both the system
element and the software component are refined. Therefore, we also create a
fourth rule that covers this case.

The case described above also shows the advantage of automatically deriving
these refined rules: The number of rules required in such a case is n ×m. With
a larger number of possible refinements on both source and target side, defining
and maintaining all the refined rules will quickly become infeasible.

4.2.8 Summary

In most development processes, we find models on different abstraction levels.
These models have to be kept synchronized. Due to their differing levels of
abstraction, there are 1-to-n consistency relations between the different models.
Existing model transformation techniques focus on functional transformation
and do not provide first-class support for such non-functional relations.

In this section, we have presented a novel way to define such 1-to-n mappings.
We use a traditional 1-to-1 functional mapping I. Possible refinements on the
models are defined separately. These refinement rules describe what changes to
a model are model-specific, i.e., do not have an influence on the other model.
Together, the mapping I and the refinement rules form the 1-to-n consistency
relation R.

This approach helps coping with the complexity of a non-functional mapping
by separating the definition of the “core” mapping (which specifies the general
concept) from the definition of refinements. Refinements can even be specified
by the discipline’s engineers. This allows the systems engineers to concentrate
on the basic principles of the mapping. This follows the principle of separation of
concerns. Finally, we generalized this approach to n-to-n consistency relations.

116 CHAPTER 4. MODEL SYNCHRONIZATION

4.3 Synchronizing Concurrent Modifications
In a distributed development environment, several engineers from different dis-
ciplines work on their models independently. As it is well-known in distributed
software development with source code, this can lead to editing conflicts14: One
developer changes a certain artifact (e.g., an element of a development model, a
piece of code, or the text of the requirements document), and at the same time
another developer changes this artifact, too. If both changes contradict each
other, this is a conflict. When working with a system of interrelated models
that are all modified by different developers, the conflict could also be due to a
change in another model.

Existing approaches for model versioning, conflict detection and resolution
often remain on a purely syntactic or text-based level, i.e., they simply use
a text-based representation (e.g., XMI) of the models to perform the merging.
This obviously leads to an inferior merging and may even result in errors [Rie08,
BLS+12].

There exist some automated merging tools for models, e.g., EMF Com-
pare [Ecl13]. Furthermore, some version control systems allow dealing with the
semantics of models, like SMoVer [ASK10] and EMFStore15 for EMF-based
models, or OdysseyVCS [MCPW08] for UML models. For a more detailed
overview of existing of model comparison, merging and version approaches, see,
for instance, Altmanninger et al. [ASW09], Brosch et al. [BLS+12], or
Stephan and Cordy [SC13].

Such model differencing and merging implementations do not always pro-
vide reliable results [LAS+14]. Graph matching is an NP-hard problem, and
such methods have to rely on heuristics. Especially when dealing with large
models and change sets, the internal matching heuristics cannot reliably deter-
mine corresponding model elements; this leads to worse results for larger models
with more than a few changes.

Moreover, these tools do not deal with sets of interrelated models, where
changes in one model may lead to changes (and, thus, potential editing conflicts)
in several other models. However, such situations occur frequently in model-
driven engineering. In our scenario, engineers from different disciplines edit
their models simultaneously, which may lead to editing conflicts with models
from other disciplines.

In this section, we present an approach how to perform a simultaneous, bidi-
rectional model synchronization, that propagates changes from both models to
the respective opposite model and allows resolving multi-model editing conflicts.
It integrates existing model merging techniques with our model transformation
and synchronization technique based on TGGs. The engineers are thereby re-
lieved from much manual, error-prone work during the model synchronization

14In the context of model transformations, the term conflict is also used to describe a
situation where more than one model transformation rule is applicable during a transformation
run. When speaking about a “conflict” in this thesis and especially in this section, we mean
editing conflicts (a conflict caused by two users concurrently editing the model). Otherwise,
we explicitly use the term “rule (application) conflict”.

15EMFStore website: http://eclipse.org/emfstore/

http://eclipse.org/emfstore/

4.3. SYNCHRONIZING CONCURRENT MODIFICATIONS 117

and conflict resolution task, as the approach solves many conflicts automati-
cally. It aims at improving the model-merging reliability, as the model merger
has to deal with fewer changes. It also provides sophisticated means to ease the
resolution of editing conflicts that cannot be solved automatically.

This section is structured as follows. We present a categorization of conflicts
in Sect. 4.3.1. After giving an overview about the related work in Sect. 4.3.2, we
describe the general concept of our approach in Sect. 4.3.3. We further extend
this approach in Sect. 4.3.4 to improve the merging precision.

4.3.1 Conflict Categorization

Next, we give an overview about the dimensions of editing conflicts, different
types of editing conflicts (based on the performed editing operations that lead
to that conflict), and possible resolution strategies.

4.3.1.1 Dimensions of Editing Conflict in Multi-Disciplinary,
Multi-User Development Processes

When working in a team of developers on a single model, conflicts may arise due
to developers changing a model simultaneously. Here, we distinguish between
three categories of conflicts:

• syntactic conflicts, i.e., changing the same model element (e.g., both de-
velopers modify a property of that element to differing values)

• static-semantics conflicts, i.e., changing different model elements that are
related (e.g., both developers add a state with the same name to a state
machine, but the metamodel requires unique state names)

• dynamic-semantics conflicts, i.e., changing different model elements that
influence each other at runtime and thereby cause a faulty behavior of the
system

Syntactic conflicts constitute already on syntax level and are therefore easy
to recognize and to resolve using diff/merge tools (in many cases even text-based,
e.g., using a model’s XMI serialization). Static-semantics conflicts are more
difficult to identify, as they do not constitute as a conflict in a persistence-level-
based merging (e.g., a text-file-based merger). They require analyzing the static
semantics of the model to be recognized (and solved). Conflicts may also arise in
the dynamic semantics. For instance, an engineer performs a modification that
increases the total weight of the system under development. Next, he or she
performs a simulation to ensure that the controllers are still working correctly
with the increased weight. If another engineer changes the controller strategies
in the meantime, this new strategy may not work with the increased weight.
Such a conflict can only be identified with the help of manual or automated
conformance tests.

Furthermore, two simultaneous changes can constitute a conflict on syn-
tactic or static-semantics level, but if we consider the dynamic semantics, the
conflict vanishes. An example for such a pseudo conflict is when two developers
model the same behavior in two different ways. In such a case, the conflict can

118 CHAPTER 4. MODEL SYNCHRONIZATION

be automatically resolved by arbitrarily selecting one change. For a more de-
tailed discussion on the categories of conflicts, we refer to Altmanniger and
Pierantonio [AP11].

Model transformations operate on syntactic and static-semantics level. In
this thesis, we therefore focus in syntactic and static-semantics conflicts. A
detailed discussion on dynamic-semantics conflicts is outside the scope of this
thesis.

Model differencing and merging still is a difficult problem in prac-
tice [ELHN+10, LAS+14]. Using a simple revision control system (like Apache
Subversion16 or Git17) cannot solve the problem, as such a system does not have
any knowledge about the inter-model dependencies18.

The problem even enlarges when working with interconnected models. For
instance, in our scenario of mechatronic system development, the conflict could
be due to a change in another discipline’s model. This adds a new dimension to
the problem.

Direct, single-model conflicts are easy to solve using model differencing and
merging tools. If the resolution of the conflict requires user interaction, typically
all involved developers can perform this resolution.

In the case of multi-model conflicts, different developers may change dif-
ferent models that are technically unrelated (i.e., in terms of persistence in
a file system or database), but connected with a model transformation/map-
ping. Conflict resolution for multi-model conflicts requires performing a model
synchronization and a (potentially manual) conflict resolution using model dif-
ferencing and merging tools. As several disciplines are involved in such conflicts,
ideally a system engineer performs the conflict resolution in consultation with
the discipline engineers. As the conflict affects several models, its resolution has
to be consistently applied to all models.

Fig. 4.22 summarizes the two dimensions of editing conflicts and the neces-
sary resolution approaches. For instance, while syntactic single-model conflicts
may be resolved using simple text-based differencing and merging techniques,
the resolution of static-semantics, multi-model conflicts requires static-semantics
aware merging in combination with model synchronization techniques.

4.3.1.2 Editing Conflict Types

When two developers modify the same model, conflicts can be classified by the
editing operations that caused the conflict. The type of conflict also determines
the conflict resolution strategy, i.e., whether and how it is possible to solve the
conflict automatically.

Most of the conflicts that may arise in situation where synchronized models
are simultaneously modified can be directly mapped to conflicts in a single
model: After propagating changes from the source model to the target model,
such conflicts constitute in the form of single-model conflicts. Examples are

16https://subversion.apache.org/
17http://git-scm.com/
18In fact, even static-semantics conflicts cannot be solved automatically, because such sys-

tems also do not know the static semantics of the models.

https://subversion.apache.org/
http://git-scm.com/

4.3. SYNCHRONIZING CONCURRENT MODIFICATIONS 119

syntactic
conflict

static-semantics
conflict

single-model
conflict

multi-model
conflict

diff & merge +
model synchronization

increasing
complexity

dynamic-semantics
conflict

text-based
diff & merge

simulation
& testing +

manual resolution

static-semantics aware
diff & merge

Figure 4.22: Dimensions of editing conflicts and its resolution approaches

simultaneously changing an attribute or a reference of two corresponding source
and target model objects, or moving corresponding objects to another position.
The model merger can solve some kinds of conflicts automatically, some require
a user decision.

We used several examples of model-based development processes19 to de-
rive a categorization of conflicts and what resolution strategies are reason-
able [Gos10].

In the following, we assume that the developers A and B change their models
a resp. b. Table 4.3 shows an overview of the different types of conflicts that
can be caused by a simultaneous evolution of two synchronized models. If there
is more than one resolution strategy, the default strategy is printed in bold.

Generally, it is similar if either two developers change the same model in a
conflicting way or two developers change two separate but related models such
they are in conflict. The solution strategies are the same. The difference in these
cases is that, in the latter case, the conflict constitutes only after an incremental
update, whereas in the first case the conflict becomes visible as soon as both
developer try to commit their changes to a repository.

4.3.1.3 Conflict Resolution Strategies

One simple, naive strategy to deal with inconsistencies is to require an immedi-
ate conflict resolution, such that the developers reestablish the consistency by
merging the changes, possibly overwriting one of the changes. However, in dis-
tributed, highly multi-disciplinary development processes like the development
of mechatronic systems, immediate resolution of interdisciplinary conflicts often
requires several developers to discuss the issue, diverting those developers away
from their main tasks. If interdisciplinary consistency is not strictly necessary, it

19Examples considered include: development of the RailCab system (active structure,
behavior–states, behavior–activities, MechatronicUML, MATLAB/Simulink and State-
flow), development of the TGG Interpreter (primarily EMF class diagrams), AUTOSAR
development (software architecture models)

120 CHAPTER 4. MODEL SYNCHRONIZATION

Editing
operations

D
escription

R
esolution(s)

(D
efault)

M
odify

–
M
odify

(A
t-

tribute)
B
oth

A
and

B
changed

a
valueofan

attribute.
T
hese

attributesdirectly
correspond

to
each

other.

M
anualresolution

M
odify

–
D
elete

A
m
odified

an
object

that
w
as

deleted
by

B
.

M
anual

resolution;Enforce
deletion

A
dd

–
A
dd

B
oth

A
and

B
added

an
object

at
the

sam
e
position.

A
utom

atic
resolution

possible
ifboth

objectscould
also

be
added

after
each

other
(i.e.,tw

o
additional

objects
are

allow
ed,and

the
objects

are
not

identi-
cal).

M
anualresolution

required
otherw

ise.
U
se

–
D
elete

A
added

a
new

use
(e.g.,a

link)
of

an
object

that
w
as

deleted
by

B
.

M
anualresolution

U
se

–
M
ove

A
added

a
new

use
(e.g.,a

link)
of

an
object

that
w
as

m
oved

by
B
.

T
helink

can
beautom

atically
redirected

to
thenew

position
ofthe

object.
M
odify

(O
bject)

–
M
ove

A
m
odified

an
object

that
w
as

m
oved

by
B
.

T
he

m
odifications

can
be

applied
to

the
m
oved

ob-
ject

autom
atically.

M
ove

–
D
elete

A
m
oved

an
objectthatw

asdeleted
by

B
.

M
anual

resolution;Enforce
deletion

M
ove

–
M
ove

A
m
oved

an
object

that
w
as

also
m
oved

by
B
.

M
anualresolution

Table
4.3:

T
ypes

ofconflicts
by

causing
editing

operations
(adapted

from
[G

os10])

4.3. SYNCHRONIZING CONCURRENT MODIFICATIONS 121

may be more reasonable to keep that inconsistency for a certain amount of time.
Moreover, especially in early phases when there is no “consolidated view on the
system under development yet, the conflicts might provide valuable information
on the various intentions of the modelers” [WLS+13]. Thus, it is reasonable to
tolerate inconsistencies in certain situations. In the literature, the term “living
with inconsistencies” [EC01, GMT99, HN98, Bal91] has been used to describe
this.

Delaying the inconsistency fixing (i.e., resolving several of such inconsisten-
cies all at once) has the advantage of a reduced overhead due to less interdis-
ciplinary conflict resolution meetings, where the different developers have to
agree on solutions. However, it comes with the drawback of an increased dif-
ference between the models for which the consistency must be reestablished.
This will make it harder for both automatic tools and the engineers to fix these
inconsistencies.

There exist some automated merging tools for models in general, e.g., EMF
Compare [Ecl13]. Other approaches focus on specific kinds of models. For
instance, the approach of Gerth at al. [GKLE11] is targeted towards process
models, and Brosch et al. [BSWK12] present a special conflict visualization
for UML models. These tools can resolve some of such conflicts automatically,
but user interaction is still necessary in many cases. Moreover, dealing with
conflicts in an interdisciplinary, multi-model setting requires a tight integration
of the model merging with the model transformation, especially if conflicts are
due to changes in another discipline’s model. Therefore, we need both improved
automated model conflict resolution approaches as well as a better support for
the users to visualize and resolve conflicts that cannot be resolved manually.
Furthermore, current model merging tools suffer from worsening matching re-
sults in case of large differences in the model versions.

Comparison, merging and conflict resolution for (single) models is a research
topic in itself [RK10, RK11, BCE+06], and the tools in use involve complex algo-
rithms. Recognizing that conflict resolution on (single) models is a difficult task
already, we decided not to directly incorporate conflict detection and merging
into the model synchronization algorithm. Instead, we use an external dedi-
cated model differencing and merging tool to help resolving conflicts. In this
way, we could also easily integrate tools dedicated to certain languages/meta-
model if reasonable, like, for instance, a special conflict visualization for UML
models [BSWK12]. Then the results from this merging tool are used as an input
for the model synchronization process.

Using a pure model merging approach has some drawbacks, namely per-
formance and merging precision. First, we need to run two transformations
instead of performing an immediate, bidirectional synchronization. Second, we
need to perform the actual model differencing and merging. The more changes
to the models have to be merged, the less precise the model merger is. As it
does not have any knowledge about the correspondences between the models,
it cannot use this information to help resolving conflicts. To improve both the
performance and the merging precision, we integrate the model merger and the
synchronization algorithms such that we try to automatically synchronize non-
conflicting changes using our improved model synchronization and then using

122 CHAPTER 4. MODEL SYNCHRONIZATION

the model merger for the remainder.
Next, we have a look at related approaches for dealing with concurrent

modifications in related models.

4.3.2 Related Work

In the following we give a short overview of the related work. We focus on
transformation techniques that are incremental and provide a destructive prop-
agation method (cf. Sect. 2.2.2).

4.3.2.1 Xiong et al. (2009, 2013)

Xiong et al. [XLH+07, XSHT09, XSHT13] present an approach how to achieve
a bidirectional synchronization using unidirectional incremental updates (using
ATL as transformation language). The idea is to first propagate the source
model changes to a new version of the target model. Then Xiong et al. use a
model merging tool to combine the new target model with the user-edited target
model. Next, they run an incremental backwards transformation to propagate
the changes to the source model. Finally, they run a conformance test to ensure
all user changes in the source model are still present.

Our approach is based on this idea. We use the same basic propagation
principle of first propagating the changes from one model and then using a
model merger to merge the results and resolve potential conflicts. Xiong’s
developed his approach for ATL transformations. In contrast to ATL, TGGs are
typically bidirectional by construction. Thus, we do not need the conformance
tests Xiong performs at the end of the synchronization.

4.3.2.2 Körtgen (2009)

Körtgen [Kör09] also allows synchronizing simultaneous changes to both mod-
els in her TGG-based solution. Similar to conflicting rules in a transformation,
editing conflicts have also to resolved in a manual fine-grained manner. How-
ever, there is no explicit support for directly conflicting changes. The user has to
resolve these conflicts within the model integration environment. Thus, it typi-
cally can only be performed by a synchronization engineer and not by engineers
of the affected discipline(s).

4.3.2.3 Conclusion

Both approaches have their advantages and drawbacks. In Körtgen’s ap-
proach, the engineers use the model integration environment to solve the con-
flicts in both models (with the help of the transformation specification). How-
ever, system engineers with in-depth knowledge of the transformation to the
different disciplines are typically only rarely available. Hence, it is reasonable
to move the conflict resolution at least partially to a discipline-specific model,
so that the discipline’s engineers can perform it with the help of specialized
merging tools. On the other hand, performing model merging only based on the
system model or a discipline’s model has performance and precision drawbacks.

4.3. SYNCHRONIZING CONCURRENT MODIFICATIONS 123

4.3.3 Model Comparison for Merging Concurrent
Modifications

The general idea of our approach is to use model merging to synchronize the
concurrent modifications in the models. Our approach is based on the approach
of Xiong [XLH+07, XSHT09, XSHT13], which was developed for ATL, a hybrid
model transformation language. We adapted this approach to fit to a TGG-
based model synchronization.

Figure 4.23 visualizes the idea of our approach. A precondition is that all
potentially conflicting changes by different developers to the single models have
been merged (no single-model conflicts left). This can be achieved using model-
merging techniques like EMF Compare. In the scenario depicted in Fig. 4.23,
this means that all changes from different software engineers have been merged
into version 1.2 of the software model, and all changes to the system model have
been merged into version 1.1 of the system model.

v1.2SE

v1.2

v1.2CE

Discipline-spanning relevant change
(restructuring of the system model)

3

Synchronization of the system model
and the software model

5

Update of other
discipline-specific models

6

v1.0

v1.1

Discipline-spanning relevant change
(additional distance sensor)

4

v1.3SE

v1.1SE

v1.0'
diff/

merge

baseline

5a

5b

5c

SE

CE

Discipline-spanning system model
Software engineering models
Control engineering models

Manual change

No or automatic change

Legend

Model transformation/
update

Possible conflict

Figure 4.23: Using model merging to synchronize simultaneous changes

We first propagate the changes from the discipline-specific software model to
the discipline-spanning system model (step 5a).20 To do so, we use version 1.0 of
the system model and version 1.1SE of the software model – the model versions
that we last synchronized – as baseline21. Since version 1.0 of the system model

20The direction in which the changes are propagated is not important. It is, however,
reasonable that the merging is performed on the model that the engineer performing the
synchronization knows best. In cases where different disciplines may be affected, the a system
engineer should perform the conflict resolution using the discipline-spanning system model and
in consultation with the discipline engineers.

21A baseline is a point in time that serves as a basis for defining changes. In a baseline, all
development artifacts are typically in a consistent state. When merging different versions of
an artifact, this baseline is typically the most recent common ancestor, i.e., the version from
which the changed artifacts were derived.

124 CHAPTER 4. MODEL SYNCHRONIZATION

contains no changes, no conflicts could arise during this propagation. The result
is version 1.1′ of the system model, which now contains only the changes from
the software model, but not the changes that have been performed by the system
engineers in the meantime.

Next, we use an external model comparison/merging tool to merge the
changes of both versions (step 5b). The result is version 1.2 of the system
model. In this step, conflicts may arise. The merger may be able to solve some
of these conflicts automatically, but some of them require user interaction.

Once all conflicts are resolved, we can use this merged system model 1.2
to perform a propagation to the software model (step 5c). We get version
1.3SE of the software model as a result, which contains both the changes from
the software model and the system model itself. We set these final models
as the baseline for future synchronization. Furthermore, the changes can be
propagated to other affected discipline-specific models (step 6).

Goschin [Gos10] implemented this approach in the course of his Bachelor
Thesis.

A drawback of this approach is that the model comparison/merging tool
requires a baseline version of both the source and the target model to perform a
three-way merge. Usually, the engineers simply overwrite the baseline versions
with new versions that contain their changes. Therefore, we have to explicitly
store the last common ancestors for source and target model to be used in future
model synchronization runs.

The model synchronization from the system model to the different discipline-
specific models do not always take place at the same time. For instance, it may
happen that only the software model is synchronized with the system model,
but the synchronization with the control engineering model is delayed. We
must store such a baseline for every model mapping, because the baseline for
the mapping between the system model and the software model is different to
the baseline from the system model to control engineering.

However, in most engineering processes, revision control tools are in use.
These tools already store the complete version history of all models. Although
we did not implement it, integrating our model synchronization with revision
control could be used to retrieve the required baseline versions. In this way, no
additional storage space will be required.

4.3.3.1 Automatic Resolution

Next, we illustrate automatic conflict resolution capabilities with an example
that Fig. 4.24 shows. On the left side of that figure, the system engineer re-
structures the system model such that the Distance Processing and the Distance
Sensor system elements are moved into a new Distance Measurement system el-
ement to improve the encapsulation of system functions and to allow a better
reuse of that solution. On the right side, you see that the software engineer
also performs changes to their model: Due to safety concerns, they introduce a
second Distance Sensor (cf. Sect. 3.1).

These changes affect model elements that correspond to each other: The
Distance Processing component/system element is affected both by the restruc-

4.3. SYNCHRONIZING CONCURRENT MODIFICATIONS 125

RailCab

Configuration
Control

Hazard
Detection

d*

convoy
state

detected
hazards

xleader, vleader

xRailCab, vRailCab

Velocity
Control

Traction Unit

I*

SE

SE

CE

CE

SE

RailCab

Drive Control

Velocity
Control

MEEE

Hazard
Detection

Drive Control

RailCabTo
RailCab

Communication
Module

xRailCab,
vRailCab

refDist
convoy
state

member

detected
hazards

coordinator

SECEMEEE

convoy coordination

DS

DS

DS

DS

refSpeed

xRailCab,vRailCab

xRailCab, vRailCab

xRailCab,
vRailCab

v*

convoy
coordination

distance

distance

Distance
Sensor

distance data
DS

Distance Measurement

distance
data

SECEMEEE

SECE

Distance
Processing

Distance
Sensor

SECEMEEE

Distance
Sensor

DS

Distance
Processing

DS

I*

restructuring
the system

model

adding the
distance
sensor3

4

Hazard
Detection

detected
hazards

Traction Unit

SE CE

Velocity
Control

Hazard
Detection

detected
hazards DS

distance
distance

Distance
Sensor

DSDistance
Sensor

SECEMEEE

I*

SECE

Distance
Processing

distance
data

Distance
Processing

DSdistance
data

Editing operation by
systems engineer

Editing operation by
software engineer

3 4

Figure 4.24: Changing software engineering model and system model

turing and by the new Distance Sensor (as it requires to add a new port to that
Distance Processing component).

However, this conflict can be resolved automatically. To do so, our approach
first transforms the changes of the software model to the system model (step 5a
in Fig. 4.23), using the baseline version of the system model (because this was
the last version for which we can be sure that it was consistent with the last
synchronized version of the software model). Figure 4.25 shows the result.

Hazard
Detection Traction Unit Hazard

Detection

detected
hazards DS

distance

Distance
Sensor

distance data
DS

Distance Measurement

distance
data

dist-
ance
data

SECE

Distance
Processing

Distance
Sensor

Distance
Sensor

SECEMEEE SECEMEEE

Distance
Sensor

DS

Distance
Processing

DS

distance
propagating changes
to the system model

5a

Figure 4.25: Automatically propagating software engineering changes to the
system model

Now, our approach performs the actual differencing and merging (step 5b),
as illustrated in Fig. 4.26. The manually changed system model is shown on the
left, and the system model update with the changes from the software model is
shown on the right side of that figure. Using an dedicated model merger, we are

126 CHAPTER 4. MODEL SYNCHRONIZATION

Hazard
Detection

detected
hazards

Traction Unit

I*

SE CE

distance

Distance Measurement

distance
data

SECEMEEE

SECE

Distance
Processing

Distance
Sensor

SECEMEEE

Hazard
Detection

detected
hazards

Traction Unit

SE CE

distance

distance
data

distance
data

SECE

Distance
Processing

Distance
Sensor

Distance
Sensor

SECEMEEE SECEMEEEModel differencing
and merging

5b

Figure 4.26: Merging the manual changes from the system model and the prop-
agated changes from the software model

able to merge these changes without a conflict, as the changes are of type Modify
(Object) – Move, which is a conflict type that can be automatically merged.

Finally, we use the merged model to consistently update the software model
(step 5c). Fig. 4.27 shows the result of the process.

Hazard
Detection Traction Unit Hazard

Detection

detected
hazards DS

distance

Distance Measurement
DS

distance

Distance
Sensor

distance data
DS

Distance Measurement

distance
data

dist-
ance
data

SECEMEEE

SECE

Distance
Processing

Distance
Sensor

Distance
Sensor

SECEMEEE SECEMEEE

Distance
Sensor

DS

Distance
Processing

DS

distance

propagating changes
to the software model

5c
distance

data

Figure 4.27: Result: Automatically merged software engineering model and
system model

4.3.3.2 Interactive Resolution

Our approach decouples the model synchronization from merging and resolution
of editing conflicts. As the interface between the model synchronization and the
model comparison just consists of the different model versions, every model
comparison approach can be integrated easily. We could even use different
comparison tools for different types of models.

One particular advantage is that we can rely on existing solutions of the
external model comparison tools. These tools are specialized on the comparison
and conflict resolution and provide sophisticated means to visualize the conflicts
and help the engineers resolving them.

4.3.4 Improving Conflict Resolution

The approach described above is generally capable of handling all kinds of con-
flicts, either by automatic or manual (user-interactive) resolution. However,

4.3. SYNCHRONIZING CONCURRENT MODIFICATIONS 127

model comparison and merging is a difficult problem in practice that relies
heavily on heuristics [LAS+14]. When developing safety-critical systems, a con-
sequence is to thoroughly review the merging results. This induces an additional
manual effort, which we would like to minimize.

The imperfect merging process is mainly due to the heuristics that have to
be used if models differ significantly. The correspondences that exist between
the different models can help to improve the merging: If the model comparison
algorithm is not sure whether two model elements in two versions of the system
model originate from the same model element, maybe the corresponding model
elements in the software model can be matched with a higher precision. This, in
turn, would increase the certainty for the model elements in the system model.

However, this information is not available to the model merging tool. One
approach is, therefore, to allow the model comparison/merging tool to access
this correspondence information. This requires providing an interface for the
comparison tool, and extending the comparison tool such that it accesses this
information (i.e., also performs a model comparison for corresponding elements
in the other model).

On the other hand, this increases the effort for the comparison as well as the
coupling between the model comparison and the model synchronization tech-
nique. As explained above, we aim for minimal dependencies between both.
Thus, we decided to pursuit another approach. Instead of providing the model
merger with additional information, we try making the job of the model merger
easier by making the differences between the model versions that have to be
compared smaller. This reduces the difficulty of the differencing/merging pro-
cess and, thus, increases both accuracy and time efficiency.

However, integrating sophisticated merging facilities into the model synchro-
nization approach is also inadvisable due to the complexity of that problem.
Thus, we only synchronize source model changes that can be propagated with-
out affecting target model changes. Generally, the idea is that, for each source
model change, we determine which rule application(s) are affected, and whether
manipulating these rules application(s) may affect target model changes. If no
changed target model element is affected, we may immediately propagate the
change using model synchronization techniques. If we cannot be sure not to
affect changes in the target model, we leave the merging/conflict resolution to
the model comparison (“pessimistic synchronization”). Figure 4.28 illustrates
this approach.

For the model comparison to be able to perform a three-way merge, we need
a common ancestor of the system model that was changed by the system engi-
neer (v1.1) and the system model that was updated with all the changes from
the software model (v1.0”). Version 1.0 is such an ancestor; however, it does
not contain the non-conflicting changes from the software model. The model
comparison/merging tool would thus identify all these non-conflicting changes
in both branches – an unnecessary effort. Thus, we generate a virtual common
ancestor. In step 5a, we do this by propagating non-conflicting changes not
only to version 1.1 (creating v1.1’), but also to version v1.0 (creating v1.0’).
This model v1.0’ serves as the virtual common ancestor for the model compar-
ison/merging tool. Next, we propagate the remaining, potentially conflicting

128 CHAPTER 4. MODEL SYNCHRONIZATION

v1.2SE

v1.2

v1.2CE

Discipline-spanning relevant change
(restructuring of the system model)

3

Synchronization of the system model
and the software model

5

Update of other
discipline-specific models

6

v1.0

v1.1
Discipline-spanning relevant change

(additional distance sensor)
4

v1.3SE

v1.1SE

v1.0'' diff/
merge

virtual
ancestor5a

5b

5c

v1.1'v1.0'

5d

SE

CE

Discipline-spanning system model
Software engineering models
Control engineering models

Manual change
No or automatic change

Legend
Model transformation/
update

Possible conflict Partial update

Figure 4.28: Overview of the improved merging and conflict resolution approach

changes to create version 1.0” of the system model (step 5b). In this way, only
the potentially conflicting changes will be processed during comparison/merging
(step 5c). Eventually, we update the software model with the merging results
(step 5d).

It is crucial that only non-conflicting changes are propagated in step 5a.
However, determining whether a change could be propagated without affecting
changed target model parts is not a straightforward task. Let us assume a
software engineer changed something in the software model, now regarded as
source model. The result is that one or more rule applications are not valid any
more. The problem is that a rule application may not only influence its target
produced parts. Other rule applications may rely on that rule application, i.e.,
they use parts of its produced parts as context. Propagating the change by
revoking the rule application will also render these dependent rule applications
inapplicable.

Therefore, before revoking a rule application, we must check that there are
no changes in the target model either in the affected rule application or in other,
dependent rule applications. In many cases, such a pessimistic approach will
effectively prevent the synchronization of many changes, because a change in one
of the “top” rule applications (i.e., applications of a rule on which many other
rules depend) will overlap large parts of the model. As depicted in Fig. 4.29, the
rule application that translated the changed source model element (top-left red
hexagon) may influence a large area of the target model (dark-purple triangle
in Fig. 4.29). A change in that area of the target model (right red hexagon) can
therefore be in conflict with that source model change.

4.3. SYNCHRONIZING CONCURRENT MODIFICATIONS 129

Source model change

Potentially
conflicting
target model
change

Potentially
affected target
model area

Source model Target model

Figure 4.29: Changes in “top” rule applications may impede synchronization

As all single-model editing conflicts in the source model have been resolved
before, further changes in the source model (bottom-left red hexagon), however,
may not be in conflict with that first change. It is, however, reasonable to prop-
agate the changes in a top-down order, as Giese and Hildebrandt [GH09]
point out.

However, as described in Sect. 4.1.2, we can propagate many changes by
either re-enforcing attribute constraints, or revoking a rule application and im-
mediately applying the same or another rule at that position. For example,
if an attribute was changed, the synchronization algorithm tries to re-evaluate
and re-enforce the attribute constraints. This does not revoke the rule applica-
tion, and no dependent rule applications are affected. Even if revoking a rule
application cannot be avoided due to structural changes in the source model,
immediately re-applying a rule at that position often reestablishes the context
of dependent rules.

Figure 4.30 shows the overall activities of our improved approach for syn-
chronizing concurrent changes. After identifying changes and determining which
changes may be in conflict with each other, we propagate non-conflicting source
changes to the target model in order to create a virtual ancestor. Here we
call the actual incremental update algorithm (call behavior). We reuse the in-
cremental update algorithm presented in Sect. 4.1, but in a way such that we
only propagate non-conflicting changes. Figure 4.31 shows the details of this
sub-activity.

The algorithm first checks for each change in the source model whether
the corresponding rule application still holds (graph structure and constraints).
Attribute changes can easily be propagated. If a rule application has become
invalid, we revoke this rule. However, we do not delete elements right away,
but we again use the mark for deletion facilities (cf. Sect. 4.1). Next, we try
applying the same or other rules as a replacement for the revoked rule application
(potentially reusing elements marked for deletion).

We use a rule application dependency graph to calculate if there exist depen-
dent rule applications that are affected by target model changes. In case there
are no such target model changes, the change can be propagated without further

130 CHAPTER 4. MODEL SYNCHRONIZATION

identify source &
target changes

propagate non-
conflicting source changes

determine potentially
conflicting changes

change set

Legend

name

changes &
dependencies

conflicting
change set

virtual
ancestor

propagate conflicting
source changes

conflicts

user conflict
resolution

propagate
target changes

Flow
Object

Initial node
Final node

5a

5b

5c 5d

name Action
Call behavior
action

name

Figure 4.30: Activity diagram of the improved approach for synchronizing con-
current changes

checkDpattern
structure

revokeDrule
application

checkDattribute
constraints

propagate
attributeDchanges

[uncheckedDsource
modelDchangesDleft]

[patternDstructure
invalid]

checkDconstraints

[constraints
invalid]

tryDapplyingDruleD
forDaffectedDelem.

[ruleDapplicable]

[noDtargetDchangesDinD
dependentDrulesDOR

allDcontextsDofDdependend
ruleDapplicationsDrestored] revertDrule

revocations

name Action [condition]ControlDflow DecisionD/
mergeDnodeFinalDnodeInitialDnode Guard

Legend

Figure 4.31: Activity diagram of the activitiy propagate non-conflicting source
changes

4.3. SYNCHRONIZING CONCURRENT MODIFICATIONS 131

precautions.22 If there are target model changes in dependent rule applications,
we have to make sure that these are not affected by the propagation, i.e., we
have successfully reestablished the context and constraints for all dependent rule
applications. Whenever we are unable to reestablish the validity of dependent
rule application, propagating the change could easily overwrite changes in the
target model, because we also have to revoke some of the dependent rule ap-
plications that contain target model changes. Thus, we have to revert the rule
revocation in such a case. The potential editing conflict has to be solved by the
model comparison/merging tool then.

As described above, we also apply this partial incremental update to the
unchanged baseline target model version 1.0 (cf. Fig. 4.28). The result is the
new virtual common ancestor. We use the basic approach described in Sect. 4.3.3
for the remaining, potentially conflicting changes. If no unprocessed changes
remain, we skip this step.

In contrast to the basic approach, this improved synchronization of concur-
rent changes requires a third synchronization run (in addition to the two incre-
mental update runs). This is the partial incremental update of non-conflicting
changes (step 5a).23. On the other hand, smaller differences between the models
that the model comparison/merging tool has to process should lead to improved
merging results. Evaluation results indicate that this proceeding will in fact in-
crease the merging precision, but only for some types of models that are large
and have large change sets (cf. Sect. 6.3.2).

4.3.5 Summary

In this section, we presented an approach how to integrate existing model merg-
ing techniques with our model transformation and synchronization technique
based on TGGs. All editing conflicts are mapped into a single model using our
novel incremental update algorithm, performing a merging of the non-conflicting
model parts. We then use an existing model comparison/merging tool for the
resolution of editing conflicts in this model. Our approach tries to improve the
model merging reliability, as the model merger has to deal with fewer changes.
By using sophisticated means of existing, specialized model merging tools, we
ease the resolution of editing conflicts that cannot be solved automatically. The
engineers are thereby relieved from much error-prone work during the model
synchronization and conflict resolution task.

22Further source model changes in dependent rule applications cannot cause editing con-
flicts. Thus, the synchronization can also propagate them.

23Although this incremental update has to update two models (v1.0 and v1.1), it is sufficient
to perform the rule matching for model v1.1 only. Because only non-conflicting changes are
processed, the propagation is exactly the same for models v1.0’ and v1.1’. Hence, we can
simultaneously modify both models when applying/revoking rule, which causes only a relatively
small additional effort.

CHAPTER 5
TGG Extensions

Contents
5.1 Constraints and Application Conditions 134

5.1.1 Attribute Value Constraints . 134
5.1.2 General Constraints . 135
5.1.3 Transformation Semantics of Application Conditions 137
5.1.4 Correctness of Application Condition and Constraint Semantics 139

5.2 Combinatoric Distributions . 140
5.2.1 Reusable Nodes and Application Conditions 142
5.2.2 Child Transformations . 143

5.3 Concrete-Syntax-Based TGG Rules . 146
5.3.1 General Approach . 147
5.3.2 Related Work . 148
5.3.3 Concept . 149

5.4 TGG Debugging . 150
5.4.1 Related Work . 152
5.4.2 Debugging Concept . 153

This chapter introduces a) extensions to the formalism of Triple Graph
Grammars (TGGs) that increase their expressiveness, and b) concepts that ease
the development of TGG-based model transformations. The presented exten-
sions were required to implement the mappings from the CONSENS language to
the models of software engineering and control engineering that are presented in
this thesis. However, they are no “special purpose” extensions, i.e., they can be
applied in a wide range of transformation scenarios. We furthermore developed
additional concepts that allow a more intuitive representation of a transforma-
tion specification and means for transformation execution analysis. They help
transformation engineers to implement and maintain TGG-based model trans-
formations.

First, we introduce how we implemented attribute constraints and applica-
tions conditions in Sect. 5.1. Section 5.2 presents the concept of nested trans-
formation, where a TGG may have other TGGs embedded in its context. Sec-
tion 5.3 describes how to use the concrete syntax of the modeling languages

133

134 CHAPTER 5. TGG EXTENSIONS

within a TGG rule. Finally, we present a debugging concept for TGGs in
Sect. 5.4.

5.1 Constraints and Application Conditions
In their most basic form, Triple Graph Grammars just describe how to map
between typed-graph-based structures. A single TGG rule describes a (partial)
mapping between certain elements. In terms of MOF [OMG06] this means that
we can only map between object structures, but can neither define anything on
their attributes nor explicitly define patterns that must not exist.

As most models make heavy use of object attributes, allowing arguing on
attributes is crucial for the practical applicability of TGGs. Thus, attribute con-
straints have been suggested as extensions to TGGs [GLO09, AVS12, LHGO12].
We describe how we implemented attribute constraints in Sect. 5.1.1.

Allowing negative patterns is also important from a practical perspective.
To allow such additional constraints, we extended the concept of attribute con-
straints to general constraints. Similar to attribute constraints, these constraints
must hold after a rule has been applied, but also after the transformation is
complete and after potential future incremental updates. In other words, con-
straints in applied rules are invariants on the resulting model triple. Details
how to process such general constraints can be found in Sect. 5.1.2.

So far, the semantics of application conditions is only formally defined for
simple attribute value constraints. The semantics of general application condi-
tions (that argue also on object structures) requires further attention, as a naive
evaluation of such application conditions may result in incorrect transforma-
tions. Thus, we developed an advanced concept of such application conditions,
which is described in Sect. 5.1.3

5.1.1 Attribute Value Constraints

Attribute value constraints allow transforming attribute values between the two
models. Generally, these are equations with the two corresponding attributes
on each side. For instance, given a source node a whose class has an integer
attribute count, and a target node b whose class has an integer attribute number,
a simple attribute constraint could be a.count = b.number. Such a constraint
defines that for a rule to be correctly applied, (besides a correct structural
isomorphic matching) the attributes of the bound model elements must be equal.

When interpreting a TGG for transformation, we also need to consider these
attribute constraints. When transforming in forward direction, we match the
source model elements and create new target (and correspondence) model ele-
ments. Therefore, we need to interpret attribute constraints as an assignments
on the respective target model element: b.number := a.count. In backward
direction, the assignment is a.count := b.number.

In this case, the assignments can be easily computed, and it is obvious
that both assignments will make the original attribute constraint hold. How-
ever, this is not possible in general. As an example, consider a mapping be-
tween two different types of Java-like class models: The source model has

5.1. CONSTRAINTS AND APPLICATION CONDITIONS 135

just one String attribute for the class name, fullyQualifiedName, whereas the
target model has two different attributes, package and classname. A map-
ping between these attributes can be described with the following equation:
b.fullyQualifiedName = a.package + ′.′ + a.classname. Such a attribute con-
straint can only be converted into a target side assignment for forward trans-
formations (b.fullyQualifiedName := a.package + ’.’ + a.classname),
but not for the backward direction: We need to split the string at the dot, but
as dots may also appear in the elsewhere in the string, this is ambiguous.

Nevertheless, such attribute dependencies are often necessary in many real-
world transformation scenarios. One practical solution is to manually separate
an attribute constraint into two attribute assignments, one for the forward and
one for the backward direction. However, this somewhat breaks the declarative
nature of TGGs, as the attribute processing is handled in a operational manner.
In particular, it is up to the developer to ensure the bidirectionality of the
attribute assignment pair. These issues have been described earlier [KW07,
LHGO12].

In contrast, Lambers et al. [LHGO12] describe an approach how use a
(declarative) attribute constraint to automatically derive operational attribute
assignments. If, as in the case of an inverse string concatenation, this is not pos-
sible, they suggest using a constraint solver to generate all possible attribute val-
ues. Then the user has to decide which values to use. Anjorin et al. [AVS12]
describe a similar approach with a focus on the formal properties of TGGs.

Such an approach ensures the bidirectionality of a TGG. A drawback of
such declarative attribute constraints is that they are either not as expressive as
manually defined operational attribute assignments, or introduce a potentially
large amount of user interaction.

In our example, a classname may not contain dots (“.”). Thus, the “splitting
point” of the fullyQualifiedName is easy to determine: it is simply the last dot in
the string. Hence, the operational attribute assignment for backward direction
can be specified manually. In contrast to a declarative specification, no user
interaction is required.

In practical cases, such constraints on the metamodels and/or domain-
specific knowledge often help creating operational attribute assignments for both
directions that do not impair bidirectionality. Therefore, we decided to imple-
ment these operational attribute assignments in our TGG Interpreter. As
a consequence, it is the task of the transformation engineer to ensure that the
attribute assignment work bidirectionally.

5.1.2 General Constraints

Basic graph transformations only support a “positive” context (left-hand side),
i.e., they define which graph structure must exist to make the rule applicable.
However, often the applicability of rules has to be further restricted [SK08a].
Therefore, we would like to include additional conditions to the rules that reflect
these restrictions. Mostly this is the case when we would like to define conditions
that must not be present in the host model. Such conditions are typically called

136 CHAPTER 5. TGG EXTENSIONS

negative application conditions (NACs) or simply application conditions. Habel
et al. [HHT96] introduced them for graph grammars.

Furthermore, a rule may depend on attributes of an object to be matched,
which cannot be easily represented using a graph structure.1 For in-
stance, the rule in Fig. 5.1 contains such an attribute application condition
(“se.isSERelevant”) that restricts the application of that rule to cases where the
se:SystemElement is relevant to the software engineering discipline.

CONSENS Corresp. Mechatronic UML

se:SystemElement c:Component:SE2Comp

pm:Package pu:Package:Pack2Pack

packagedElement packagedElement++

++
++ ++

++

h:Hybrid

stereotype

++

name:=c.name

se.continuousPorts>0
&& se.discretePorts>0

name:=se.name

++
++

++

se.isSERelevant

Attribute AssignmentsApplication Conditions

x=y Attribute constraint /
application conditionname:type Context

node

Domain separator

Unidirectional / bidirec-
tional context edge

Legend

Unidirectional / bidirec-
tional produced edge

Produced
node

name:type++

++
++

Figure 5.1: TGG Rule SystemElement2HybridComponent: examples of attribute
assignments and application conditions

Most TGG approaches process such application conditions only during the
rule application [GLO09, AVS12, LHGO12]. Consequently, they do not have
to hold later on in the transformation process. This means that application
conditions only guide the rule application process, but we cannot use them
to define invariants that must also hold after applying the rule or when the
transformation is finished.

In contrast, Wagner considers such conditions as invariants [Wag09]. In-
variant constraints specify additional requirements on the relation the rule de-
fines. Thus, such constraints must always hold, i.e., also after the transforma-
tion run is complete. Kindler and Wagner [KW07] describe such generalized
constraints. Attribute constraints, as described in the previous section, are a
special kind of such constraints. However, constraints may also refer to struc-
tural properties of the models, not only to attributes. Let us consider the active
structure of the system model. System elements can have so-called templates,
which is a special way of typing a system element. For instance, there could

1Attributed graphs and attributed graph grammars [EPT04] can be used for representing
object attributes. Our concept builds on this formal concept of attributed graphs. It is further
extended with respect to applicability to real-world scenarios; however, we do not provide a
fully formal extension here.

5.1. CONSTRAINTS AND APPLICATION CONDITIONS 137

exist several identical sensors in a system. All of these sensors then reference a
template which models the general properties of this kind of sensor, e.g., input
and output types and the weight and dimensions. When mapping to Mecha-
tronicUML, a system element with such a template becomes a component
instance, and the template becomes the component type (cf. rule SystemEle-
mentWithTemplate2StructuredComponent in Fig. A.10). A system element with-
out a template is mapped to both a component type and instance, i.e., it is
represented by a “singleton component” in MechatronicUML (cf. rule Sys-
temElementNoTemplate2StructuredComponent in Fig. A.7). It is important that
these constraints are considered as invariants, so that they will be checked in
subsequent incremental updates. Otherwise, adding a template to a system el-
ement later on would not revoke the rule and, therefore, would not change the
MechatronicUML model.

We need both interpretations in different scenarios, and there are rulesets
which require both interpretations. Thus, we allow both application conditions
(which are checked just before applying a rule) and invariant constraints (which
must always hold) in our TGG Interpreter. Note that it may require rule
backtracking when an invariant constraint does not hold any more at the end
of a transformation. For further details on the implementation, we refer to
Sect. 6.1.7.

5.1.3 Transformation Semantics of Application Conditions

In the standard case of a (initial, non-incremental) forward transformation, we
have a complete source model given. This is in contrast to the graph production
semantics of TGGs (i.e., evolution of both models in parallel), where both source
and target models are produced simultaneously. When executing a forward
transformation, we emulate the simultaneous production semantics by explicitly
binding source model element to the produced source pattern (cf. Sect. 2.4.1).

Application conditions argue on properties of the models. When evaluating
an application condition on a completely existing source model, the result can
be different from an evaluation in a simultaneous production scenario where
the source model does not completely exist, yet. Consequently, we also have
to emulate the simultaneous production semantics when evaluating application
conditions in order to keep the transformation correct (cf. Sect. 2.4.2.2). In
particular, the parts of the source model that are not translated yet must be
ignored when evaluating a constraint, because they would not exist in the simul-
taneous production case. Otherwise, the semantics of a transformation would
differ from the semantics of a simultaneous production, potentially resulting in
an incorrect transformation.

As described earlier, we must distinguish between application conditions and
constraints. The former are just checked before a rule is applied – they are not a
part of the context (left-hand side). Thus, they do have to hold neither after the
rule was applied nor at subsequent incremental updates or model synchroniza-
tion runs. They only allow guiding the rule application process, e.g., ensuring
functional behavior or avoiding “dead ends” when a wrong rule could be applied

138 CHAPTER 5. TGG EXTENSIONS

otherwise.2
A typical use case for application conditions is ordered lists. When a model

element contains several sub-elements whose order is relevant, this cannot be
processed using a classical, declarative TGGs: First, we cannot ensure that
the elements are processed “in order”, and second, we cannot define different
rules for the first, second, ..., and last element [GKRT08]. For instance, when
mapping between CONSENS/Behavior–States and MATLAB/Stateflow, the
numbering of the priorities of outgoing transitions is differing; we have to process
the lists of transitions in a well-defined order to keep the same semantics.

We described that problem in 2008 [GKRT08], and introduced a first ap-
proach for this problem. We annotate TGG edges with special constraints
“«first»”, “«next»”, and “«last»” for the first element, all centrical elements,
and the last element in an ordered list, respectively. However, this approach
only partially solves this problem. While we know the first and the last ele-
ment, we cannot ensure the order of all other elements. As a result, we for
example cannot reverse the order of a list when transforming it to the target
model.

We propose the following solution. When evaluating an application condi-
tion, the evaluation ignores elements of the source model that have not been
translated, yet, i.e., they are not yet bound. For instance, when evaluating the
position in an ordered list, the position is calculated only using the elements
that have already been translated. An application condition list->sizeOf()
= 0 would therefore also hold for an non-empty list in case no element has been
translated, yet. Obviously, such an application condition would not hold any
more after the rule has been applied. Consequently, we also cannot simply
reevaluate application conditions when checking an existing rule application in
later incremental updates. Instead, we also only consider elements of the source
model that were bound before this (currently checked) rule was applied when
incrementally updating.

In combination with invariant constraints, we can also ensure that the first
element in a list is also translated first: We can use an invariant constraint
list->indexOf(e) = 1 where e is the element to be translated.3

Section 6.1.7.2 describes how we implemented these semantics of constraints
and application conditions in our TGG Interpreter. The described approach
preserves the simultaneous production semantics of TGGs also in the transfor-
mation scenario where we have a source model given. In other words, this
extended TGG semantics is correct, which we will prove informally next.

2When two or more rules are applicable for a certain element, most TGG approaches ar-
bitrarily select one of the applicable rules. In such a situation, application conditions can
further restrict the applicability of the respective rules, such that a rule can be selected de-
terministically. Such application conditions can also be generated automatically for avoiding
dead-ends (situations where no further rules could be applied for elements that are not trans-
lated, yet), e.g., by performing analyses like critical pair analysis and identifying such dead-
ends [HEGO10]. We refer also to Sect. 6.1.4 for other means to deal with non-deterministic
rulesets.

3Different from most programming languages, OCL uses a 1-based index for ordered sets
and sequences. The first element has an index of 1, not 0.

5.1. CONSTRAINTS AND APPLICATION CONDITIONS 139

5.1.4 Correctness of Application Condition and Constraint
Semantics

In Sect. 2.4.2.2, we defined correctness as follows:

Definition 11 (correctness of a transformation algorithm). A TGG transfor-
mation algorithm is correct iff all model triples that it will produce can also be
produced by a sequence of TGG rule applications starting from the axiom.

Given the correctness of the general transformation algorithm (cf., for in-
stance, [Sch95]), we now prove (by contradiction) that a transformation ex-
tended by constraints and application conditions (called “extended semantics”
in the following) is also correct.

Assume that the extended semantics is incorrect. This means that there
exist at least one model triple H produced using this extended transformation
semantics that cannot be derived using the simultaneous evolution semantics. If
the model triple H cannot be derived using simultaneous evolution, there must
be at least one applied rule that would not be applicable when simultaneously
producing both models.

More formally, we have a set of TGG rules p1, p2, ... ∈ M and an axiom
A, and a pair of two models H = (Hs × Ht). As Schürr described [Sch95],
when transforming a given source model Hs into a target model Ht, we first
interpret each rule pi such that we try to match the complete source part (and
the correspondence/target context) pi,match in the existing models, and then
create the remainder of the rule pi,create. With the axiom A, its target part At,
and an incorrectly applied rule pf :

∃pf ∈ M ∶ G0 = (Hs ×At)
...
Ð→ Gi = (Hs ×Gt,i)

pf,match
ÐÐÐÐ→ Gi

pf,create
ÐÐÐÐ→ Gi+1

...
Ð→H = (Hs ×Ht)

A
...
Ð→ Gi = (Hs,i ×Gt,i)

pf

↛ Gi+1

The problem could be either an application condition or a constraint that
differs in its evaluation between the two semantics. Furthermore, the differ-
ing evaluation could only be due to the source model, as the target model is
produced similarly in both cases. We deal with both cases separately.

If the problem is an application condition violating correctness, this applica-
tion condition must hinder the application of pf in the simultaneous evolution
case although it allows applying pf,match in the transformation case.4 We de-
fined the evaluation semantics of application conditions such that only bound
elements are considered. By definition, bound elements are the elements that
would have already been produced if simultaneously evolving the models. Thus,
the evaluation of the application condition will be the same in both cases.

If the problem is a constraint violating correctness, similarly, this constraint
must hinder the application of pf in the simultaneous evolution case although

4As the match rule resembles the context of the create rule, the create rule is applicable
iff the create rule is applicable. Thus, we only have to consider one of them.

140 CHAPTER 5. TGG EXTENSIONS

it allows applying pf,match in the transformation case. In fact, if the constraint
refers to properties of the source model that would have not been accessible in
the simultaneous evolution case (e.g., because the element does not exist, yet),
this constraint could be violated before pf is applied. However, as we defined
constraints so that they must hold on the transformation result, a temporary
violation of a constraint during the rule application/derivation process is ac-
ceptable. Thus, a constraint will not hinder an application of a rule. As all
model elements are created at the end of both a transformation and a simulta-
neous evolution, the evaluation of a constraint does not differ between these two
cases.5 Thus, there could be no difference in the semantics due to constraints.

As shown, the violation of correctness could not be due to the novel semantics
of application conditions and constraints. Given the correctness of the original
TGG semantics, this is a contradiction. Therefore, our assumption that the
extended semantics is incorrect is wrong.

5.2 Combinatoric Distributions
In general, the expressiveness of TGG is similar to other declarative model-to-
model transformation languages like QVT-R [GK10]. However, one particular
problem arises in TGGs when, for instance, trying to define a TGG mapping
between typed and non-typed languages. Figure 5.2 illustrates such a scenario.

Typed language
(source)

Typeless language
(target)

as:Instance

Ts:Type

type

bs:Instance

xs:Property

ys:Property

at:Instance

has

bt:Instance

xbt:Property

ybt:Property

has

xat:Property

yat:Property

has
Abstract syntax
(object diagram)

Concrete syntax
(class/object diagram)

as

Ts

xs:int
ys:float

instanceof

bs

bt

xbt:int
ybt:float

at

xat:int
yat:float

name:type Object Unidirectional /
bidirectional link

Legend

name Class Relation

Figure 5.2: Distributing type properties into non-typed instances

5Note that depending on the constraint enforcement strategy, there could be cases where a
certain transformation algorithm would produce an invalid result. However, the transformation
algorithm has to check if all constraints hold at the end of the transformation. If this is not
the case, it has to backtrack over the rule applications and/or constraint enforcements in order
to find a valid transformation result. Details on the backtracking strategy can be found in
Sect. 6.1.4.

5.2. COMBINATORIC DISTRIBUTIONS 141

As shown in the figure, we want to transform a typed language (source) into
a language that does not have a (more complex) typing concept (target). There
are two instances as, bs of a type Ts in the source model. The type Ts has two
properties: an attribute xs:int and an attribute ys:float. As the target language
does not have a type concept, we have to distribute all properties of the (source
model) type into the concrete instances at, bt in the target model, as shown on
the right side of Fig. 5.2.

We find such mappings, for instance, in the transformation from the (typed)
CONSENS language to MATLAB/Simulink, which only allows data types,
but no complex, structured types.6 In general, where languages differ in their
type system – from simple data types like in C [ISO9899] to complex polymor-
phism and higher-order type operators like in Haskell [Mar10] or Scala [Ode13]
– mapping between languages typically requires the distribution of properties.

Figure 5.3 illustrates the problem with defining such a mapping in terms
of a regular TGG. Rule Instance2Instance (top) translates the instances. As
a type in the source model has no corresponding part in the target model,
rule Type2Nothing (middle) simply binds the respective source model element,
but does not produce any target model elements. The bottom rule Type-
Prop2InstanceProp now has to distribute the different type properties into the
target instances. However, as we have a bind-only-once semantics for produced
source nodes, we can match one property only once. Consequently, we can only
translate it into one target model instance. Every further instance will not
receive these properties.

This problem is a result of a lack of expressiveness due to the bind-only-once
sematics of TGGs. It arises whenever not single elements or element patterns
are mapped to a target model pattern, but all combinations of more than one
element should be mapped. In the following, we call this kind of mapping
principle combinatoric distribution.

To be able to cover the described type of mapping, we would like to ex-
tend the TGG formalism. TGGs are context-sensitive grammars (type-1 in the
Chomsky hierarchy) [Sch95]. However, TGGs should not become unrestricted,
because deciding whether a given graph can be generated by an unrestricted
grammar is equivalent to the Halting problem and is therefore undecidable.7
Instead, we aim for finding an extension in expressiveness that only covers this
particular type of mappings.

In the following, we present different solutions for this problem and discuss
on advantages and disadvantages.

6MATLAB/Simulink allows defining so-called library blocks, which can then be used as
blocks in actual models. Although this looks like a type concept at first glance, it is basically a
simple link between an block and a library element. This link is removed when the user edits
the actual block; as a result, the block will become a simple copy of the library element with
no typing information left.

7Note that using OCL as a language for constraints and attribute assignments (cf. Sects. 5.1
and 6.1.7) already makes TGGs potentially undecidable because OCL is undecidable. However,
a restricted form of OCL called OCL-Lite is decidable in EXPTIME [QACT12a, QACT12b].

142 CHAPTER 5. TGG EXTENSIONS

CorrespondenceTyped language Typeless language

TGG Rule Type2Nothing

:Type :Type2Package
++

++ contains

++ ++

:Package
:Package

:Package2Package

++

TGG Rule TypeProperty2InstanceProperty

:Property :Property2Property
++

++has

++ ++

:Instance :Instance:Instance2Instance

++

TGG Rule Instance2Instance

:Instance :Instance2Instance
++

++ contains

++ ++

:Package :Package:Package2Package

++
:Instance

++
contains

++

:Type

:Property

++ has

++

type++

Figure 5.3: Using regular TGGs for a distribution of properties

5.2.1 Reusable Nodes and Application Conditions

Fig. 5.4 shows a simple solution: reusable source nodes in combination with
application conditions for the source model element that has to be distributed.
Reusable nodes (and edges), as introduced by Greenyer and Kindler [GK10]
and extended by Greenyer and Rieke [GR12], are a combination of produced
and context nodes. They serve either as a context or a produced node, i.e., a
reusable node can also be specified by creating two structurally identical rules,
one with a produced node and one with a context node. A transformation engine
may nondeterministically decide to interpret a reusable node as a produced
node or as a context node.8 The semantics of reusable edges is equivalent. In
the graphical syntax of TGG rules, reusable nodes and edges are gray and are
annotated with “##”.

Here, the source property is a reusable node (ps:Property). On a second
application of the rule, this node can be interpreted as a context node, leaving
the source produced part of the rule empty. As a result, the rule would be
applicable infinitely often, creating an infinite number of properties in the target
model. Therefore, we use an additional application condition to prevent the rule
from being applied if there already exists a corresponding target property. This
works well in forward transformations and incremental updates.

The problem, however, are incremental updates in backwards direction. If a
user deletes a property from a (target) instance, there are two consistent ways
of propagating such a change:

8It may therefore happen that a transformation engine has to backtrack over rule applica-
tions, switching between “produced” and “context” in a certain situation.

5.2. COMBINATORIC DISTRIBUTIONS 143

CorrespondenceTyped language Typeless language

TGG Rule TypeProp2InstanceProp

ps:Property :Property2Property
++

##has

++ ++

:Instance i:Instancei2i:Instance2Instance

##

:Type

pt:Property

++ has

++

type

i2i.contains->forAll(NOT(source=ps AND i.has->includes(target)))

++contains

source target

Figure 5.4: Reusable source nodes and constraints for combinatoric distribution
(attribute constraints omitted)

1. Remove the property from the (source) type, and remove it also for the
other target instances.

2. Remove the type from the (source) instance, and create a new type only
for this instance.

In general, both are valid ways of change propagation; therefore, we have to ask
the user (or define a default case). However, this is not possible with reusable
nodes, as we explain in the following.

If the deleted target property belongs to the first rule application where
the reusable source node ps:Property was interpreted as produced node, rule
revocation would result in deleting the source model property. All other rule
application, which interpreted the reusable node as context, are therefore also
invalid and have to be revoked. Thus, all target properties are also deleted (first
way of propagation). Although this produces a result that is correct, we cannot
choose the second way of propagation.

However, with the type node interpreted as a context node, the change would
simply result in revoking the rule, which changes nothing on the source model
(cf. Fig. 5.5). Even worse, a future forward incremental update run would
reapply the rule, effectively undoing the change in the target model.

Allowing an empty source produced part in a forward transformation vio-
lates correctness in later backwards incremental updates (the same holds for
empty target produced parts in a backward transformation). Therefore, we do
not allow such rules to be applied in the respective transformation direction.
Consequently, using reusable nodes in combination with constraints does not
solve the problem for scenarios like ours, where we want to incrementally up-
date the models later on. For simple batch transformation scenarios, however,
it is the easiest solution, as it relies only on the expressiveness of the constraint
language.

5.2.2 Child Transformations

Before starting the type property distribution for one instance, we would like to
“forget” that we may have already translated the type properties for a different
instance. In other words, we want to remove all bindings for the (source) type
properties from our bookkeeping. We propose to open a new transformation

144 CHAPTER 5. TGG EXTENSIONS

as:Instance

Ts:Type

type

bs:Instance

xs:Property

ys:Property

at:Instance

has

bt:Instance

xbt:Property

ybt:Property

has xt:Property

yt:Property
has

CorrespondenceTyped language Typeless language

TGG Rule TypeProp2InstanceProp

ps:Property :Property2Property
++

##has

++ ++

:Instance i:Instancei2i:Instance2Instance

##

:Type

pt:Property

++
has

++

type

i2i.contains->forAll(NOT(source=ps AND i.has->includes(target)))

++
contains

source target

:Instance2Instance

:Instance2Instance

:Property2Property
:Property2Property

:Property2Property
:Property2Property

name:type Object

Domain separatorUnidirectional /
bidirectional link

Legend (object diagram)

Link marked
for deletion

Object marked
for deletion

name:type Deleted by user

x=y
Attribute constraint /
application conditionname:type Context node

Domain separatorUnidirectional / bidirec-
tional context edge

Unidirectional / bidirec-
tional produced edge

Produced nodename:type++

++
++

Legend (TGG rule)

Matching

Unidirectional / bidirec-
tional reusable edge

Reusable nodename:type##

##

##

Figure 5.5: Backward incremental update: Inconsistent state

binding context in such a situation, or, informally speaking, to start a child
transformation nested into the parent transformation.

To branch into a child transformation, we explicitly define where such a
nested transformation can start in the parent transformation. Every produced
node can be declared as such a branching point. For each valid matching of such
a node, we open a new transformation context.

All existing node and edge bindings from the parent transformation are
kept when opening a context. However, the bindings created in the new context
are not carried over to the parent transformation. That means that when we
apply the branching rule of the parent transformation the next time, all source
elements translated in the new context can be translated again. To ensure that
the new transformation context starts at the branching node, we mark one node
of the first rule of the child transformation as the counterpart of the branching
point.

Fig. 5.6 shows a ruleset using such an branching point. In general, it resem-
bles the rule that translated the types (Fig. 5.3 center). The nested transforma-
tion only consists of the rule that distributes the different type properties into
the target instance (Fig. 5.3 bottom). It can be applied as often as properties
exist in the type.

Let us reconsider the example from Fig. 5.5. Figure 5.7 shows this ex-
ample using the ruleset with the nested transformation. The rule Type-
Prop2InstanceProp was applied four times. Two applications cover the object
xs:Property with a produced node. This is possible because every application of
the rule Type2Nothing opens a new child transformation, starting with the rule

5.2. COMBINATORIC DISTRIBUTIONS 145

CorrespondenceTyped language Typeless language

TGG Rule Type2Nothing

:Type :Type2Package
++

++ contains

++ ++

:Package
:Package

:Package2Package

++

TGG Rule TypeProp2InstanceProp

:Property :Property2Property
++

++has

++ ++

:Instance :Instance:Instance2Instance

++

TGG Rule Instance2Instance

:Instance :Instance2Instance
++

++ contains

++ ++

:Package :Package:Package2Package

++
:Instance

++ contains

++

:Type

:Property

++
has

++

type++

TypeProp2InstanceProp

Figure 5.6: Branching point to start a nested (child) transformation

TGG Rule TypeProp2InstanceProp

:Property :Property2Property
++

++has

++ ++

:Instance :Instance:Instance2Instance

++

:Type

:Property

++
has

++

type++

as:Instance

Ts:Type

type

bs:Instance

xs:Property

ys:Property

at:Instance

has

bt:Instance

xbt:Property

ybt:Property

has

yat:Property

TGG Rule TypeProp2InstanceProp

:Property :Property2Property
++

++has

++ ++

:Instance :Instance:Instance2Instance

++

:Type

:Property

++ has

++

type++

has

CorrespondenceTyped language Typeless language

:Instance2Instance
:Instance2Instance

:Property2Property
:Property2Property

:Property2Property
:Property2Property

xat:Property

name:type Object

Domain separatorUnidirectional /
bidirectional link

Legend (object diagram)

Link marked
for deletion

Object marked
for deletion

name:type Deleted by user

x=y
Attribute constraint /
application conditionname:type Context node

Domain separatorUnidirectional / bidirec-
tional context edge

Unidirectional / bidirec-
tional produced edge

Produced nodename:type++

++
++

Legend (TGG rule)

Matching

Unidirectional / bidirec-
tional reusable edge

Reusable nodename:type##

##

##

Figure 5.7: Backward incremental update: Correct incremental updates using
a nested transformation

146 CHAPTER 5. TGG EXTENSIONS

TypeProp2InstanceProp. Consequently, the object xs:Property can be bound by
a produced node as often as a new child transformation is started – two times
in this case. When a user deletes the xbt:Property, one of these two rule ap-
plications becomes invalid (the topmost application in Fig. 5.7). Revoking this
rule application means deleting xs:Property as well as the correspondence object
(denoted as dashed red border in the figure). As a result, also the other rule
application that translated the xs:Property to the xat:Property becomes invalid.
Revoking this rule removes the xat:Property.

Concerning expressiveness and decidability, the child transformation itself
is obviously context-sensitive, because it is a regular TGG. It can be decided
using a linear-bounded nondeterministic Turing machine. When starting a new
child transformation from the parent transformation, this is similar to a call to a
subroutine, or combining two Turing machines. As we do not need to store any
data from the child transformation within the parent transformation (because
no binding information is carried over to the parent transformation), we do not
need more than a linear-bounded tape for the nondeterministic Turing machine.
Thus, an extended TGG with child transformations is still context-sensitive, i.e.,
decidable in NSPACE(n).

5.3 Concrete-Syntax-Based TGG Rules
Where the abstract syntax (i.e., the metamodel of a language) is most important
from a tool-centered view, the concrete syntax of a language is highly critical
for its users, as it represents the “user interface” to the language. According to
Voelter et al., “a DSL will only be successful if and when it uses notations
that directly fit the domain” [VBD+13]. Simplicity and conciseness are essential
for a good concrete syntax.

A large number of model transformation languages is simply based
upon a textual syntax for specifying the relations, for instance QVT-
Operational [OMG08], ATL9, Epsilon10, JTL [CREP10], and VIATRA211. In
contrast, TGGs are typically represented in a graphical form, as explained in
Sect. 2.4.

Discussions between graphical and textual syntaxes are “often heavily bi-
ased by previous experience, prejudice and tool capabilities” [VBD+13]. How-
ever, graphical notations are generally considered good for describing structural
relationships like the highly-structured graph patterns of TGG rules.

To the best of our knowledge, no dedicated user acceptance study has been
performed concerning the concrete syntax of TGGs. However, we have ap-
plied TGG transformations for different application scenarios and case studies,
and many engineers (e.g., student workers, research colleagues) with differing
previous knowledge about model transformation have specified transformations
using our TGG Interpreter tool suite. According to the feedback we re-

9http://www.eclipse.org/atl/
10http://www.eclipse.org/epsilon/
11http://eclipse.org/viatra2/

http://www.eclipse.org/atl/
http://www.eclipse.org/epsilon/
http://eclipse.org/viatra2/

5.3. CONCRETE-SYNTAX-BASED TGG RULES 147

ceived from these users, specifying a model transformation with TGG suffers
from three main issues:

1. It is difficult to understand the potentially complex interplay between the
rules.

2. Rules quickly become verbose and, hence, difficult to understand.
3. Understanding a rule may be difficult, as it requires reading the labels of

nodes and edges, because the used metamodel elements are just referenced
by their (textual) name.

The first issue is mainly due to the declarative character of TGGs. First,
most engineers are unfamiliar with declarative languages in general, because
typical computer science education as well as most software engineering projects
focus on imperative programming. Second, there is no explicit visualization of
the dependencies between rules. We address this issue by a) visualizing rule
dependencies, and b) providing debugging facilities to help the transformation
engineer understand the course of a transformation. See Sect. 5.4 for details on
this topic.

In typical real-world examples, model transformations are used for non-
trivial mappings, which means that the complexity of the mapping is high.
Consequently, the TGG rules often contain a large number of nodes, edges and
constraints. This is the main reason for the second issue.

The third issue is due to the concrete syntax of TGG rules, which is based
upon the abstract syntax of the modeling languages the TGG maps between.12

A concrete syntax of a modeling language can mask parts of the (potentially
extensive and complex) abstract syntax, or can represent it more intuitively.

The latter two issues hold room for improvements. In the following, we
describe how we modify the concrete syntax of the TGG rules, such that we
use the concrete syntaxes of the modeling languages (instead of the abstract
syntaxes).

5.3.1 General Approach

Voelter et al. mention four concerns that may be addressed when designing
a concrete syntax: writability, readability, learnability, and effectiveness. These
concerns may be at least partially in conflict with each other. For instance, a
well-writable concrete syntax may not be equally good in its readability. One
loophole for this problem is to create more than one concrete syntax, each of
them tailored to different concerns or users [VBD+13].

In the previous section, we described that one particular difficulty with
TGGs is the low readability/comprehensibility of rules. In the following, we
argue why creating a second, alternative syntax for TGG rules can mitigate this
problem.

TGG rules can be either represented using the classical graph production
syntax or the compact notation (cf. Fig. 2.25 on page 43 and Fig. 2.26 on
page 44). The compact notation allows a quicker access to the rule due to less

12It is important not to confuse TGGs as a language with the modeling languages the TGG
speaks about. TGGs have a graphical concrete syntax; however, this graphical concrete syntax
reuses the abstract syntax of the modeling languages (in an object-diagram-like style).

148 CHAPTER 5. TGG EXTENSIONS

elements shown. Furthermore, representing corresponding nodes/edges from the
lhs and rhs by a single visual element increases comprehensibility, because the
user can easily capture the morphism between the lhs and the rhs. Therefore,
it is generally reasonable to use this compact notation for reading and writing
TGG rules.

In general, the compact, abstract-syntax-based TGG syntax provides a good
writability and effectiveness for experienced users. However, considering the size
that complex TGG rules have (for instance, see Fig. B.13 on page 222), beginners
as well as experts may have problems quickly understand the mapping a such a
rule. This is because they are unable to cope with the number of elements, and
they are unable to identify the essential parts of the rule, because they cannot
easily map the abstract nodes and edges of the rule to elements of the modeling
languages.

Users of a language typically work only with the concrete syntax of a lan-
guage. In many cases, they have only limited knowledge of the abstract syntax
of their modeling language. Consequently, displaying at least parts of a model-
to-model mapping also with the help of the concrete syntax is likely to improve
the comprehensibility of the mapping for the users. On the other hand, a trans-
formation engineer has to understand the deeper technical aspects of a mapping.
An abstract-syntax-based view of a mapping (like in classic TGGs) is probably
better suited during transformation development.

We provide an additional concrete-syntax-based view for TGG rules that
can be used to quickly understand the mapping of an existing rule. This view
should be automatically generated using knowledge about the concrete syntax
of a modeling language. Such an approach mainly addresses the readability and
learnability aspects of a concrete syntax.

5.3.2 Related Work

Kindler and Wagner [KW07] already suggested using the concrete syntax
in TGG rules. However, they neither describe how to achieve such concrete
syntax TGG rules, nor did they implement it in their tool. They mention that
using only modeling tools based on the EMF/GMF technology may simplify the
development of such a TGG rule editor.

Körtgen [Kör09] presents a rule editor that uses concrete syntax. She gives
examples where this concrete syntax looks briefer and more comprehensible than
an abstract syntax rule. However, this rule editor was specifically designed for
the two modeling language she used; no generalized concept how to use concrete
syntax in TGG rules is given.

Grønmo and Møller-Pedersen [Grø09, GMP09] present a framework
to specify concrete-syntax-based transformation rules, called “concrete syntax-
based graph transformation” (CGT). These rules are not executed directly, but
translated into traditional graph transformation rules. The authors tested the
concept on several modeling languages, and they claim it is a generic concept
applicable to arbitrary modeling languages.

Baar and Whittle [BW07] identify four main differences between models
and patterns that describe models. First, objects in patterns must be labeled

5.3. CONCRETE-SYNTAX-BASED TGG RULES 149

with a unique variable. Second, as patterns usually represents an incomplete
model, well-formedness rules must be ignored. Third, objects in a pattern may
be typed by abstract classes, whereas model objects are always typed by non-
abstract classes. Forth, properties of objects in a patterns can contain variables,
model object only have literals as values. Using this observations, they auto-
matically transform a given metamodel into a metamodel that also works for
patterns; e.g., this is done by relaxing constraints, adding a property for the la-
bel, or making all classes non-abstract. However, the problem remains that for
all those changes, the concrete syntax has to be defined manually. For instance,
they have to create a visual representation for abstract classes.

5.3.3 Concept

The compact notation of TGG rules consist of a context and a produced part,
which are syntactically discriminated by color (b/w and green) and the “++”
markings for produced elements. Generally, rules resemble the appearance of
class or object diagrams. Such diagrams do not contain color, so using green
syntactic elements is easily possible; also they leave room for stereotyping, al-
lowing “++” annotations.

However, the concrete syntax of a certain language may use color as a se-
mantically significant attribute. So coloring the visual elements of the modeling
language cannot be used to distinguish between context and produced node el-
ements. Moreover, there may be no space for additional annotations. Hence,
simply transferring the “produced element” notation of abstract syntax TGG
rules to concrete-syntax-based rules is not possible.

There are two possible alternatives:
• Using a different visual distinguishing feature not used in typical visual

modeling languages, or
• “Boxing” the modeling language elements into classical TGG syntax.
Considering the first alternative, finding such an common unused visual

feature is not trivial. For two-dimensional visual concrete syntaxes, we could
use a third dimension. However, this adds a new visual complexity to the rules’
syntax. This added complexity could undo the positive effects of the concrete
syntax for readability.

Thus, we chose the latter alternative, “boxing” the visual elements into
classical TGG nodes. Instead of showing the nodes type name inside the nodes,
we use the concrete visual syntax. Figure 5.8 illustrates this idea.

Nodes may also have names, which are use to reference the node’s attributes
from a constraint or application condition. Elements of modeling languages
often also have a name, which may also be shown in the concrete syntax of a
modeling language. Therefore, we reuse the name’s representation for showing
the name of the TGG node.

Links between two objects can also have a more complex visual representa-
tion than a simple line. The most common case are containments: Elements
may be hierarchically contained in a parent element. On the metamodeling
level, such containments are just a special kind of reference. Usually, contained
elements are also shown inside the parent element in the concrete syntax. This

150 CHAPTER 5. TGG EXTENSIONS

MML Corresp. Mechatronic UML

se:SystemElement c:Component
:SE2Comp

pm:Package pu:Package:Pack2Pack

packagedElement packagedElement++

++
++

++

++

h:Hybrid

stereotype

++

name:=c.name

se.continuousPorts>0
&& se.discretePorts>0

name:=se.name

++
++

++

se.isSERelevant

«hybrid»

c
se

Figure 5.8: Using the concrete syntax of a modeling language in TGG rules

is, however, difficult to combine with the introduced “boxing” TGG syntax. We
could simply draw the contained element into the boxed parent element. But if
the parent and the contained element do not belong to the same graph pattern
(i.e., one of the is a context element and the other a produced elements), the
user cannot easily recognize this fact. Drawing a TGG node that boxes the
contained element inside the parent element can also be confusing, because the
TGG node’s concrete syntax may be similar to elements of the concrete syntax
of the modeling language. Consequently, we do not draw elements inside parent
elements.

In rare cases, links may be also represented with node-like visual elements.
To cover such cases, we suggest using annotations similar to speech bubbles,
although we did not implement this into our software.

As mentioned above, we designed this concept as an alternative syntax for
TGG rules, primarily intended for getting a quick overview about a rule. It is
likely that it will not ease writing a rule, because the concrete syntax of the
modeling language is only used in the rule’s visual representation, but was not
integrated into the editing tools. Possible future work could be to allow the rule
designer to create TGG nodes using editing tools which also show the concrete
syntax of the modeling language. This could improve rule writability especially
for novice users.

5.4 TGG Debugging
Debugging is generally considered as a key aspect of software development.
Providing debugging support is essential for software development environments
– locating bugs in complex software is not a trivial task. It is also one core part
of providing high quality software. According to Hailpern and Santhanam,
“in a typical commercial development organization, the cost of [...] appropriate
debugging, testing, and verification activities can easily range from 50 to 75
percent of the total development cost.” [HS02]

5.4. TGG DEBUGGING 151

Debuggers of imperative programming languages all follow similar princi-
ples [Ros96]. Typically, they cover all or most of the following features:

• running a program step by step (single-stepping or program animation)
• stopping (breaking) (pausing the program to examine the current state),

mainly using breakpoints
• showing values of variables
• modify the program state, e.g., by changing a value of a variable or the

instruction pointer
Furthermore, modern debuggers provide advanced tools like a query processor,
symbol resolver or an expression interpreter. Some debugger even allow reverse
debugging (also known as “historical debugging” or “backwards debugging”),
which allows the software engineer to reverse the execution steps of a program.

Model transformation languages can be regarded as specialized programming
languages. Thus, they also need debugging support. Model transformation
languages/tools are applied for mappings that are more complex. This, again,
increases the need of sophisticated debugging facilities, as complex mappings
tend to contain more errors and flaws. However, only little research has focused
on this topic [MV11].

In a study of 59 anecdotal (imperative program) debugging experiences,
Eisenstadt found that “53% of the difficulties are attributable to just two
sources: large temporal or spatial chasms between the root cause and the symp-
tom, and bugs that rendered debugging tools inapplicable” [Eis97]. These two
core problem sources are evident in current TGG tools as well. First, a trans-
formation engineer typically has to run the complete transformation to find out
that the result is incorrect. They have no direct clue which rule(s) may have
cause the problem. Second and most importantly, there are no debugging facil-
ities on the level of the TGG ruleset.13 That means, the debugging takes place
either using log output, inside a TGG Interpreter source code, or using code
that was generated from the TGG. Similarly, you could try to find a bug in a
Java program by debugging the resulting byte code and the implementation of
the virtual machine.

Furthermore, TGGs are a declarative specification technique: The ruleset
describes conditions on the result, but not how they can be achieved. The rules
have to hold after a transformation, but the way in which they are enforced
may differ from implementation to implementation. This has immediate con-
sequences for the debugger. For instance, the definition of an “execution step”
cannot be easily defined, as it also can differ between the different implementa-
tions. Hence, the debugging approach should implementation-agnostic, and it
should form a good compromise between representing the declarative specifica-
tion and the actual execution.

First, we give an overview about related work in Sect. 5.4.1. In Sect. 5.4.2,
we introduce a debugging concept for TGGs that provides debugging means on
the level of TGG rules, but also reflects the execution strategy of the model
transformation algorithm. It supports stopping a transformation using break-
points, stepwise execution of the matching process and inspection of the state of

13This gap between the debugging level and the modeling level can also be found in many
industrial applications of domain-specfic modeling approach in general [MV11].

152 CHAPTER 5. TGG EXTENSIONS

the transformation. Ackermann [Ack10] partially implemented this approach
in his Bachelor’s thesis. This live-debugging is complemented with static analy-
ses on the TGG ruleset, which allow identifying potential bugs already at design
time. An evaluation of our TGG debugging concept can be found in Sect. 6.3.3.

5.4.1 Related Work

Debugging concepts and debuggers exist for different model transformation tech-
niques.

Mannadiar and Vangheluwe [MV11] provide an overview about debug-
ging concepts in domain-specific modeling, also covering model transformations.
They translate the ideas of tradition imperative program debugging (like execu-
tion control, runtime variables, breakpoints, and stack traces) to model trans-
formation debugging, but limit themselves to a brief summary of existing ideas
and concepts.

Dhoolia et al. [DMSS10] present a debugging concept tailored towards
model-to-text (M2T) transformations. It is based upon the technique of dynamic
tainting. The approach associates so-called taint marks with source model ele-
ments. These marks are propagated to the output text. In this way, the user
can see which source model elements contribute to a text block in the output.
With such an approach the user of a transformation is able to find errors that
are due to faults in the source model. On the other hand, it is not the best way
for finding bugs in the transformation specification itself. However, conveying
information about the relationship between source and target model elements is
important for many scenarios, including debugging a transformation specifica-
tion. In a model-to-model transformation, similar information can be gathered
using a trace model (like the correspondence graph in TGGs).

Geiger [Gei08] describes an approach how to debug Story Diagrams on
model level. Story Diagrams [vDHP+12, Zün05] are an in-place model transfor-
mation technique whose graphical syntax is similar to TGGs. Basically, they
map code-level constructs to their model-level counterparts. When hitting a
breakpoint, the model-level construct (e.g., the node of a story diagram) is
highlighted in the concrete syntax editor. While this works well for imperative
model transformation techniques (where the transformation definition is more
or less an abstract view of the actual transformation execution flow), such a
mapping cannot be established for declarative approaches.

Forensic debugging, as described by Hibberd et al. [HLR07], records all
atomic operations that a running model transformation performs. After the
transformation finishes, it can be replayed using classical debugging facilities
like step-wise execution. Furthermore, such an approach allows reverse debug-
ging, i.e., stepping backwards in time of the execution. A drawback of forensic
debugging is that it requires memory to store all execution steps of the trans-
formation, and that no alterations to a running transformation can be made
(e.g., changing an object’s property). Furthermore, the transformation engine
has to allow recording every atomic operation (rule selection, single matching
steps, object and link creations etc.).

5.4. TGG DEBUGGING 153

In his doctoral thesis, Schoenboeck [SKK+10, Sch12] presents an extensive
debugging concept for model transformations. It is based upon the novel for-
malism of Transformation Nets (TNs), which is a DSL on top of Colored Petri
Nets (CPNs) [Sch12]. TNs serve as a runtime model for model transformations.
Schoenboeck uses these TNs to perform static analyses on the transformation
specification, e.g., identifying code smells, and to execute the transformation in
a step-wise manner or query information during the transformation. The ap-
proach allows applying sophisticated debugging means independent from a con-
crete model transformation approach. Each transformation formalism has to be
mapped onto TNs to allow applying this debugging approach; in his thesis, he
implemented this mapping for QVT Relations. As a consequence, the transfor-
mation engineer has to learn the concept of TNs, besides profound knowledge of
the transformation approach. This introduces a gap between the transformation
specification and the debugger.

Seifert and Katscher [SK08b] present a first debugging concept for
TGG-based transformations. They argue that first a common notion of an
execution step must be defined, as it is unclear for TGG model transformations.
The propose using debug events, which are defined as a combination of one or
more subjects (e.g., a TGG node) and a context (e.g., matching). We refine
this definition of an execution step for our debugging concept. Although they
mention that they plan on implementing and evaluating this concept, to the
best of our knowledge, no such study or implementation exists, yet.

Until now, no other TGG implementation besides the TGG Interpreter
provides debugging support [LAS+14].

5.4.2 Debugging Concept

In this section, we present our concept for TGG debugging. After describing
the general idea and the details, we discuss how transformation developers can
find different types of bugs using this debugging concept.

When running a transformation that is described in a declarative, rule-based
language, the general layout of the different transformation algorithms is similar:

Repeat
1. Check whether a rule is applicable at a certain

position (‘precondition check’).
2. If the rule passed the precondition check, apply

it (‘enforce’).
until no further rules are applicable.

Besides that general layout, algorithms differ in several aspects:
• Rule scheduling: The order in which the rules are applied is typically not

(always) determined. Thus, the algorithm has to schedule the application
of the rules (cf. Sect. 2.2.2).

• Location determination: Besides the order of the rules, it may also be
undefined where in the model(s) the rule should be checked and applied
(cf. Sect. 2.2.2).

154 CHAPTER 5. TGG EXTENSIONS

• Matching strategy: Determining whether a rule is applicable (“precondi-
tion check”) requires to perform a pattern matching. As pattern matching
is a time-complex problem, different heuristics are applied to guide the
matching.

• Application strategy: Similarly, applying a rule (i.e., creating object/links,
or destroying model objects/links while incrementally updating) can be
performed in different order.

The debugging concept should appropriately reflect these potential differ-
ences between transformation engines. Even if a TGG debugger is only used
in combination with a single transformation engine, the transformation engi-
neer may not know or know exactly how this engine behaves. Consequently,
the debugger should convey the behavior of the engine to the transformation
engineer.

Similar to a debugger of a general purpose programming language, our de-
bugging concepts consists of different layers of granularity. In traditional im-
perative program debugging, this is called the “call stack” (see Fig. 5.9). This
directly reflects the actual program execution, where each executed function call
creates a new stack frame.

Figure 5.9: Stack frames in a Java debugger

Although the pattern matching should be conveyed to the transformation
engineer, the actual debugging of the matching process should not be directly
based on the engine’s implementation. For instance, the debugger should not
show the stack frames of a depth-first search it performs for pattern match-
ing, like in Fig. 5.9, where we see three (recursive) calls within the depth-first
search inside the GraphMatcher. Instead, it should focus on the current state of
the pattern matched so far, as this is the most important information for the
transformation engineer.

5.4. TGG DEBUGGING 155

We developed a hierarchy of transformation execution steps, which we use
to structure the debugging events. This hierarchy is not build upon the stack
frames within the engine during execution, but on the logical execution steps of
a transformation. Figure 5.10 shows this hierarchy of transformation execution
steps.

Transformation
Source Model
Target Model
Correspondence Model

Initialization RulePRepairing
Rule

RulePExecution
Rule

Finalization

Change
Detection

Node
Edge

Match
checking

Repair
Node
Edge
Constraint

Revocation
Node
Edge
Constraint

Rule
Selection

Rule Candidates
Selected Rule

Rule
Matching

Matching
 [Nodes, Edges]

Rule
Application

Final Matching
 [Nodes, Edges]

Store
File

Constraint
Checking

Constraint

Enforce
Node
Edge
Constraint

Pattern
Matching

Current Matching
 [Nodes, Edges]

Type
Checking
Node
Edge

Property
Checking
Node
Edge

Constraint
Checking

Constraint
Appl. Condition

P“StackPFrame”
level
0

1

2

3

4 Node
Selection

Candidates
Selected Node

Figure 5.10: Hierarchy of transformation execution steps

On top, there is the complete transformation itself. An execution step on level
n consists of other, more fine-grained execution steps on level n+1. For instance,
a transformation (level 0) consists of the steps initialization, rule repairing, rule
execution, and finalization (level 1). These steps again have more detailed sub-
steps.

When debugging an imperative program, there are different sets of vari-
ables in each stack frame. Similarly, each execution step of a transformation
has different properties associated with it. These properties are also shown in
Fig. 5.10. For instance, properties of the transformation are its input, output,
and correspondence model. During pattern matching, the properties are the
variables of the pattern, i.e., the nodes and edges of the current TGG rule. The
values of a variable is the object (or the link) matched to that node (or edge).

All properties of the hierarchy represent the current state of a transforma-
tion. A transformation engineer can use these properties to inspect the trans-
formation when it is suspended, similar to classical debuggers.

This set of execution steps can also be extended based on special features of a
transformation engine. For instance, when processing changes for an incremental
update, an engine can alter the order in which the changes are processed, e.g.,
such that changes are ordered “top-down” to improve performance [GH09]. In
such a case, it is reasonable to add an additional execution step processing
ordering below rule repairing. The execution steps shown in Fig. 5.10 can be
regarded as a common subset reflecting the capabilities of most engines.

5.4.2.1 Debugging Events

Developers can use breakpoints to pause a running program when a certain
event occurs. Examples of such events in imperative programming languages

156 CHAPTER 5. TGG EXTENSIONS

are line hits (which are the subject of line breakpoints that pause the execution
when the execution reaches a particular line in the source code), or exception
throws (which are the subject of exception breakpoints that pause the execution
when a particular exception is thrown).

Seifert and Katscher [SK08b] provide a first idea of a concept for events
in model transformations. They define an event by a subject and a context. For
instance, the subject can be a node, a rule, or a constraint. The context is
the situation in which the subject is processed, e.g., pattern matching or rule
application. However, they do not elaborate further on this idea.

For our debugging concept, we reuse this subject-context idea and further
extend it. It is obvious that not every combination of subject/context is rea-
sonable. For instance, a constraint (= subject) cannot be processed during rule
application (= context). However, our hierarchy of execution steps already de-
fines which subjects belong to which contexts. If we think of an execution step
as the context, the properties of an execution step are its valid subjects.

Consider the pattern matching execution step. Its properties are the nodes
and edges already matched. In this context, we would like to allow the trans-
formation developer to interrupt the transformation

• when a particular node/edge is matched onto an object/link, and
• when a particular object/link is matched by a node/edge.

In other words, we want to monitor a particular property for changes, and we
want to detect when particular values are to be assigned.

To summarize, we define a model transformation debugging event by
1. a transformation step, e.g., pattern matching,
2. a property, e.g., a node to be matched, and
3. a value, e.g., an object matched to that node.

5.4.2.2 Breakpoints

Breakpoints are defined using debugging events. A breakpoint has to define
a transformation step in which it may hit. The property and the value are
optional. For instance, a breakpoint could hit every time a particular node is
to be matched regardless of the object that it is matched on. This provides a
transformation engineer with enough flexibility in defining breakpoints, allowing
to debug all aspects of a model transformation.

Whenever an event occurs during the execution of a transformation, the
transformation engine sends information on occurring events to the debugger.
The debugger then checks whether one of the defined breakpoint fits to the
current event. In this case, it suspends the running transformation and shows
its current state in the debug view, using a visualization of the execution step
“stack frames” and a view of the properties.

5.4.2.3 Visualization of the Transformation State

Every state of the transformation can be represented showing the current execu-
tion step “stack frames”, the respective properties and their values. The debug
view shows this information at the top. However, just presenting a simple list

5.4. TGG DEBUGGING 157

of properties may not be intuitive in every transformation step. Therefore, we
suggest more specific views for some transformation steps.

Considering intra-rule bugs, the most important view is the pattern match-
ing view. It is based on the concrete syntax of the TGG rules (see Fig. 5.11).
When the execution of the pattern matching hits a breakpoint, the lower part
of the view shows the TGG rule that is currently matched. Its nodes are an-
notated with their current matching state. Matched nodes get a yellow circle
with a number added to a corner. The number shows the depth of the matching
progress, indicating the order in which the matching took place. The node cur-
rently processed is additionally shown with a orange border. Unmatched nodes
are shown without annotations.

cc:CodeContainer

CONSENS Corresp. Mechatronic UML

c:Component:SE2Comp

pm:Package pu:Package:Pack2Pack

packagedElement
packagedElement

++

++
++ ++

++

ct:Controllerstereotype
++

name=se.name cd:CodeDescriptor++

opaqueBehavior

++
++

++

++

name=c.name

se.continuousPorts>0
&& se.discretePorts=0

se.isSERelevant

se:SystemElement

++
++

Stack View Properties View

Rule View

Transformation
Rule Execution
Rule Matching
Pattern Matching
Node Selection

Candidates =

Selected Node =

[HazardDetection:SystemElement,
DistanceSensor:SystemElement, ...]

HazardDetection:SystemElement

1 23

4

Figure 5.11: Mock-up of the Pattern Matching Debug View

For visualizing rule-related information, we use a rule dependency view. This
view is shown for the steps rule repairing, rule execution, and rule selection (see
Fig. 5.12). It contains a representation of all rules in the ruleset. The rules are
connected based on their dependency: The produced part of rule R2 may be
(partially) contained in the context of rule R1. I.e., R1 depends on R214. These
dependencies are computed by a static analysis of the ruleset. More specifically,
we search for pairwise overlaps in the produced and context parts of rules. For
implementation details on the analysis, we refer to Sect. 6.1.2.

5.4.2.4 Stepwise Execution

In most imperative debuggers, we find the following functions to stepwise exe-
cute the program.

14A rule R1 can depend on several rules R2, R3, However, this does not mean that all of
these rule have to be successfully applied in order to apply R1. For instance, if both R2 and
R3 have the same produced part, it is sufficient that only one of them was applied before.

158 CHAPTER 5. TGG EXTENSIONS

Stack View Properties View

Rule Dependency View

Transformation
Rule Execution
Rule Matching
Pattern Matching
Node Selection

Rule = SystemElement2Controller

SystemElement2HybridComponent

SystemElement2DiscreteComponent

InformationFlowPort2ContinuousPort
InformationFlowPort2DiscretePort

System2StructuredComponent

SystemElement2Controller

Figure 5.12: Mock-up of the Rule Dependency Debug View

• Step In: If the current execution pointer is at a function call, we call this
function (opening a new stack frame), step into it and halt at the first
instruction of that function. If not, the behavior is like Step Over.

• Step Over : Execute the current instruction (regardless of its nature) and
halt at the next instruction on the current function (stack frame).

• Step Out: Resume the execution of the function until it returns to its
caller. Halt at the next instruction of the caller function.

• Resume: Resume the execution.
Similar to this classical imperative program debugging, we provide means

for a stepwise execution of a transformation when it is suspended. Basically,
they resemble the behavior of the respective functions of imperative debuggers,
transferred to our “stack frame” concept of execution steps (cf. Fig. 5.10). For
instance, using the Step In function when in pattern matching, we descend to
level 4 of the hierarchy, performing the type checking etc. Using Step Over
instead, the execution steps of level 4 would be executed en bloc, halting again
at the next pattern matching step (i.e., a new node or edge to be matched).

Using these stepwise execution facilities, a transformation engineer can easily
switch between the hierarchy levels, depending on the current aspect that is
debugged.

CHAPTER 6
Realization and

Evaluation
Contents
6.1 Implementation . 159

6.1.1 Incremental Bidirectional Synchronization Algorithm 162
6.1.2 Static Analyses . 165
6.1.3 Correspondence View . 167
6.1.4 Rule Backtracking/Look-Ahead 169
6.1.5 Abstraction and Concretion Relations 170
6.1.6 TGG Syntax Extensions . 172
6.1.7 Constraints and Application Conditions 174
6.1.8 TGG Debugging . 176

6.2 Model Transformations . 176
6.3 Evaluation . 179

6.3.1 Incremental Updates with Element Reuse 179
6.3.2 Bidirectional Synchronization . 182
6.3.3 TGG Debugging . 183

In this chapter we describe how we implemented the approaches described
in the previous chapters and present some evaluation results. In Sect. 6.1, we
provide details on the software architecture, implementation, and algorithms.
Section 6.2 gives an overview about the model transformations implemented in
the scope of this thesis. Finally, Sect. 6.3 provides evaluation results, e.g., on
the performance of our algorithm.

6.1 Implementation
We implemented our approach using the TGG Interpreter tool
suite [UPB14]. The TGG Interpreter is a model transformation engine
that uses Eclipse/EMF/ GMF technology. It consists of the model transfor-
mation engine (“interpreter”), which performs the actual transformations, and

159

160 CHAPTER 6. REALIZATION AND EVALUATION

transformation specification tools, which can be used to graphically model the
TGG rules.

A first implementation of a TGG Interpreter goes back to 2004 [KRW04].
This tool was redesigned in 2006 by Greenyer [Gre06]. The TGG Inter-
preter implementation that was used in this thesis was completely rewritten
in 2009, using the experience gained with the first interpreter. In this thesis, we
always refer to this latest implementation with the term “TGG Interpreter”.

Figure 6.1 shows the rule editor that is part of the TGG Interpreter
tool suite. After executing a transformation, the TGG Interpreter shows
an overview of the rules that have been checked, revoked and/or applied (see
Fig. 6.2).

Figure 6.1: Screenshot of the rule editor of the TGG Interpreter tool suite

The TGG Interpreter tool suite has an architecture that consists of
several components. This architecture is shown in Fig. 6.3. The colors denote
whether a component was created or modified in the course of this thesis, or
whether it already existed before.

In general, each component also forms an Eclipse plug-in. Eclipse plug-
ins are singletons, i.e., there exists at most one instance. Interfaces between
components are implemented using the extension point mechanism. A plug-in
can define an extension point. Other plug-ins can register at that extension
point; they are called extensions. Typically, an extension point also specifies

6.1. IMPLEMENTATION 161

Figure 6.2: Incremental update result overview dialog

TGG

Metamodel

Debug
Provider

Legend

Port

Provided
Interface

Required
Interface

Transformation

Configuration

Metamodel

TGG Analysis

Metamodel

Debugging

Metamodel

TGG Editor

TGG

Interpreter

TGG OCL

Constraints

Debug

Manager

TGG Analysis

Debugger
Correspondence

View

Refinement

Processor

Dependency

Debug
Events

Execution
Control

Existing
Component
Modified
Component
New
Component

EMF Compare

Figure 6.3: Architecture of the TGG Interpreter Tool Suite

162 CHAPTER 6. REALIZATION AND EVALUATION

an interface that an extension has to fulfill. For instance, there is a Debug
Manager component that is extended by the Debugger (cf. Fig. 6.3). The Debug
Manager specifies an interface that the Debugger has to implement. Therefore,
the Debugger provides this interface, and the Debug Manager requires it.1

When designing the architecture, we focused on modularity and tried to
minimize dependencies between different components. Especially, we separated
the components necessary for executing a transformation (mainly the TGG In-
terpreter) from the TGG design components (TGG Editor, TGG Analysis, TGG
Refinement Processor). When integrating a transformation into a software prod-
uct, only the TGG Interpreter component and the TGG Metamodel have to be
deployed.

In the course of this thesis, the TGG Interpreter tool suite has been
extended at several points. The implementation of these features are described
in the following sections. The novel incremental synchronization algorithm was
implemented in the TGG Interpreter. It is described in Sect. 6.1.1. Section 6.1.2
explains the static analyses on the TGG ruleset, which form the TGG Analysis
and TGG Analysis Metamodel components. The Correspondence View (described
in Sect. 6.1.3 was implemented as a new component. Section 6.1.4 describes rule
backtracking facilities. The Refinement Processor integrates refinement rules into
an existing (functional) ruleset, as described in Sect. 6.1.5. We incorporated ex-
tensions to the syntax into the TGG Editor, mainly the usage of the concrete
syntaxes of modeling languages (cf. Sect. 6.1.6). The TGG OCL Constraints
component performs the constraint processing, as described in Sect. 6.1.7. Fi-
nally, Sect. 6.1.8 describes the implementation of the debugging facilities (Debug
Manager, Debugger, Debugging Metamodel).

6.1.1 Incremental Bidirectional Synchronization Algorithm

Figure 6.4 shows the activities of the complete model synchronization algorithm
that includes bidirectional, conflict-resolving change propagation. The back-
ground colors in this figure denote the different phases of the approach:

1. Non-conflicting forward propagation: First all source model changes that
are guaranteed to be non-conflicting are propagated to a new version of the
target model. We use a slightly modified version of the incremental update
algorithm here. This algorithm revokes rule applications that have become
invalid due to source model changes. This can create a chain of revocations
if further rule applications depend on this revoked application. Therefore,
we try to reapply the same or another rule at this position in order to
repair the context of dependent rule applications. A revocation is undone if
contexts of dependent rule applications that contain target model changes
cannot be repaired. See Sect. 4.3.4 for details. Finally, we try applying
new rules for elements added or not yet translated (call behavior apply
rule). It may happen that we ask the user to choose between different reuse
possibilities. Note that these decisions are not due to editing conflicts; they
help minimizing the amount of information loss due to the information not

1Note that there also is an interface that allows the extension to register at the extension
point. This is omitted in Fig. 6.3 for brevity.

6.1. IMPLEMENTATION 163

identify source &
target changes

determine potentially
conflicting changes

Legend

name

user conflict
resolution

name

Call behavior
indicator

Action

Flow

Object

Initial node

Final node

virtual
ancestor

conflict

check pattern
structure

revoke rule
application

check attribute
constraints

propagate
attribute changes

[unchecked source
model changes left]

[pattern structure
invalid]

check constraints

[constraints
invalid]

try applying rule
for affected elem.

[rule applicable]

[no target changes in
dependent rules OR

all contexts of dependend
rule applications restored] revert rule

revocations

[condition] Decision condition

3-way
diff/merge [no more conflicts]

check pattern
structure

revoke rule
application

check attribute
constraints

propagate
attribute changes

[no more unchecked
rules left]

[unchecked rule
applications left]

[pattern structure
invalid]

check constraints

[constraints
invalid]

apply rule

incremental update

incremental
update [forward]

incremental
update [backward]

non-conflicting
forward

propagation

conflicting
forward propagation

conflict
resolution

backward
propagation

[no more rules applicable]
apply rule

[rules applicable]

destroy elements still
marked for deletion

apply rule destroy elements still
marked for deletion

Decision/Merge

[unprocessed non-conflicting
source model additions left]

updated
target model

search for partially
matching patterns

find rule
matching

[matching
found]

[> 1 possibilities found &&
user decision required]

reuse pattern &
create remainder

create
rule remainder

[else]

user decision

apply rule

[for each
pattern found]

[look-ahead]
apply rule

[rules applicable]

Figure 6.4: Activity diagram of the complete (bidirectional, conflict-resolving)
model synchronization

164 CHAPTER 6. REALIZATION AND EVALUATION

subject to the transformation. The result of this phase is a virtual common
ancestor that already contains non-conflicting, merged changes.

2. Conflicting forward propagation: For the remaining changes, we cannot
be sure that they do not cause a conflict. As a second step, we propagate
these remaining changes to a new version of the target model, using the
virtual common ancestor as a basis for the propagation. To do so, we call
the behavior incremental update.

3. Conflict resolution: Third, we run an external 3-way diff/merge tool. For
each conflict that cannot be solved automatically, we let the user decide
how to deal with the conflict. In our implementation, we use EMF Com-
pare [Ecl13] as model diff/merge tool. It takes three model files as input:
the virtual common ancestor (result of the first phase), the user-edited
target model (omitted in Fig. 6.4), and the target model updated with
the user edits from the source model (result of the second phase). We
call EMF Compare in order to automatically merge the changes. In
case that there are conflicts that cannot be solved automatically by EMF
Compare, we open the EMF Compare user interface so that the user is
able to resolve the remaining conflicts manually.

4. Backward propagation: Once all conflicts have been resolved, we run a
backwards incremental transformation. As all potential conflicts have been
resolved previously, no conflict resolution is required in this step. However,
it may still be necessary to involve the user in cases where we cannot
automatically decide between different reuse possibilities.

Next, we explain implementation details of different activities.
When using TGGs for model-to-model transformations, we try to find a

way to derive the existing source model using the TGG rules. We create the
correspondence and target model parts according to this derivation. TGGs are
constructive graph grammars, i.e., they only produce new elements. Thus, when
searching for a derivation, we use the existing source model elements to guide
the search. We emulate applying a rule by finding the source produced parts of
that rule in the source model, and remembering which source model elements
have been (virtually) created by that rule. The different TGG implementations
chose varying ways to implement this “bookkeeping”.

Some TGG transformation approaches (like Wagner et al. [Wag09,
KW07], MDELab/MoTE2 [GH09]) do not explicitly store that a produced model
element has been covered by a rule. Instead, they require that every produced
node must be referenced by a correspondence link. When a rule is applied, this
rule application creates one or more correspondence nodes that link to the model
elements that have been already translated. The advantage of such an approach
is that it does not require additional space to store the “is already translated”
property of objects. A major drawback is that we cannot reference links. Con-
sequently, such an approach does not allow rules that contain only edges in the
produced pattern: Such a rule would be applicable infinitively often, because it
does not “consume” any source model elements.

2www.mdelab.de/mote

www.mdelab.de/mote

6.1. IMPLEMENTATION 165

The TGG Interpreter and eMoflon3 [KLKS10, LAVS12a] explicitly store
which elements have been translated. While eMoflon simply stores a “is already
translated” flag for all source model elements (including links), the TGG In-
terpreter explicitly store so-called bindings. A binding contains which model
element was matched by which TGG node/edge. While the drawback is the
increased required storage space, its advantage is that we know which rule was
applied to which model elements. When checking if a rule still holds during
incremental update, we do not have to perform a pattern matching again to
find the applied rule. Instead, we just have to check whether all rule elements
still exist and all constraints hold. The time complexity of this check, therefore,
is linear to the size of the input model, important especially when incrementally
updating huge models.

It is also conceivable to use deltas4 as input. Using these deltas, we know
which parts of the models to check for consistency, because only rule applica-
tions at changed parts could have become invalid. This eliminates the need for
checking all rule applications. However, not all design tools support deltas. Fur-
thermore, deltas can only be generated easily during single-user editing sessions.
Maintaining correct deltas when multiple users edit a model requires further ef-
fort and is typically not supported by existing collaboration/revision control
tools. Thus, we decided not to implement this in our TGG Interpreter, yet.

6.1.2 Static Analyses

We implemented two static analyses on TGG rulesets. The first improves the
evaluation of constraints, the latter yields information on the relationship be-
tween different rules. First, we analyze OCL constraints for the information
they use, in order to find the best point in time for their evaluation during
rule matching. Second, we use a critical pair analysis (CPA) to identify poten-
tially conflicting rules, i.e., rules whose application prevents the application of
other rules. A dependency analysis shows the preconditions of a rule, i.e., which
rule(s) can form the context of this rule.

6.1.2.1 OCL Constraints

A node’s name can be used as a OCL variable for the object that is matched
to the node. This allows accessing the object’s properties and references. In
this way, the transformation engineer can specify application conditions and/or
invariant constraints on the actual matched objects.

A naive solution for constraint processing is to perform a complete pattern
matching, which only evaluates the object structure in the host models, and
then to evaluate the constraints afterwards. If the constraint evaluates to false
eventually, the pattern matcher has to try finding another matching. The later
the decision that lead to the non-fitting matching, the better, because this

3www.emoflon.org
4A delta describes a single change in a model, i.e., at which positions and how a model

has changed. A set of deltas describes all changes between two model versions, comparable to
a diff in a text file.

www.emoflon.org

166 CHAPTER 6. REALIZATION AND EVALUATION

reduces the necessary time for finding the new matching. However, we do not
know at which point to take another matching decision.

The opposite way is to evaluate the constraints every time we enlarge the
matching (by a new object-node match). This obviously can make a constraint
non-processable, because not all variables (=nodes) have a value (= object),
yet. Thus, evaluating an unprocessable constraint wastes time.

As solution, we analyze all constraints to find out which nodes they reference.
We then evaluate a constraint not before all required nodes have been matched.
This eliminates the time wasted on futile evaluation attempts, while noticing a
matching decision that is invalid due to the constraint as early as possible.

The information from the constraint analysis is also used in computing rule
dependencies.

6.1.2.2 Rule Dependencies

Rule conflicts can be identified using critical pair analysis (CPA) [HEGO10,
HEOG10]. CPA has first been introduced for term rewriting, and later was
adapted for graph transformations. The underlying idea of CPA is to find a
minimal example that potentially forms a conflict [MTR05, LEO08].

Because TGGs only contain non-deleting graph transformation rules, CPA
becomes simpler than in the general case: We only have to consider a) overlaps in
the produced part of two rules, and b) rules producing elements that contradict
a NAC of a rule.

Considering overlaps in the produced parts, not every overlap constitutes
a conflict: The context of the overlapping rules can make their applicability
disjoint. However, we require information from the metamodel to decide this.
Figure 6.5 shows an example of such an assumed critical pair. There is a node
of type SystemElement in both TGG rules. Thus, an object of this type could
potentially be translated by both rules. However, if we also consider the meta-
model, we see that the class SystemElement has the same opposite role parent for
both produced references packagedElement and containedElement. An object of
type SystemElement can either be packaged in a Package or contained in another
SystemElement. Thus, these rules are not in conflict.

Considering rule applications that invalidate the NAC of another rule, such
an analysis is more difficult. The problem here is that we use OCL to express
NACs. OCL is a powerful language allowing highly complex conditions. It is, in
general, undecidable. Especially problematic is that OCL constraints can navi-
gate out of the scope of a TGG rule; for instance, an OCL constraint can refer
to elements “far away” from the current rule context. At the drawback of not
identifying some potential conflicts, we restrict the analysis of OCL constraints
to a few frequent cases (e.g., a forbidden link) and to the scope of the TGG
rule. However, we allow manual changes to the identified rule conflicts by the
transformation engineer. In this way, the engineer can manually specify poten-
tially conflicting rules (or remove a falsely identified conflict when a constraint
resolves a rule conflict).

We compute the preconditions for a rule similarly. For a rule to be applied,
its context must be bound, i.e., another rule application must have previously

6.1. IMPLEMENTATION 167

CONSENS

TGG0Rule0TopSystemElement2Component

Corresp.

:SE2Comp

pm:Package :Pack2Pack

packagedElement++

++
++++

se:SystemElement

CONSENS

TGG0Rule0SystemElement2Component

Corresp.

:SE2Comp

:SystemElement :Pack2Pack

containedElement++

++
++++

se:SystemElement

SystemElement

Package

packagedElement
containedElement

0..*

1

critical-pair
candidate

CONSENS0Metamodel
(excerpt)

1

0..*

parent

parent

Figure 6.5: Critical pair analysis: Example for a critical pair that does not
constitute a rule conflict

produced objects that are now to be matched by the context.
Figure 6.6 show a screenshot of the rule dependency visualization. You can

also see “false positive” conflicts (due to OCL constraint that have not been
considered in the analysis) between the rules that translate different of system
elements.

Figure 6.6: Screenshot of the rule dependency analysis

6.1.3 Correspondence View

To improve the change propagation, we have developed the Correspon-
dence View, which was implemented in the course of the project group

168 CHAPTER 6. REALIZATION AND EVALUATION

SafeBots II [AGL+12]. It shows both models that we want to synchronize in two
separate windows using their respective concrete syntax editors (cf. Fig. 6.7).

Figure 6.7: Screenshot of the correspondence view showing a CONSENS active
structure and a MechatronicUML component diagram

The buttons in the center between the two editors execute different func-
tions. The topmost button saves both models. The next two buttons trigger
a transformation/incremental update in the respective direction. The mode of
the transformation is set be the following three buttons: incremental update,
update only the selected elements, and complete (re)transformation.

The next button shows overlay highlights on the elements in the editors that
indicate which elements have been added or modified in the last transformation
run. The “Corr” button enables an overlay that shows the corresponding ele-
ment(s) in the other model for the currently selected element(s). In Fig. 6.1, the
information flow gps2com between the GPS and the Communication Module sys-
tem elements is selected, and you see the corresponding connector highlighted
with yellow arrows in the component diagram on the right.

The lower two buttons trigger a layout propagation. When initially gen-
erating a discipline-specific model, it is reasonable to layout it similar to the
discipline-spanning system model. This makes it easier for engineers that work
with different, but related models to communicate, because they identify corre-
sponding elements more quickly.

The layout algorithm is based on the concept of von Pilgrim [vP07]. It
consists of three phases:

1. Clustering: For each node in the source diagram, we identify its source el-
ement. Using information from the correspondence graph, we can identify
the corresponding elements in the target model. There may be several ele-
ments in the target model corresponding to a single element in the source

6.1. IMPLEMENTATION 169

model (e.g., this often happens in transformations from an abstract to a
more concrete model). For each node, we create a cluster. This cluster
contains all corresponding target elements. We place each cluster at a
location equal to position of the source node.

2. Arranging and scaling of internal nodes: If a cluster contains more than
one target model elements, we have to internally arrange the cluster ele-
ments. As we do not have layout information from the source diagram, we
simply arrange them equidistantly on a circle. Next, we scale the circle
such that no cluster element overlaps another.

3. Diagram scaling: Finally, we scale the complete diagram such that no
overlaps occur between nodes.

Lines (connections) between nodes are not explicitly considered; they occur
as direct connections between the respective nodes in the target diagram. This
can lead to lines that unnecessarily cross each other. As a possible extension,
we could include an automatic layout algorithm for the lines, or we could also
propagate the layout information of lines from the source diagram in cases where
manually defined bend points exist.

6.1.4 Rule Backtracking/Look-Ahead

There may be more than one rule that is applicable to translate a certain source
model element. This is called a rule conflict5. Each time such a rule conflict
occurs, the TGG Interpreter has to decide which rule to apply. Other ap-
proaches like MDELab/MoTE deal with this problem by explicitly forbidding
TGGs with rule conflicts [GHL14], so there will never be such decisions. How-
ever, we would like to support also non-functional rulesets.

Depending on the rule that is applied the final transformation result varies,
because the rules produce different correspondence/target model elements.
However, situations exist where the final result does not depend on the ap-
plied rule. Assume that rules A and B are in conflict. Applying rule A makes
rule C applicable, and applying rule B makes D applicable. If the application of
A, C leads to the same transformation result as B, D, we say that the rules are
confluent.

The critical pair analysis (CPA, cf. Sect. 6.1.2) yields information on po-
tentially conflicting rules. Using this information, the TGG Interpreter can
distinguish between a) rules that do not have an alternative, and b) potentially
conflicting rules. The latter requires a heuristics-based or user decision to select
the rule to be applied.

When executing a transformation, it is reasonable to first only try apply-
ing rules that do not have conflicting rules. For potentially conflicting rules, we
check whether any of the alternative, conflicting rules is also applicable for parts
of or the complete identified matching. The CPA identifies which nodes/edges
in the two conflicting rules constitute a critical pair. For each critical pair, we
rerun the pattern matching, starting with the critical pair’s other node/edge. If

5The same holds for reusable nodes and edges: Such a reusable node or edge can be
interpreted as context or produced node. In other words, each interpretation of a reusable
node/edge creates a new rule, and all of these rules may be in conflict with each other.

170 CHAPTER 6. REALIZATION AND EVALUATION

the matching is successful, this is in fact a conflict: Both rules can be applied,
and both rules use at least one identical object or link. In this case, the trans-
formation is likely to be non-functional, and we have to decide which rule to
apply.

The TGG Interpreter computes the result for all conflicting rules, i.e.,
we create a branching point in the rule application list, and for each conflicting
rule, we create a separate branch. Furthermore, the TGG Interpreter imme-
diately proceeds and applies further rules for all of the branches. An adjustable
parameter look-ahead defines how far it should advance, i.e. how many rules
should be applied.

This approach may sort out confluent situations or incomplete transforma-
tion results. Figure 6.8 shows an exemplary rule application search tree. Rules 1,
2, and 3 are applicable at the branching point. When performing a look-ahead,
applying rule 2 or 3 leads to the same state after a consecutive application of
rule 4 or 5 (confluency). Applying rule 1 leads to an incomplete transformation
result, i.e., not all source model elements can be translated. In this case, we can
avoid asking the user with a look-ahead of 2.

Start of the
transformation

Axiom

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6

Rule 6 ✓

✗

Axiom

Legend
Transformation state

Rule application ✗

✓ Complete transformation

Incomplete transformation

Branching
point

Figure 6.8: Exemplary rule application tree

Technically, we implement this using the EMF Model Transactions frame-
work. A transaction encapsulates each rule application (the creation of nodes
and edges, plus the binding). A transaction can also easily be undone/redone.
When the TGG Interpreter finished computing one branch, we undo the
rule applications of this branch to get back to the branching point. From
there on, we can compute the next branch. However, allowing backtrack-
ing is computationally complex. Furthermore, altering the models using the
Model Transactions framework introduces further overhead. Therefore, rule
backtracking/look-ahead is not active by default.

6.1.5 Abstraction and Concretion Relations

As described in Sect. 4.2, we want to define a functional transformation def-
inition I, and then combine it with a set of refinement rules op1, op2, ... to
automatically generate the actual consistency relation R.

The initial transformation function I and the consistency relation R is de-
fined using TGGs. For the definition of the refinement rule, we chose Story Dia-

6.1. IMPLEMENTATION 171

grams, a graphical in-place model transformation language [Zün05, vDHP+12].
One reason for us to choose Story Diagram is that their syntax is very similar
to the compact syntax of TGG rules: Context nodes and edges are in black and
white, and produced parts have a green outline. In contrast to TGGs, Story Di-
agrams also allow the deletion of elements by destroy nodes and edges, denoted
in red. OCL is also used as constraint language in Story Diagrams. This sim-
plifies the conversion of story diagram constraints to TGG constraints, which is
necessary for generating the consistency relation R. Nevertheless, other model
transformation languages like, for instance, Henshin6 are also suitable to define
refinement rules.

Figure 6.9 shows the technical concept of our solution. We assume that the
target language B is the more concrete language, so the refinement rules are
defined for that language. The story diagrams define how a concrete instance
of the target model can be changed without consequences for the source model.
The story diagrams are typed by the target metamodel (“typed by” relation in
Fig. 6.9).

Metamodel
Language B

Metamodel
Language A

Refinement Rule
(Story Diagram)

typed by

TGG Refinement Rule
(Story Diagram)TGG Refinement

Transformation

Story Diagram
Metamodel

instance of

Initial
Transformation I

Consistency
Relation R

typed by
TGG

Metamodel

instance of

typed by

typed by

instance of

typed by

instance of

instance of

typed by

Figure 6.9: Technical concept for generating the consistency relation R from
the initial transformation I and the refinement rules

To include the refinement information, we want to apply these rules to our
TGG ruleset. To do so, we try to apply the refinement rules to the produced
target pattern of all TGG rules in the initial transformation ruleset I. The
result will be a TGG rule that produces the right-hand side of the refinement
rule in the target domain (which is the refined state of the target model). We
do not want to modify the original rule, because it is still part of the consistency
relation. Therefore, we do not alter existing TGG rules, but create a copy of
the TGG rule in which the refinement rule was applied.

The story diagrams have to be converted such that they work on the TGG
metamodel. This conversion is performed by a model transformation, which is,

6Website: https://www.eclipse.org/henshin/

https://www.eclipse.org/henshin/

172 CHAPTER 6. REALIZATION AND EVALUATION

again, implemented using TGGs (“TGG Refinement Transformation”). Gen-
erally, this transformation performs a 1-to-1 mapping for all constructs of the
Story Diagram language. When dealing with types, some of the rules imple-
ment a more complex mapping. The rules of this transformation can be found
in Appendix B.

The result of applying the modified story diagrams to the initial ruleset I is
the consistency relation R. It contains all refinements defined by the refinement
rules. A model synchronization based on this consistency relation recognizes
refinements to the target model by a matching TGG rule for this refinement.

Right now, the implementation does not support cases where a refinement
rule is so complex that it affects several TGG rules at once. However, this can
be achieved using a trick. The types of nodes in the refinement rule (story
diagram) identify potentially affected TGG rules. Using the information from
the rule dependency analysis (cf. Sect. 6.1.2.2), we can create amalgamated rules
that consist of a combination of single TGG rules by “gluing” them together
at nodes of the same type. Then, the TGG refinement rules can be applied to
these amalgamated rules as before.

6.1.6 TGG Syntax Extensions

We developed a concept for incorporating the concrete syntax of the referenced
modeling languages into the TGG rule editor (see Sect. 5.3 for details). Support
for concrete syntax TGG editing has been implemented in the course of the
project group SafeBots II [AGL+12].

Figure 6.10 shows an example of the TGG rule editor showing the rule
SystemElement2Component of the transformation from CONSENS to Mecha-
tronicUML. At the bottom, the rule designer can switch between the classic,
object-diagram-style rule editor and the new editor using the concrete syntax
elements from the respective modeling languages.

The Graphical Editing Framework (GEF) is the de-facto standard for visual
editors for modeling languages within Eclipse. When using the Eclipse Modeling
Framework (EMF), the Graphical Modeling Framework (GMF) provides a con-
venient, model-driven development approach for defining the graphical syntax
of a modeling language and generating a graphical editor for it. GMF is build
upon GEF, i.e., a generated GMF editor internally uses GEF for displaying the
graphical syntax. The TGG Interpreter and the TGG rulesets use EMF as
the underlying (meta-)modeling technology. Consequently, our TGG rule editor
uses GMF/GEF.

Our implementation only supports GEF-based editors to be incorporated
into the TGG rule editor. Although other frameworks or even manually im-
plemented graphical editors could theoretically be used within our concept, it
is technically difficult to do so. GEF provides a uniform way of accessing the
visual notations of elements; this may not be the case for other frameworks/im-
plementations. Furthermore, the way in which other editor frameworks draw
graphical elements may be incompatible with GEF.

GEF-based editors store the visual representation with different means. For
instance, there could be a class that contains the complete representation for

6.1. IMPLEMENTATION 173

Figure 6.10: Screenshot of the TGG rule editor using the concrete syntax of the
modeling languages CONSENS (left) and MechatronicUML (right) [AGL+12]

each modeling construct; it is then instantiated once for each instance of the
modeling construct. The representation could also be manually constructed us-
ing anonymous classes; in such a case, there is no way of accessing this class from
outside the editor. Therefore, the only uniform way of accessing the concrete
syntax is to create a real instance of a class and use the getFigure() method
of its GEF edit part.

For rendering the concrete-syntax TGG rule, we proceed as follows. For
each TGG node in the TGG rule, we:

1. identify the corresponding metamodel type (class) of the respective mod-
eling language,

2. create an instance of that class,
3. use the corresponding visual editor (more specifically: the view provider)

for this modeling language to create the visual representation,
4. create an edit part for the instance using the modeling language’s edit

part provider,
5. append the edit part’s figure (getFigure()) to the TGG node’s GMF

runtime notation node.
In this way, we keep the outer visual representation of a TGG node (the b/w or
green boxes), but it now contains the concrete syntax element of the modeling
language. For model elements that do not have a visual representation in its
visual editor, we fall back to the standard abstract-syntax TGG notation. In
Fig. 6.10, the correspondence nodes and :ModelElementCategory node are using
this abstract-syntax notation.

This approach is as general as possible, as it typically does only require
minimal manual implementations/modifications or no manual implementation
at all. However, some GEF editors that we used were not properly implemented

174 CHAPTER 6. REALIZATION AND EVALUATION

and/or registered according to the Eclipse plug-in mechanisms. We implemented
additional searches for view providers and edit part providers to circumvent this
problem.

One general, conceptual problem remains: The visual representation of an
object may depend not only on its class, but also on its properties or even on
other objects that it references. The object’s edit part accesses this information
using EMF methods when computing the visual representation. We can use the
TGG rule to create objects and links between them accordingly7; in this way
these “emulated” objects could be accessed similar to a “real” model. However,
if the edit part accesses a property or object not part of the TGG rule’s graph,
errors like null pointer exceptions can occur. This will prevent the display of a
visual representation.

Conceptually solving this problem is difficult. We could simply create those
non-existing elements or set a default attribute value to prevent the error. How-
ever, the syntax then will probably look different from what is specified in the
TGG. Therefore, we fall back to the standard (non-concrete-syntax) TGG no-
tation in such a case.

6.1.7 Constraints and Application Conditions

Next, we describe how we implemented invariant constraints and application
conditions. We explain the selected language to specify constraint. Last, we de-
scribe how we implemented that application conditions do not invalidate the
equivalence between simultaneous production and transformation semantics,
i.e., the correctness of the transformation.

6.1.7.1 Specification Language

In our TGG Interpreter, we implemented both application conditions as well
as constraints using the Object Constraint Language (OCL) [OMG12]. OCL is
a side-effect free language, i.e., it just evaluates constraints, but cannot modify
objects. This is important because of the declarative specification of TGGs:
a TGG only specifies relations that must hold after the transformation run,
but does not define how this is achieved. In other words, there are no explicit
operational semantics attached to a TGG.8 It is up to the control algorithm
when to evaluate or to enforce such application conditions/constraints.

Allowing side-effects on constraint evaluation would violate the declarative
character of a TGG. Using a side-effect free language as constraint language
guarantees that TGGs remain declarative.

7A value can be assigned to a property when there exists a eligible attribute value con-
straint.

8In fact, different tools use different application and control strategies to run a transfor-
mation.In general, a transformation engine has to keep track of model elements that have
been already translated (so-called “bookkeeping”). The engines differ in how they search
for non-translated elements to continue the transformation process. Whereas, for instance,
eMoflon [AKRS06] uses its matching algorithm to search for such elements [KLKS10], the
TGG Interpreter explicitly maintains a list of non-translated elements that may be trans-
lated next (a so-called “front”) [HLG+13, UPB14].

6.1. IMPLEMENTATION 175

Details of the concept of constraints and application conditions using OCL,
especially how we deal with the semantics of application conditions, can be
found in Sect. 5.1.

6.1.7.2 Ensuring Correctness with Application Conditions

As described in Sect. 5.1.3, we also have to emulate the simultaneous production
semantics when evaluating application conditions in order to keep the transfor-
mation correct (cf. Sect. 2.4.2.2). In particular, the parts of the source model
that are not translated yet must be ignored when evaluating an application
condition, because they would not exist in the simultaneous production case.
Otherwise, the semantics of a transformation would differ from the semantics
of a simultaneous production, potentially resulting in an incorrect transforma-
tion. We implemented this by three helper operations in OCL, isBound(),
getIfBound(), and selectBound().

isBound() is defined for all types (OclAny) and returns a boolean value
that indicates whether this object is already bound by the transformation, i.e.,
whether it was already translated by a produced node. For properties, it al-
ways returns true. When determining the bound state of an object, we only
consider successfully applied rules, but not the rule that is currently matched.
getIfBound() is defined for all types (OclAny). It returns the object if it was
already bound, and null otherwise. For this, it uses the isBound() operation.
We defined it directly in OCL:
context OclAny

def: getIfBound() : OclAny =
if isBound() then self else null endif

selectBound() is defined for Collections of objects. It filters out those el-
ements that are not yet bound. It also uses the isBound() operation, and is
defined in OCL:
context Collection:

def: selectBound() : Boolean = select(isBound())
Using this helper operations, we can automatically rewrite OCL application

conditions such that they do not refer to elements not yet bound. We rewrite
OCL application conditions as follows. Every occurrence of “->” is replaced
by “->selectBound()->”, and every “.” is replaced by “.getIfBound().”.
Let us consider the example from Sect. 5.1.3: list->sizeOf() = 0. With
this application condition, we want to ensure that the containing rule is only
applied when no elements of this list have been translated, yet. It is rewritten
to list->selectBound()->sizeOf() = 0. In this form, only bound elements
are considered when computing the size of the list. Therefore, the application
condition only holds when translating an element from this list for the first time
(which could be any element of the list, not just the first element in an ordered
list).

176 CHAPTER 6. REALIZATION AND EVALUATION

6.1.8 TGG Debugging

The TGG Interpreter tool suite can be applied in different scenarios. Its
component/plug-in architecture allows users to individually define which parts
of the tool suite are required for their purpose. Transformation engineers typi-
cally use the complete tool suite for transformation development; this includes
debugging facilities. When applied only for transformation execution, no de-
bugging plug-ins are necessary. In fact, dispatching debugging events in such a
case will decrease performance.

Therefore, the TGG Interpreter tool suite is designed such that there is
no dependency from the TGG Interpreter to the debugging plug-ins. Via
its interfaces Execution Control Debug Events, the TGG Interpreter allows a
Debug Manager to plug in. Thereby the Debug Manager receives debug events
from the interpreter and can pause or restart the transformation execution.

However, besides that interfaces, there is also no explicit dependency from
the Debug Manager to the TGG Interpreter.9 Other model transformation
engines that implement these interfaces can also use the Debug Manager. An-
other component, the Debugging Metamodel, implements concepts like break-
points and the execution step hierarchy (cf. Sect. 5.4). The Debug Manager
is also responsible for managing breakpoints. Whenever a new debug event
is received from the TGG Interpreter, it checks whether this event hits a
breakpoint. Debuggers, which attach to the Debug Manager, implement the
user interface for the debugging, e.g., showing the current matching state using
annotations in the TGG Editor or providing actions for setting and removing
breakpoints.

The debugging architecture generally follows the model-view-controller
paradigm. The Debugging Metamodel component provides the model, the Debug-
ger implements the view, and the Debug Manager serves as the controller. The
concept was partially implemented by Ackermann [Ack10] in his Bachelor’s
thesis.

Figure 6.11 shows a screenshot of the TGG debugger. The debugger resem-
bles the layout from traditional debuggers: The stack view is at the top left,
properties of the selected stack frame (here: which nodes are matched to which
objects) can be inspected at the top right. At the bottom, there is the TGG rule
that is currently active. You can see a breakpoint at the upper left node :Sys-
temModel. The red numbers in the nodes indicate the sequence of the matching
process. The red-bordered node is the current position of the matching process.
The default Eclipse debugging functions, e.g. pause, stepwise execution, run,
can be used to control the transformation execution. We did not implement
reverse debugging in the TGG Interpreter.

6.2 Model Transformations
We have developed several model transformation in the context of this thesis.
Figure 6.12 shows the three essential transformations and their interplay.

9Technically, this is implemented using the Eclipse extension point mechanism.

6.2. MODEL TRANSFORMATIONS 177

Figure 6.11: Screenshot of the TGG Debugger during matching

The transformation from CONSENS to MechatronicUML maps a) the
active structure partial model to component diagrams, and b) the Behavior–
States partial model to Real-Time Statecharts. The ruleset is shown partially
in Appendix A.

We developed a transformation from MechatronicUML to MAT-
LAB/Simulink/Stateflow, which retains the semantics of Mechatron-
icUML in Simulink simulations [HRB+14, HRS13]. A particular challenge when
developing this transformation was that block diagrams of Simulink are com-
pletely static, i.e., Simulink does allow neither instantiation nor destruction of
blocks nor switching of signal flows. However, modern mechatronic systems,
especially self-* systems, heavily rely on reconfiguration, and CONSENS and
MechatronicUML thus allow dynamic models. We emulate the reconfigura-
tion in MATLAB/Simulink/Stateflow by using disengageable blocks (“en-
abled subsystems”), communication switches, and packet-based communication
(similar to Ethernet). Especially we deal with reconfiguration by switching
on/off the enabled subsystems and/or changing the target address of the pack-
ets. For details on the concepts of this transformation we refer to Heinzemann
et al. [HRS13]. We have published all technical details on this transformation
(including the ruleset) as a technical report [HRB+14]. To transform CON-
SENS models to initial MATLAB/Simulink/Stateflow, we reuse concepts
from this transformation. This has been described in Sect. 3.2.3.

Finally, the generation of the consistency relation R also uses a TGG trans-
formation. See Sect. 6.1.5 for details and Appendix B for the ruleset.

178 CHAPTER 6. REALIZATION AND EVALUATION

E
nvironm

ent M
odel

C
ontroller M

odel

D
iscrete S

oftw
are M

odel

Sim
ulink B

lock D
iagram

Stateflow
 C

hart

C
om

ponent Instance
C

onfiguration
R

eal-Tim
e Statechart

A
ctive Structure

B
ehavior–States

C
O

N
SEN

S
R

ailC
abC

onfiguration
C

ontrol
D

rive C
ontrol

R
ailC

abTo
R

ailC
ab

C
om

m
unication

M
odule

convoy
coordination

convoyFollow
er

/breakC
onvoy

/createC
onvoy

noC
onvoy

M
odel

Transform
ation

M
odel

Transform
ation

M
odel

Transform
ation

Figure 6.12: Overview of the implemented transformations

6.3. EVALUATION 179

6.3 Evaluation
We developed several powerful extensions to model transformation/synchroniza-
tion and TGG concepts within this thesis. We evaluated the techniques using
a range of examples.

6.3.1 Incremental Updates with Element Reuse

With our novel incremental update algorithm (cf. Sect. 4.1), we intend to ad-
dress the issue of information loss during update operations. Our algorithm
does not focus on performance improvements. Some operations of our solution
turn out to be relatively time-consuming. In this section, we evaluate the per-
formance of our algorithm. By comparing it to a traditional incremental update
algorithm, we estimate the performance impact of our novel features. Results
indicate that in many practical situations, the performance drop will be less
than 30%, which does not severely impair the applicability of our approach.

Finding a valid matching (i.e., a monomorphism) is in O(nl) time for fixed
patterns with l vertices and n host graph vertices [Epp95]. A typical algorithm
is a depth-first search that starts using a given initial node-to-object match and
tries to find a matching for the remainder of the graph. Whenever it runs into
a dead-end (i.e., the matching is incomplete and no further nodes/objects can
be matched), the algorithm has to backtrack.

A traditional TGG graph matching algorithm like the one implemented in
the approach of Giese and Wagner [GW09] only has to compute one matching
for the context and source produced pattern of a rule. That means that it
does not have to calculate all matching possibilities by building up a complete
matching tree. When it is guided by good heuristics, it may even find a matching
without or with only few backtracking steps. This heavily reduces the runtime
in practice.

Besides the regular rule matching (of the context and source produced pat-
ter), our novel algorithm also has to build a complete matching tree for the set
of elements marked for deletion. In this way, our algorithm identifies all pos-
sible ways of reusing elements. Building a complete search tree is exponential
in the number of candidate objects (“regular” objects and objects marked for
deletion). However, we only search for a matching within the set of elements
marked for deletion. Thus, our algorithm will exhibit a worst-case runtime of
O(nl + nd

l) for the rule matching, where nd is the number of elements marked
for deletion.

On the other hand, our algorithm may avoid several unnecessary rule revoca-
tions and subsequent re-applications: By reusing elements marked for deletion,
we may be able to reestablish the context of dependent rule applications and,
therefore, avoid their revocation. This could reduce the overall runtime of the
incremental update run.

To estimate the performance impact of the features of our improved algo-
rithm, we implemented both our algorithm and the one by Giese and Wag-
ner [GW09] in our TGG Interpreter. We used two different system models
(M1 and M2) that are transformed to and synchronized with a software model

180 CHAPTER 6. REALIZATION AND EVALUATION

using the CONSENS-to-MechatronicUML transformation (see Appendix A).
We applied an initial transformation, so the CONSENS and Mechatron-
icUML models were consistent after that transformation. We then measured
the average runtime (on a 2GHz Intel Core2 Duo, Windows 7 x64, Eclipse 3.7)
over three incremental update runs after applying editing operations op1 or op2
to the CONSENS model.

M1 is a simplified active structure of the RailCab and is shown in Fig. 6.13.
It contains a total of 80 model elements and is rather flat (three levels of system
elements). M2, a technical example, is an extended active structure and contains
150 model elements. Figure 6.14 shows M2. The main difference to M1 is that
it has additional nested system elements, resulting in a deeper hierarchy (six
levels).

RailCab

RailCab to

RailCab

communi-

cation module

configuration

control

hazard

detection

d*

convoy state

 detected
 hazards

 xleader,vleader

 dSafe

longitudinal dynamics controller

position

controller

velocity

controller

reference

generator

v*RailCab

position

observer

xRailCab,vRailCab

 F*
x*’

traction unit

SECEMEEE

CE

MEEE

CEMEEE

MEEE

SE

SECE

CE

CE

CE

SE

 F

SE

SE

SE

v*RailCab

operating

point

controller

SECE

distance unit

 dleader

SECEMEEE

laser sensor
dlaser

MEEE CE

edit operation 1

edit operation 2

Figure 6.13: Performance evaluation scenario 1: Typical editing operations in a
system model during the Design and Development phase

SE1

SE1_1

SE1_1_1

SECEMEEE

SE1_1_1_1

SE1_1_1_1_1

SE1_1_1_1_2

SE1_1_1_2

SE1_1_1_2_1

SE1_1_1_2_2

SE1_2

SE1_2_1

SE1_2_1_1

SE1_2_1_1_1

SE1_2_1_1_2

SE

SE

SE

SE

SE

SE

SE

edit operation 2

edit operation 1

CE

CE

CE

CE

CE

CE

CE

CE

CE

Figure 6.14: Performance evaluation scenario 2: Artificial example with larger
system element hierarchy

Applying op1 means removing a port from a system element of the second
level as described in the example above. op2 is a more complex editing operation

6.3. EVALUATION 181

Standard Incr.
Updates

Improved Incr.
Updates

Relative
Difference

op1(M1) 756ms 867ms + 14.7%
op2(M1) 794ms 1022ms + 28.7%
op1(M2) 1320ms 1201ms - 9.0%
op2(M2) 1357ms 1563ms + 15.2%

Table 6.1: Runtime performance for propagating the editing operations shown
in Fig. 6.13 and 6.14

that consists of four move and delete operations on sub-system elements of
the second level. E.g., the configuration control is moved into the longitudinal
dynamics controller.

Table 6.1 shows the results of the performance evaluation. The runtime
of the new algorithm on model M1 after editing operations op1 resp. op2 is
increased by 15% resp. 28%. For op2 on model M2 there also is a performance
drop of 15%, but for op1 on M2 our algorithm performs 9% better than the old
one.

This performance improvement for the case op1(M2) is due to the deeper
hierarchy of system elements. Removing the information flow causes the sys-
tem element SE1_1_1 to be mapped to a controller component instead of a
hybrid component. Revoking the rule application leads to a revocation of all
dependent rule applications (for all the contained system elements SE1_1_1_1,
SE1_1_1_2, ...). Our improved algorithm first checks for alternative rules before
revoking dependent rule applications (cf. Sect. 4.1.2).

In summary, our algorithm works best (in terms of performance) when there
are only few altered elements, because then the number of candidate objects for
the partially reusable pattern search is low. There could even be performance
improvements when a large amount of revocations of dependent rules is pre-
vented. Overall, the prevention of information loss comes with a performance
decrease in most editing cases. However, in typical editing cases we examined,
the maximum performance drop was only about 30% in comparison with the
old algorithm.10

In our examples, we observed that good partial matchings were often found
early in the partially reusable pattern search. Thus, the metrics could be used
to determine the quality of a partial matching already during the search. When
a good-quality matching is found, we could even decide to terminate the search,
possibly long before the complete matching tree is build up. Then we may
miss the intended way of reusing the elements, but we believe that there are
many examples where the metrics could determine the “best” matching early,
improving the overall performance significantly. However, we did not elaborate
further on this topic.

10Note that runtime performance was not the primary goal when designing this algorithm.
Thus, it is likely that performance improvements are possible by optimizing the algorithm.

182 CHAPTER 6. REALIZATION AND EVALUATION

6.3.2 Bidirectional Synchronization

In Sect. 4.3.4, we presented a simultaneous, bidirectional synchronization
method that tries to partially synchronize the models by propagating non-
conflicting changes immediately. Using this method, the models that have to
be compared and merged by the model-merging tool differ less. The rationale
behind this idea is that the less differences between the models, the better the
merging results will be. To evaluate the usefulness of this approach, we compare
it with the simple simultaneous, bidirectional synchronization that only builds
upon complete incremental updates (cf. Sect. 4.3.3).

We use EMF Compare as external model-merging tool. The results of our
tests indicate that the merging of EMF Compare can be reliable for smaller
models of some metamodels. However, up to the current version of EMF Com-
pare (3.0.2), even minimal example models of certain metamodels can cause
“phantom” differences, although the compared files are bitwise identical.11 This
casts a poor light on the merging reliability of EMF Compare in general.
Thus, the evaluation results in this section have to be regarded with suspicion.
A further evaluation is advised as soon as these problems have been fixed or
other reliable model comparison tools emerge.

In our experiments, EMF Compare was able to merge all changes with-
out errors when it works with models that use universally unique identifiers
(UUIDs)12 for all objects. Hence, in cases where both models of a transformation
use UUIDs, it is not necessary to use the improved bidirectional synchronization.
However, not all modeling languages use unique IDs. In most cases, the mod-
eling language is not under control of the transformation developer. Especially
when integrating third-party tools, we cannot simply add unique identifiers to
a modeling language just to make the job of our synchronization easier.

As the modeling languages in our scenario all have UUIDs, we use another
example to test the merging precision: the TGG benchmark of Hildebrandt
et al. [HLG+13] and Leblebici et al. [LAS+14]. The (meta)models in that
example are not affected by the “phantom-differences” bug. We (automatically)
create source models of different sizes, transform them to target models, and
then apply random changes to both source and target models. Next, we run
both the simple synchronization and the advanced synchronization (that first
propagates non-conflicting changes) and compare their merging precision. It is
important to note that none of the applied changes is in conflict with another;
thus, both synchronizations should be able to automatically merge them.

11For instance, this is the case for the ClassesToTables example of our TGG Interpreter
tool suite.

12EMF has different ways of referencing an object. First, a UUID of an object never
changes and allows referencing it over its whole lifetime; if UUIDs are available, these are
the best way to reference objects. Second, an attribute of a class can be defined as iden-
tifier, e.g. the name of an object. Third, an object can be referenced by the position in
the container of its parent. This will create URIs similar to XPath [W3C01], for example,
//@modelElements.42/@componentInstances.5, which references the 6th component instance
withing the 43th model element. The latter is the default way in EMF.

Using the second or third way, changes to the identifying attribute or in the order of the
list will cause a URI to point to nothing or to a wrong object.

6.3. EVALUATION 183

For models with a large number of elements that differ significantly, the
merging degrades. For the simple synchronization, we encountered imprecise
merging results starting with models of size > 5000 and number of changed
elements > 500 (in both model versions). Using the advanced synchronization,
some, but not all of the wrong matchings can be avoided.

In summary, the advanced synchronization is primarily useful for large mod-
els that do not use UUIDs and have a significant amount of changes. However,
the tool in use, EMF Compare, suffers from some serious flaws that makes
it difficult to be applied for certain models. This reduces the validity of this
evaluation.

6.3.3 TGG Debugging

To evaluate the implemented debugging approach presented in Sect. 5.4, we
investigate which kinds of bugs we are able to find with the approach and how
easy this is. Thus, we need a classification of bugs that occur in TGG model
transformations. We discuss the capabilities of the debugging concept using this
classification of bugs.

Kusel et al. [KSWR09] present such a classification for QVT. On a top
level, they distinguish between intra-relational (concerning only one relation)
and inter-relational (concerning more than one relation) pitfalls. In the follow-
ing, we adapt this classification for TGGs. We discuss whether the presented
transformation debugging concept helps the transformation engineer to detect
and locate bugs. Assume we are transforming or updating in forward direction.

Intra-Rule Bugs Intra-rule bugs are bugs that are only due to a single rule.
They primarily affect the target model elements that are created in this rule,
although such a bug may also affect further rule applications.

• Too weak matching pattern: The context and the source produced
part of the rule cover more situations than intended.
Result: The rule is also applied in cases where it is not designed for.
Detection: This type of bug can be found using a breakpoint on the rule-
application step of a certain rule. Whenever this rule is about to be ap-
plied, the transformation engineer is able to inspect the current matching.
Ideally, we would like to “step back in time”, reversing the transformation
execution, such that we can find out where exactly the error occurred dur-
ing the previous pattern-matching step. However, this is not supported
by existing transformation engines. Therefore, we have to debug in two
steps. In this second step, the transformation engineer can use a pattern
matching breakpoint on an object that is wrongly matched to find out
whether the pattern matching accepts this certain situation.

• Too restrictive matching pattern: The context and the source pro-
duced part of the rule cover less situations than intended.
Result: The rule is not applied in all intended cases; thus, some elements
are not translated.
Detection: Given the not translated elements, the engineer can use a pat-

184 CHAPTER 6. REALIZATION AND EVALUATION

tern matching breakpoint using these elements (together with the respec-
tive rule) as a breakpoint condition; whenever these objects are considered
by the pattern matching, he or she can inspect why the pattern does not
accept them using stepwise execution.

• Wrong application conditions or constraints: The application con-
ditions/constraints contains erroneous calculations.
Result: The rule is applied in cases where it is not designed for, or it is
not applied for all intended cases.
Detection: Wrong application-condition/constraint calculations can be
identified using breakpoints on the constraint-checking execution step with
the application condition/constraint as breakpoint condition.

• Wrong source-target connection: The mapping between the source
and the target model elements is ambiguous, i.e., there is more than one
way of matching the context pattern.
Result: Created model elements are linked to wrong parent elements, or
attribute values are calculated using wrong elements’ attributes.
Detection: The engineer could use a breakpoint on the successful applica-
tion of the rule with the corresponding source model element as breakpoint
condition. The he or she can inspect the matching to find out the origin
of the bug.

• Wrong attribute constraints: The attribute constraints contain erro-
neous calculations.
Result: Attribute values of created model elements contain wrong values.
Detection: The transformation engineer can use a breakpoint on the er-
roneous attribute constraint in the enforce-execution step to inspect the
calculation of the result.

Inter-Rule Bugs Inter-rule bugs are bugs that are due to the interplay be-
tween two or more rules.13

• Uncovered source model parts: No rule covers a certain part of the
source model.
Result: Transformation result is incomplete.
Detection: If no rule matches certain elements of the source model, this
can be debugged using a breakpoint on the pattern matching of (one of)
these source model elements within the rule(s) that should translate them.
Then the engineer stepwise continues the pattern matching process to find
the bug. If such a breakpoint is never hit, that means that there is a
problem due to rule dependencies, which can be found with the help of
the dependency view.

• Conflicting rules: More than one rule covers the same source model
part.
Result: Non-deterministic or unexpected transformation result.
Detection: If more than one rule covers the same source model part, this

13A special case is a rule that produces the precondition for itself again, e.g., when translat-
ing hierarchical structures. We also consider bugs that are caused by the interplay of different
rule applications of the same rule as inter-rule bugs.

6.3. EVALUATION 185

does not necessarily lead to non-determinism when only using a single
transformation engine that deterministically decides in such situations.
Therefore, such bugs may be hard to find, as they manifest themselves
rarely. Nevertheless, the rule dependency view can give insights in poten-
tial rule conflicts.

• Missing precondition: The rule’s context pattern requires a condition
that is never created by other rules.
Result: The rule is never applied, and some elements are not translated.
Detection: If a rule’s context pattern requires a condition that is never be
created by other rules, the rule dependency view does not show any other
rules that this rule depends on.

The bug type that occurred most frequently in our TGG practice, “too
restrictive context pattern”, can be investigated easily using our debugging con-
cept. For other bug types, it may be not that easy. Most important limitation
here is the lack of reverse debugging facilities14: Often we would like to define a
breakpoint that hits in a situation that will be definitely wrong; then we want
to investigate how this situation could have evolved.

General reverse debugging facilities require substantial changes to the trans-
formation engine. However, if we limit reverse debugging only to the pattern-
matching execution step, a “virtual” reverse debugging could be implemented
simply by recording all events that occurred during the pattern matching. To
reverse the transformation, we could stepwise undo these recorded steps vir-
tually, without actually modifying the engine’s or the models’ state. This is
possible because no model modifications (node/edge creations/deletions, prop-
erty assignments) occur during this step. A drawback is that no modifications
(like changing a node’s matching, or the value of an object’s property) would
be possible during this “recorded playback”.

In our experience, our debugging approach helps identifying and fixing bugs
in a transformation more quickly. However, its usefulness and potential im-
provements have to be investigated further, e.g., with a user study that also
involves inexperienced TGG users.

14Reverse debugging is also missing in most debuggers for general purpose programming
languages.

CHAPTER 7
Conclusion and
Future Research

This thesis presented a comprehensive method for ensuring consistency across
different models used in model-based systems engineering. We put particular
emphasis on advanced mechatronic systems that are developed in a highly in-
terdisciplinary manner. Our techniques help preventing time-consuming and
cost-intensive iterations in the development process caused by inconsistencies
between the development artifacts of different disciplines. We evaluated the
method using examples from the development of the RailCab transportation
system.

7.1 Summary
The development of complex mechatronic systems requires collaboration of dif-
ferent disciplines, especially mechanical engineering, electrical engineering, con-
trol engineering, and software engineering. Between those disciplines, there
are several overlaps and interfaces. For instance, the mechanical construction
of a vehicle determines its total weight, and this weight is important for the
control strategies responsible for steering and braking. Interdependencies, and
thus complexity, also stem from the increasingly advanced software contained
in today’s technical systems. For instance, software engineers implement the
communication between different systems, but this communication heavily in-
fluences the control strategies.

To tackle the complexity of modern technical systems, the development is
usually model-based. Various models represent different aspects of the system
under development: From an abstract, interdisciplinary system model to de-
tailed discipline-specific models, we find models of diverse abstraction levels in
the development process. These models are subject to changes during the whole
development process by teams of several engineers.

187

188 CHAPTER 7. CONCLUSION AND FUTURE RESEARCH

The interdisciplinary dependencies manifest themselves as dependencies be-
tween those models. Consequently, we have to ensure that whenever changes
occur in one model, the consistency of all other models will be checked. For
interdisciplinary relevant changes, we have updated all affected models.

Model transformation and synchronization techniques are a promising ap-
proach to propagate changes between different, but interrelated models. How-
ever, existing model transformation techniques have several drawbacks when
applied in such a scenario:

• Models only partially overlap in their information. The transformation
only considers the overlapping model parts. Propagating changes may
cause a loss of information in those model parts that are not subject to
the transformation.

• We find typically horizontal transformations that map between models of
different abstraction levels. However, existing transformation techniques
are primarily designed for vertical transformations (i.e., mapping between
models of a similar level of abstraction).

• Models will not be synchronizing immediately after changes. Instead, the
synchronization is deferred. A special systems engineer later explicitly
executes it. As a result, interdisciplinary editing conflicts may arise where
the different models contradict each other – a situation a traditional model
transformation solution cannot resolve.

• The model transformation specification itself is hard to develop, under-
stand, and maintain.

Some model transformation techniques introduce a large amount of user
interaction during the transformation/synchronization to mitigate these issues.
However, developing and executing a model transformation requires extensive
training. In practice, there are only few engineers capable of performing this
manual task.

In this thesis, we have developed an integrated model synchronization
method that addresses these issues. It can be customized with respect to the
scenario and – most importantly – in its amount of automation. Depending on
the level of system and transformation engineers available, it may be run fully
automatic or with more or less user interaction. Using metrics and heuristics, we
encode expert knowledge and guidelines that have proven successful previously.

In particular, we developed a novel incremental update algorithm that pre-
vents information loss by reusing elements. It is the basis for a bidirectional,
conflict-resolving synchronization. Our approach also supports vertical trans-
formations by defining refinements for discipline-specific modeling languages.
To ease the definition of transformations, we presented an improved syntax,
enhanced semantic features and debugging facilities for Triple Graph Gram-
mars [Sch95], a formal model transformation technique.

By reducing manual interventions, improved automation, and easing the
transformation definition, we argued that our method can significantly improve
the interdisciplinary, model-based development of complex mechatronic systems,
as well as other model-based approaches like software development with MDA. It
helps avoiding time-consuming and cost-intensive iterations in the development

7.2. FUTURE RESEARCH 189

process and leads to less errors and flaws due to interdisciplinary inconsistencies
in the final product.

7.2 Future Research
The concepts presented in this thesis give rise to new research questions. There
are also reasonable extensions, e.g., with respect to performance, user interac-
tion, or improved analyses.

Most solutions presented in this thesis are not strictly TGG-specific. In
particular, most existing model-to-model transformation techniques suffer from
similar drawbacks. It remains to be investigated how the presented solutions
can be ported to other transformation techniques.

Concerning the definition of refinement rules, the discipline’s engineers typ-
ically encounter examples for new refinements when modifying their discipline-
specific models. With this example in mind, they define the corresponding
refinement rule(s) manually using Story Diagrams. With the rising importance
of model transformation, techniques emerged that use examples to generate
transformation rules [KLR+12]. Using these techniques, we could (at least semi-
automatically) create the corresponding refinement rules using one or more ex-
amples of valid refinements.

Concepts in this field of “model transformation by example” (e.g., [Var06,
KLR+12] can also be used to ease the definition of model-to-model trans-
formations. However, research suggests that defining a transformation re-
mains an “iterative and interactive” process [Var06]. Model-transformation-by-
example techniques will therefore also profit from powerful debugging concepts
and better-understandable representations. Combining these approaches seems
worth further research.

Incrementally updating currently is technically separated from model merg-
ing and the resolution of editing conflicts. In a case where we have different
ways of propagating a change to a target model, it is also reasonable to analyze
whether these alternatives could lead to editing conflicts. In general, we should
choose the way that produces the least conflicts.

With increasing reliability and usability of model-comparison-and-merging
solutions, the importance of information-preserving incremental updates may,
in turn, decrease. As of today, model merging tools are still mendable, but they
underwent large improvements over the last years. For instance, EMF Com-
pare provides sophisticated visualization means, even for graphical modeling
languages. Using model merging in distributed development processes should
be investigated further, from a technical as well as an empirical viewpoint.

Some transformation languages/tools are better suited for certain scenar-
ios than others. Up to now, few works focus on how to select an appropriate
transformation technology. Lehrig [Leh12] presents a first framework for as-
sessing the quality of transformations. He first classifies a given transformation
scenario. Using this classification, he presents a first, simple decision tree that
guides an engineer in selecting a good transformation technology. This work
may serve as a starting point for further empirical research.

190 CHAPTER 7. CONCLUSION AND FUTURE RESEARCH

In general, the empirical validation of the approaches presented in this thesis
can be improved. Up to now, the techniques have only been tested by students
and academic researchers who all have had significant experience with model-
based development. Thus, the applicability in industry-relevant processes has
yet to be investigated. This holds both for the transformation-use aspect (i.e.,
which education is required to efficiently transform and incrementally update
models) and the transformation-engineering aspect (i.e., how easy it is to develop
and maintain a model-to-model transformation specification).

Concerning the latter aspect, we presented some improvements for under-
standability and maintainability in this thesis (concrete syntax in TGG rules,
TGG debugging means). However, TGGs (and model transformation in gen-
eral) remain a complex technology that requires a large amount of training and
experience. This is at least partially due to a lack of abstraction: TGG rules are
precise and formal specifications that define model mappings on the low level of
metamodel concepts. However, engineers typically work with more abstract con-
cepts that may not be directly reflected in the TGG rules. On the other hand,
formal precision is of high importance when developing safety-critical systems.
Therefore, we have to find a reasonable compromise between preciseness and
understandability.

In software and system development, engineers typically start the devel-
opment on an abstract level (requirements, general functions) and get more
and more concrete in the course of the development (active structure, then
discipline-specific models). We should aim for a similar approach when devel-
oping model transformations: first define the general requirements and basic
inter-model dependencies, then implement the details of the actual transforma-
tion. One promising idea is the creation of an abstract dependency description
language. Engineers from different disciplines should be able to specify all kinds
of (inter- and intra-model) dependencies using the concepts of their own domains
with the help of that language. These dependencies could be used to generate
initial model transformation specifications (in different model transformation
languages), which could be refined by specialized transformation engineers in
the following.

When pairwise synchronizing three or more models, the mappings between
these models must not be in conflict with each other. Otherwise a transforma-
tion from model A over model B to model C could lead to different results than
a direct transformation from A to C. In such a scenario, we have to ensure
the consistency of consistency by analyzing whether the different mappings are
compatible with each other. We could also use an abstract dependency descrip-
tion language to help ensuring the consistency of consistency in cases where
the transformations are implemented with different model transformations ap-
proaches/languages.

APPENDIX A
Transformation from

CONSENS to
MechatronicUML

This TGG ruleset implements the transformation from a system model (specified
using the CONSENS language) to a MechatronicUML software model. The
transformation has been developed in the course of the project group SafeBots
II. The principles of this transformation are described in Sect. 3.2.2. It makes
use of the concept of rule inheritance we described earlier [GR12]. Figure A.1
shows the inheritance relations between the different TGG rules of this ruleset.

191

192
APPENDIX A. TRANSFORMATION FROM CONSENS TO

MECHATRONICUML

S
y
s
te
m
E
le
m
e
n
t2
C
o
m
p
o
n
e
n
t

S
y
s
te
m
E
le
m
e
n
tS
e
lfT
e
m
p
la
te
2
C
o
m
p
o
n
e
n
t

S
ystem

E
lem

en
tS

elfT
em

plate2A
tom

icC
om

ponen
t

S
ystem

E
lem

en
tS

elfT
em

plate2S
tructured

C
om

po
nent

S
y
s
te
m
E
le
m
e
n
tW
ith
T
e
m
p
la
te
2
C
o
m
p
o
n
e
n
t

S
ystem

E
lem

en
tW

ithT
em

pla
te2A

tom
icC

om
po

nent

S
ystem

E
lem

en
tW

ithT
em

pla
te2S

tructuredC
om

ponen
t

F
lo
w
2
C
o
n
n
e
c
to
r

F
lo
w
2
A
s
s
e
m
b
ly

U
nidirectionalF

low
2A

ssem
bly

B
idirectionalF

low
2A

ssem
bly

F
lo
w
2
D
e
le
g
a
tio
n

InF
low

2InD
elegatio

n
O

utF
low

2O
utD

elegation
InO

utF
low

2InO
utD

e
legation

A
xiom

S
ystem

2S
tructure

dC
om

p
onent

F
low

P
ort2P

o
rt

N
am

e
T

G
G

grule

L
eg
en
d

R
uleginh

eritance

N
a
m
e

A
bstractgT

G
G

grule

Figure A.1: Inheritance relations between the different TGG rules

193

Figure A.2: TGG Axiom CONSENS2MUML

194
APPENDIX A. TRANSFORMATION FROM CONSENS TO

MECHATRONICUML

Figure A.3: TGG Rule System2StructuredComponent

195

Figure A.4: TGG Rule SystemElement2Component

196
APPENDIX A. TRANSFORMATION FROM CONSENS TO

MECHATRONICUML

Figure A.5: TGG Rule SystemElementNoTemplate2Component

197

Figure A.6: TGG Rule SystemElementNoTemplate2AtomicComponent

198
APPENDIX A. TRANSFORMATION FROM CONSENS TO

MECHATRONICUML

Figure A.7: TGG Rule SystemElementNoTemplate2StructuredComponent

199

Figure A.8: TGG Rule SystemElementWithTemplate2Component

200
APPENDIX A. TRANSFORMATION FROM CONSENS TO

MECHATRONICUML

Figure A.9: TGG Rule SystemElementWithTemplate2AtomicComponent

201

Figure A.10: TGG Rule SystemElementWithTemplate2StructuredComponent

202
APPENDIX A. TRANSFORMATION FROM CONSENS TO

MECHATRONICUML

Figure A.11: TGG Rule BidirectionalFlow2Assemblies

203

Figure A.12: TGG Rule Flow2Connector

204
APPENDIX A. TRANSFORMATION FROM CONSENS TO

MECHATRONICUML

Figure A.13: TGG Rule Flow2Delegation

205

Figure A.14: TGG Rule FlowPort2Port

206
APPENDIX A. TRANSFORMATION FROM CONSENS TO

MECHATRONICUML

Figure A.15: TGG Rule InFlow2InDelegation

207

Figure A.16: TGG Rule InOutFlow2InOutDelegation

208
APPENDIX A. TRANSFORMATION FROM CONSENS TO

MECHATRONICUML

Figure A.17: TGG Rule OutFlow2OutDelegation

209

Figure A.18: TGG Rule UnidirectionalFlow2Assembly

APPENDIX B
Transformation from
Refinement Rules to
TGG Refinements

This TGG ruleset implements the transformation from refinement rules (spec-
ified using Story Diagrams) to Story Diagrams that modify an existing TGG
ruleset in order to reflect these refinement rules. The input is a set of refinement
rules typed by a language metamodel (typically the metamodel of the target lan-
guage). The output is story diagram rules typed by the TGG metamodel. These
rules are then applied to an existing TGG ruleset.

For details on the approach, see Sect. 4.2. Details on the implementation
can be found in Sect. 6.1.5.

In principle, these rules perform a 1-to-1 mapping for all constructs of the
Story Diagram language. As the TGG ruleset is typed over the target (and
source) language, and we want the Story Diagrams to modify this ruleset, we
have to adjust the story diagram such that they operate on the metamodel of
the TGG. To do so, some of the rules (those that deal with types) implement
a more complex mapping; these rules are the rules in Fig. B.7, B.8, B.9, B.10,
B.11, B.12, B.13, B.14, and B.15.1

This ruleset makes use of rule inheritance: Rules Variable2Variable-
contextNode (Fig. B.9), Variable2Variable-producedNode-create (Fig. B.10), and
Variable2Variable-producedNode-destroy (Fig. B.11) all inherit from the (ab-
stract) rule Variable2Variable (Fig. B.8).

1As this transformation cannot be run backwards, some of these rules lack bidirectionality.

211

212
APPENDIX B. TRANSFORMATION FROM REFINEMENT RULES TO

TGG REFINEMENTS

Figure B.1: TGG Rule ActivityEdge2ActivityEdge-1

213

Figure B.2: TGG Rule ActivityEdge2ActivityEdge-2

214
APPENDIX B. TRANSFORMATION FROM REFINEMENT RULES TO

TGG REFINEMENTS

Figure B.3: TGG Rule FinalNode2FinalNode

Figure B.4: TGG Rule InitialNode2InitialNode

215

Figure B.5: TGG Rule MSNode2MSNode

Figure B.6: TGG Rule Type2Type

216
APPENDIX B. TRANSFORMATION FROM REFINEMENT RULES TO

TGG REFINEMENTS

Figure B.7: TGG Rule StoryPattern2StoryPattern

217

Figure B.8: TGG Rule Variable2Variable

218
APPENDIX B. TRANSFORMATION FROM REFINEMENT RULES TO

TGG REFINEMENTS

Figure B.9: TGG Rule Variable2Variable-contextNode

219

Figure B.10: TGG Rule Variable2Variable-producedNode-create

220
APPENDIX B. TRANSFORMATION FROM REFINEMENT RULES TO

TGG REFINEMENTS

Figure B.11: TGG Rule Variable2Variable-producedNode-destroy

221

Figure B.12: TGG Rule LinkVariable2Edge-checkonly-create

222
APPENDIX B. TRANSFORMATION FROM REFINEMENT RULES TO

TGG REFINEMENTS

Figure B.13: TGG Rule LinkVariable2Edge-destroy

223

Figure B.14: TGG Rule AttributeAssignment2OCLConstraint

224
APPENDIX B. TRANSFORMATION FROM REFINEMENT RULES TO

TGG REFINEMENTS

Figure B.15: TGG Rule Constraint2Constraint

Bibliography

[ABD+14] H. Anacker, C. Brenner, R. Dorociak, R. Dumitrescu, J. Gause-
meier, P. Iwanek, W. Schäfer, and M. Vaßholz. Methods for the
domain-spanning conceptual design. In J. Gausemeier, F. J. Ram-
mig, and W. Schäfer (editors), Design Methodology for Intelligent
Technical Systems, Lecture Notes in Mechanical Engineering, pp.
117–182. Springer Berlin Heidelberg, 2014.

[Ack10] P. Ackermann. Debugging von Modelltransformationen. Bachelor
thesis, University of Paderborn, June 2010.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[ADF+14] H. Anacker, M. Dellnitz, K. Flaßkamp, S. Groesbrink, P. Hartmann,
C. Heinzemann, C. Horenkamp, B. Kleinjohann, L. Kleinjohann,
S. Korf, M. Krüger, W. Müller, S. Ober-Blöbaum, S. Oberthür,
M. Porrmann, C. Priesterjahn, R. Radkowski, C. Rasche, J. Rieke,
M. Ringkamp, K. Stahl, D. Steenken, J. Stöcklein, R. Timmermann,
A. Trächtler, K. Witting, T. Xie, and S. Ziegert. Methods for the
design and development. In J. Gausemeier, F. J. Rammig, and
W. Schäfer (editors), Design Methodology for Intelligent Technical
Systems, Lecture Notes in Mechanical Engineering, pp. 183–350.
Springer Berlin Heidelberg, 2014.

[ADG+09] P. Adelt, J. Donoth, J. Geisler, S. Henkler, S. Kahl, B. Klöp-
per, E. Münch, S. Oberthür, C. Paiz, H. Podlogar, M. Porrmann,
R. Radkowski, C. Romaus, A. Schmidt, B. Schulz, H. Voecking,
U. Witkowski, and K. Witting. Selbstoptimierende Systeme des
Maschinenbaus – Definitionen, Anwendungen, Konzepte. 234,. HNI
Verlagsschriftenreihe, Paderborn, 2009.

[AGL+12] A. Anis, S. Goschin, S. Lehrig, C. Stritzke, and T. Zolynski. PG
SafeBots II – Developer documentation, April 2012.

[AKRS06] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr. MOFLON:
A standard-compliant metamodeling framework with graph trans-
formations. In A. Rensink and J. Warmer (editors), Model
Driven Architecture – Foundations and Applications: Second Eu-
ropean Conference, vol. 4066 of Lecture Notes in Computer Science
(LNCS). Springer Verlag, Heidelberg, 2006.

225

226 BIBLIOGRAPHY

[AP96] M. Acar and R. Parkin. Engineering education for mechatronics.
Industrial Electronics, IEEE Transactions on, 43(1):106–112, feb
1996.

[AP11] K. Altmanninger and A. Pierantonio. A categorization for con-
flicts in model versioning. Elektrotechnik und Informationstechnik,
128(11-12):421–426, 2011.

[AS08] C. Amelunxen and A. Schürr. Formalising model transformation
rules for UML/MOF 2. Software, IET, 2(3):204–222, 2008.

[ASK10] K. Altmanninger, W. Schwinger, and G. Kotsis. Semantics for ac-
curate conflict detection in smover: Specification, detection and
presentation by example. International Journal of Enterprise In-
formation Systems (IJEIS), 6(1):68–84, 2010.

[ASW09] K. Altmanninger, M. Seidl, and M. Wimmer. A survey on model
versioning approaches. International Journal of Web Information
Systems (IJWIS), 5(3):271–304, 2009.

[AVS12] A. Anjorin, G. Varró, and A. Schürr. Complex attribute manipu-
lation in TGGs with constraint-based programming techniques. In
Proceedings of the First International Workshop on Bidirectional
Transformations (BX 2012). 2012.

[Bal91] R. Balzer. Tolerating inconsistency. In Proceedings of the 13th
International Conference on Software Engineering, ICSE ’91, pp.
158–165. IEEE Computer Society Press, Los Alamitos, CA, USA,
1991.

[BBB+12] S. Becker, C. Brenner, C. Brink, S. Dziwok, R. Löffler, C. Heinze-
mann, U. Pohlmann, W. Schäfer, J. Suck, and O. Sudmann. The
MechatronicUML design method – process, syntax, and semantics.
Tech. Rep. tr-ri-12-326, Software Engineering Group, Heinz Nixdorf
Institute, University of Paderborn, Aug. 2012.

[BCE+06] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and
M. Sabetzadeh. A manifesto for model merging. In Proceedings of
the 2006 International Workshop on Global Integrated Model Man-
agement, GaMMa ’06, pp. 5–12. ACM, New York, NY, USA, 2006.

[Ben05] K. Bender (editor). Embedded Systems – qualitätsorientierte En-
twicklung. Springer, Berlin, Heidelberg, 2005.

[BGO06] S. Burmester, H. Giese, and O. Oberschelp. Hybrid UML compo-
nents for the design of complex self-optimizing mechatronic systems.
In J. Braz, H. Araújo, A. Vieira, and B. Encarnacao (editors), In-
formatics in Control, Automation and Robotics I. Springer, Mar.
2006.

[BKPS07] M. Broy, I. Kruger, A. Pretschner, and C. Salzmann. Engineering
automotive software. Proceedings of the IEEE, 95(2):356–373, Feb
2007.

BIBLIOGRAPHY 227

[BLS+12] P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, and
G. Kappel. The past, present, and future of model versioning.
Emerging Technologies for the Evolution and Maintenance of Soft-
ware Models, IGI Global, pp. 410–443, 2012.

[BSWK12] P. Brosch, M. Seidl, M. Wimmer, and G. Kappel. Conflict visu-
alization for evolving UML models. Journal of Object Technology,
11(3):2:1–30, Oct. 2012.

[BRD06] Bundesrepublik Deutschland. V-Modell XT 1.4, 2006.
[BW07] T. Baar and J. Whittle. On the usage of concrete syntax in model

transformation rules. In I. Virbitskaite and A. Voronkov (editors),
Perspectives of Systems Informatics, vol. 4378 of Lecture Notes in
Computer Science, pp. 84–97. Springer Berlin Heidelberg, 2007.

[bx12] First International Workshop on Bidirectional Transformations
(BX 2012). Proceedings, vol. 49 of Electronic Communications of
the EASST, 2012.

[bx13] Second International Workshop on Bidirectional Transformations
(BX 2013). Proceedings, 2013.

[BY03] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms
and tools. In J. Desel, W. Reisig, and G. Rozenberg (editors),
Lectures on Concurrency and Petri Nets, vol. 3098 of Lecture Notes
in Computer Science, pp. 87–124. Springer, 2003.

[CH03] K. Czarnecki and S. Helsen. Classification of model transformation
approaches, 2003.

[CH06] K. Czarnecki and S. Helsen. Feature-based survey of model trans-
formation approaches. IBM Systems Journal, 45(3):621 –645, 2006.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of
Computing, STOC ’71, pp. 151–158. ACM, New York, NY, USA,
1971.

[CREP10] A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio. Jtl: a
bidirectional and change propagating transformation language. In
Proceedings of the 3rd International Conference on Software Lan-
guage Engineering (SLE 2010). Eindhoven, The Netherlands, 2010.

[DK13] K. Duddy and G. Kappel (editors). Theory and Practice of Model
Transformations – 6th International Conference, ICMT 2013, Bu-
dapest, Hungary, June 18-19, 2013. Proceedings, vol. 7909 of Lec-
ture Notes in Computer Science. Springer, 2013.

[DMSS10] P. Dhoolia, S. Mani, V. S. Sinha, and S. Sinha. Debugging model-
transformation failures using dynamic tainting. In T. D’Hondt (ed-
itor), Object-Oriented Programming (ECOOP 2010), vol. 6183 of
Lecture Notes in Computer Science, pp. 26–51. Springer Berlin Hei-
delberg, 2010.

228 BIBLIOGRAPHY

[EC01] S. Easterbrook and M. Chechik. 2nd International Workshop on
Living with Inconsistency (IWLWI01). SIGSOFT Software Engi-
neering Notes, 26(6):76–78, Nov. 2001.

[EEKR12] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (edi-
tors). Graph Transformations – 6th International Conference,
ICGT 2012, Bremen, Germany, September 24-29, 2012. Proceed-
ings, vol. 7562 of Lecture Notes in Computer Science. Springer,
2012.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of
Algebraic Graph Transformation. Springer, 2006.

[Eis97] M. Eisenstadt. My hairiest bug war stories. Communications of the
ACM, 40(4):30–37, Apr. 1997.

[ELHN+10] A. Egyed, R. E. Lopez-Herrejon, B. Nuseibeh, G. Botterweck,
M. Chechik, and Z. Hu (editors). 3rd Workshop on Living with
Inconsistencies in Software Development (LWI 2010). Proceedings.
2010.

[Epp95] D. Eppstein. Subgraph isomorphism in planar graphs and related
problems. In Proceedings of the Sixth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’95, pp. 632–640. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1995.

[EPT04] H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for
typed attributed graph transformation. In H. Ehrig, G. Engels,
F. Parisi-Presicce, and G. Rozenberg (editors), Graph Transforma-
tions, vol. 3256 of Lecture Notes in Computer Science, pp. 161–177.
Springer Berlin Heidelberg, 2004.

[ERD+97] J. Engelfriet, G. Rozenberg, F. Drewes, H.-J. Kreowski, A. Ha-
bel, A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel,
M. Löwe, M. Korff, L. Ribeiro, A. Wagner, A. Corradini, B. Cour-
celle, A. Ehrenfeucht, T. Harju, and A. Schürr. Handbook of Graph
Grammars and Computing by Graph Transformation: Foundations,
vol. 1. World Scientific Publishing Co., Inc., River Edge, NJ, USA,
1997.

[FGYO95] S. M. Fohn, A. Greef, R. E. Young, and P. O’Grady. Concurrent
engineering. In H. H. Adelsberger, J. Lažanský, and V. Mařík (ed-
itors), Information Management in Computer Integrated Manufac-
turing, vol. 973 of Lecture Notes in Computer Science, pp. 493–505.
Springer Berlin Heidelberg, 1995.

[FM92] K. Forsberg and H. Mooz. The relationship of systems engineering
to the project cycle. Engineering Management Journal, 4:36–43,
1992.

[Fow03] M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2003.

BIBLIOGRAPHY 229

[Fra06] U. Frank. Spezifikationstechnik zur Beschreibung der Prinziplösung
selbstoptimierender Systeme. Ph.D. thesis, University of Paderborn,
2006.

[GCW+13] J. Gausemeier, A. M. Czaja, O. Wiederkehr, R. Dumitrescu,
C. Tschirner, and D. Steffen. Studie: Systems Engineering in der
industriellen Praxis. In J. Gausemeier, R. Dumitrescu, F. Ram-
mig, W. Schäfer, and A. Trächtler (editors), 9. Paderborner
Workshop Entwurf mechatronischer Systeme, vol. 310 of HNI-
Verlagsschriftenreihe, pp. 431–445. Heinz Nixdorf Institut, Pader-
born, 2013.

[Gei08] L. Geiger. Model level debugging with Fujaba. In Proceedings of
the 6th International Fujaba Days, pp. 23–28. Dresden, Germany,
2008.

[GFDK09] J. Gausemeier, U. Frank, J. Donoth, and S. Kahl. Specification
technique for the description of self-optimizing mechatronic sys-
tems. Research in Engineering Design, 20:201–223, 2009.

[GH09] H. Giese and S. Hildebrandt. Efficient model synchronization of
large-scale models. Tech. Rep. 28, Hasso Plattner Institute at the
University of Potsdam, 2009.

[GHL14] H. Giese, S. Hildebrandt, and L. Lambers. Bridging the gap between
formal semantics and implementation of triple graph grammars.
Software & Systems Modeling, 13(1):273–299, 2014.

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1990.

[GK10] J. Greenyer and E. Kindler. Comparing relational model transfor-
mation technologies: implementing Query/View/Transformation
with triple graph grammars. Software and Systems Modeling, 9:21–
46, 2010. 10.1007/s10270-009-0121-8.

[GKLE11] C. Gerth, J. Küster, M. Luckey, and G. Engels. Detection and res-
olution of conflicting change operations in version management of
process models. Software and Systems Modeling, pp. 1–19, Decem-
ber 2011.

[GKP+14] J. Gausemeier, S. Korf, M. Porrmann, K. Stahl, O. Sudmann, and
M. Vaßholz. Development of self-optimizing systems. In J. Gause-
meier, F. J. Rammig, and W. Schäfer (editors), Design Methodology
for Intelligent Technical Systems, Lecture Notes in Mechanical En-
gineering, pp. 65–115. Springer Berlin Heidelberg, 2014.

[GKRT08] J. Greenyer, E. Kindler, J. Rieke, and O. Travkin. TGGs for trans-
forming UML to CSP: Contribution to the AGTIVE 2007 graph
transformation tools contest. Tech. Rep. tr-ri-08-287, Software En-
gineering Group, Department of Computer Science, University of
Paderborn, 2008.

230 BIBLIOGRAPHY

[GL12] H. Giese and L. Lambers. Towards automatic verification of behav-
ior preservation for model transformation via invariant checking. In
H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (editors),
Graph Transformations, vol. 7562 of Lecture Notes in Computer
Science, pp. 249–263. Springer Berlin Heidelberg, 2012.

[GLO09] E. Guerra, J. Lara, and F. Orejas. Pattern-based model-to-model
transformation: Handling attribute conditions. In Proceedings of
the 2nd International Conference on Theory and Practice of Model
Transformations, ICMT ’09, pp. 83–99. Springer-Verlag, Berlin,
Heidelberg, 2009.

[GMP09] R. Grønmo and B. Møller-Pedersen. Concrete syntax-based graph
transformation. Research Report 389 389, Department of Informat-
ics, University of Oslo, Norway, Oslo, Norway, 2009.

[GMT99] M. Goedicke, T. Meyer, and G. Taentzer. Viewpoint-oriented soft-
ware development by distributed graph transformation: towards a
basis for living with inconsistencies. In Requirements Engineering,
1999. Proceedings. IEEE International Symposium on, pp. 92–99.
1999.

[Gos10] S. Goschin. Modellsynchronisation bei simultanen Änderungen.
Bachelor thesis, University of Paderborn, October 2010.

[GPR11] J. Greenyer, S. Pook, and J. Rieke. Preventing information loss
in incremental model synchronization by reusing elements. In Pro-
ceedings of the 7th European Conference on Modelling Foundations
and Applications (ECMFA 2011). 2011.

[Grø09] R. Grønmo. Using Concrete Syntax in Graph-based Model Transfor-
mations. Ph.D. thesis, Faculty of Mathematics and Natural Sciences
at the University of Oslo, 2009.

[GR12] J. Greenyer and J. Rieke. Applying advanced TGG concepts for a
complex transformation of sequence diagram specifications to timed
game automata. In A. Schürr, D. Varró, and G. Varró (editors), Ap-
plications of Graph Transformations with Industrial Relevance, vol.
7233 of Lecture Notes in Computer Science, pp. 222–237. Springer
Berlin Heidelberg, 2012.

[Gre06] J. Greenyer. A Study of Model Transformation Technologies: Rec-
onciling TGGs with QVT. Master’s thesis, University of Paderborn,
Department of Computer Science, Paderborn, Germany, 2006.

[Gri03] K. Grimm. Software technology in an automotive company: ma-
jor challenges. In Proceedings of the 25th International Conference
on Software Engineering, ICSE ’03, pp. 498–503. IEEE Computer
Society, Washington, DC, USA, 2003.

[GRR13] P. V. Gorp, T. Ritter, and L. M. Rose (editors). Modelling Founda-
tions and Applications – 9th European Conference, ECMFA 2013,
Montpellier, France, July 1-5, 2013. Proceedings, vol. 7949 of Lec-
ture Notes in Computer Science. Springer, 2013.

BIBLIOGRAPHY 231

[GRS14a] J. Gausemeier, F. J. Rammig, and W. Schäfer (editors). Design
Methodology for Intelligent Technical Systems – Develop Intelligent
Technical Systems of the Future. No. XVIII in Lecture Notes in
Mechanical Engineering. Springer Berlin Heidelberg, 2014.

[GRS14b] J. Gausemeier, F.-J. Rammig, and W. Schäfer (editors). Design
Methodology for Intelligent Technical Systems – Develop Intelligent
Technical Systems of the Future. Lecture Notes in Mechanical En-
gineering. Springer-Verlag, 2014.

[GRSS14] J. Gausemeier, F. J. Rammig, W. Schäfer, and W. Sextro (edi-
tors). Dependability of Self-Optimizing Mechatronic Systems. No.
XVI in Lecture Notes in Mechanical Engineering. Springer Berlin
Heidelberg, 2014.

[GSG+09] J. Gausemeier, W. Schäfer, J. Greenyer, S. Kahl, S. Pook, and
J. Rieke. Management of cross-domain model consistency dur-
ing the development of advanced mechatronic systems. In M. N.
Bergendahl, M. Grimheden, and L. Leifer (editors), Proceed-
ings of the 17th International Conference on Engineering Design
(ICED’09), vol. 6. 2009.

[GST14] J. Gausemeier, W. Schäfer, and A. Trächtler (editors). Seman-
tische Technologien im Entwurf mechatronischer Systeme – Effek-
tiver Austausch von Lösungswissen in Branchenwertschöpfungsket-
ten. Carl Hanser Verlag, München, 2014.

[GU08] T. Goldschmidt and A. Uhl. Retainment rules for model transfor-
mations. In 1st International Workshop on Model Co-Evolution and
Consistency Management. 2008.

[GU11] T. Goldschmidt and A. Uhl. A formal framework for retainment
patterns for trace-based model transformations. 2013 39th Eu-
romicro Conference on Software Engineering and Advanced Appli-
cations, 0:91–99, 2011.

[GW06] H. Giese and R. Wagner. Incremental model synchronization with
triple graph grammars. In O. Nierstrasz, J. Whittle, D. Harel, and
G. Reggio (editors), Proceedings of the 9th International Conference
on Model Driven Engineering Languages and Systems (MoDELS),
vol. 4199 of Lecture Notes in Computer Science (LNCS). Springer
Verlag, Genova, Italy, 2006.

[GW09] H. Giese and R. Wagner. From model transformation to incre-
mental bidirectional model synchronization. Software and Systems
Modeling, 8:21–43, 2009.

[HB13] C. Heinzemann and S. Becker. Executing reconfigurations in hi-
erarchical component architectures. In Proceedings of the 16th in-
ternational ACM Sigsoft symposium on Component based software
engineering, CBSE ’13. ACM, New York, NY, USA, Jun. 2013.

[HEGO10] F. Hermann, H. Ehrig, U. Golas, and F. Orejas. Efficient analysis
and execution of correct and complete model transformations based

232 BIBLIOGRAPHY

on triple graph grammars. In J. Bézivin, R. Soley, and A. Valle-
cillo (editors), Proceedings of the International Workshop on Model
Driven Interoperability (MDI’10), MDI ’10, pp. 22–31. ACM, New
York, NY, USA, 2010.

[HEO+13] F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, Y. Xiong,
S. Gottmann, and T. Engel. Model synchronization based on triple
graph grammars: correctness, completeness and invertibility. Soft-
ware & Systems Modeling, pp. 1–29, 2013.

[HEOG10] F. Hermann, H. Ehrig, F. Orejas, and U. Golas. Formal analysis
of functional behaviour of model transformations based on triple
graph grammars. In H. Ehrig, A. Rensink, G. Rozenberg, and
A. Schürr (editors), Proceedings of the International Conference on
Graph Transformation (ICGT ’10), vol. 6372 of LNCS, pp. 155–170.
SPRINGER, 2010.

[HHT96] A. Habel, R. Heckel, and G. Taentzer. Graph grammars with nega-
tive application conditions. Special issue of Fundamenta Informat-
icae, 26(3,4):287–313, 1996.

[HKK04] B. Hardung, T. Kölzow, and A. Krüger. Reuse of software in dis-
tributed embedded automotive systems. In Proceedings of the 4th
ACM international conference on Embedded software, EMSOFT
’04, pp. 203–210. ACM, New York, NY, USA, 2004.

[HKR+10] M. Hülsbusch, B. König, A. Rensink, M. Semenyak, C. Soltenborn,
and H. Wehrheim. Showing full semantics preservation in model
transformation – a comparison of techniques. In S. M. D. Méry
(editor), IFM 2010, vol. 6396, pp. 183–198. Springer Verlag Berlin-
Heidelberg, 2010.

[HLG+12] S. Hildebrandt, L. Lambers, H. Giese, D. Petrick, and I. Richter.
Automatic conformance testing of optimized triple graph gram-
mar implementations. In A. Schürr, D. Varró, and G. Varró (edi-
tors), Applications of Graph Transformations with Industrial Rele-
vance, vol. 7233 of Lecture Notes in Computer Science, pp. 238–253.
Springer Berlin Heidelberg, 2012.

[HLG+13] S. Hildebrandt, L. Lambers, H. Giese, J. Rieke, J. Greenyer,
W. Schäfer, M. Lauder, A. Anjorin, and A. Schürr. A survey of
triple graph grammar tools. EC-EASST, Post-Proceedings of the
Second International Workshop on Bidirectional Transformations
(BX 2013), 2013.

[HLR06] D. Hearnden, M. Lawley, and K. Raymond. Incremental model
transformation for the evolution of model-driven systems. Model
Driven Engineering Languages and Systems, 2006.

[HLR07] M. Hibberd, M. Lawley, and K. Raymond. Forensic debugging of
model transformations. In Proceedings of the 10th International
Conference on Model Driven Engineering Languages and Systems
(MoDELS 2007), pp. 589–604. Nashville, USA, 2007.

BIBLIOGRAPHY 233

[HN98] A. Hunter and B. Nuseibeh. Managing inconsistent specifications:
reasoning, analysis, and action. ACM Transactions on Software
Engineering and Methodology (TOSEM), 7(4):335–367, Oct. 1998.

[HPR+12] C. Heinzemann, U. Pohlmann, J. Rieke, W. Schäfer, O. Sudmann,
and M. Tichy. Generating Simulink and Stateflow models from soft-
ware specifications. In Proceedings of the 12h International Design
Conference DESIGN 2012. 2012.

[HRB+14] C. Heinzemann, J. Rieke, J. Bröggelwirth, A. Pines, and A. Volk.
Translating MechatronicUML models to MATLAB/Simulink and
Stateflow. Tech. Rep. tr-ri-14-338, Software Engineering Group,
Heinz Nixdorf Institute, University of Paderborn, May 2014. Ver-
sion 0.4.

[HRS13] C. Heinzemann, J. Rieke, and W. Schäfer. Simulating self-adaptive
component-based systems using MATLAB/Simulink. In Proceed-
ings of the 7th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO ’13), pp. 71–80. IEEE Computer
Society Press, Sep. 2013.

[HS02] B. Hailpern and P. Santhanam. Software debugging, testing, and
verification. IBM Systems Journal, 41(1):4–12, Jan. 2002.

[HSST13] C. Heinzemann, O. Sudmann, W. Schäfer, and M. Tichy. A
discipline-spanning development process for self-adaptive mecha-
tronic systems. In Proceedings of the International Conference on
Software and System Process (ICSSP) 2013. 2013.

[IEC96] International Electrotechnical Commission. IEC 60617 – Graphical
symbols for diagrams, 1996.

[INCO04] International Council on Systems Engineering. What is
systems engineering? http://www.incose.org/practice/
whatissystemseng.aspx, 2014.

[ISO9899] ISO/IEC 9899:2011. Information technology – Programming lan-
guages – C, 2011.

[KLKS10] F. Klar, M. Lauder, A. Königs, and A. Schürr. Extended triple
graph grammars with efficient and compatible graph translators. In
G. Engels, C. Lewerentz, W. Schäfer, A. Schürr, and B. Westfech-
tel (editors), Graph Transformations and Model-Driven Engineer-
ing, vol. 5765 of Lecture Notes in Computer Science, pp. 141–174.
Springer Berlin / Heidelberg, 2010.

[KLR+12] G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and
M. Wimmer. Model transformation by-example: A survey of the
first wave. In A. Düsterhöft, M. Klettke, and K.-D. Schewe (ed-
itors), Conceptual Modelling and Its Theoretical Foundations, vol.
7260 of Lecture Notes in Computer Science, pp. 197–215. Springer
Berlin Heidelberg, 2012.

http://www.incose.org/practice/whatissystemseng.aspx
http://www.incose.org/practice/whatissystemseng.aspx

234 BIBLIOGRAPHY

[Kör09] A.-T. Körtgen. Modellierung und Realisierung von Konsis-
tenzsicherungswerkzeugen für simultane Dokumentenentwicklung.
Ph.D. thesis, RWTH Aachen University, 2009.

[Kör10] A.-T. Körtgen. New strategies to resolve inconsistencies between
models of decoupled tools. In 3rd Workshop on Living with Incon-
sistencies in Software Development (LWI 2010). 2010.

[KRW04] E. Kindler, V. Rubin, and R. Wagner. An adaptable TGG in-
terpreter for in-memory model transformation. In A. Schürr and
A. Zündorf (editors), Proceedings of the 2nd International Fujaba
Days 2004, vol. tr-ri-04-253 of Technical Report, pp. 35–38. Darm-
stadt, Germany, September 2004.

[KS05] A. Königs and A. Schürr. Multi-domain integration with MOF and
extended triple graph grammars. In J. Bezivin and R. Heckel (ed-
itors), Language Engineering for Model-Driven Software Develop-
ment, no. 04101 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, Dagstuhl, Germany, 2005.

[KS06] A. Königs and A. Schürr. Mdi: A rule-based multi-document and
tool integration approach. Software & Systems Modeling, 5(4):349–
368, 2006.

[KSWR09] A. Kusel, W. Schwinger, M. Wimmer, and W. Retschitzegger. Com-
mon pitfalls of using qvt relations - graphical debugging as remedy.
In Proceedings of the 2009 14th IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS ’09, pp. 329–
334. IEEE Computer Society, Washington, DC, USA, 2009.

[KW07] E. Kindler and R. Wagner. Triple graph grammars: Concepts,
extensions, implementations, and application scenarios. Technical
Report tr-ri-07-284, Department of Computer Science, University of
Paderborn, Department of Computer Science, University of Pader-
born, 2007.

[LAS+14] E. Leblebici, A. Anjorin, A. Schürr, S. Hildebrandt, J. Rieke, and
J. Greenyer. A comparison of incremental triple graph grammar
tools. In 13th International Workshop on Graph Transformation
and Visual Modeling Techniques (GT-VMT 2014). 2014.

[Lau13] M. Lauder. Incremental Model Synchronization with Precedence-
Driven Triple Graph Grammars. Ph.D. thesis, Fachbereich 18
Elektro- und Informationstechnik, Technische Universität Darm-
stadt, 2013.

[LAVS12a] M. Lauder, A. Anjorin, G. Varró, and A. Schürr. Bidirectional
model transformation with precedence triple graph grammars. In
A. Vallecillo, J.-P. Tolvanen, E. Kindler, H. Störrle, and D. Kolovos
(editors), Modelling Foundations and Applications, vol. 7349 of Lec-
ture Notes in Computer Science, pp. 287–302. Springer Berlin Hei-
delberg, 2012.

BIBLIOGRAPHY 235

[LAVS12b] M. Lauder, A. Anjorin, G. Varró, and A. Schürr. Efficient
model synchronization with precedence triple graph grammars. In
H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (editors),
Graph Transformations, vol. 7562 of Lecture Notes in Computer
Science, pp. 401–415. Springer Berlin Heidelberg, 2012.

[Leh12] S. Lehrig. Assessing the Quality of Model-to-Model Transformations
Based on Scenarios. Master thesis, Software Engineering Group,
University of Paderborn, Software Engineering Group, Paderborn,
Germany, Oct. 2012.

[LEO08] L. Lambers, H. Ehrig, and F. Orejas. Efficient conflict detection in
graph transformation systems by essential critical pairs. Electronic
Notes in Theoretical Computer Science, 211(0):17 – 26, 2008. Pro-
ceedings of the Fifth International Workshop on Graph Transfor-
mation and Visual Modeling Techniques (GT-VMT 2006).

[LHGO12] L. Lambers, S. Hildebrandt, H. Giese, and F. Orejas. Attribute
handling for bidirectional model transformations: The triple graph
grammar case. In Proceedings of the First International Workshop
on Bidirectional Transformations (BX 2012). 2012.

[Mar10] S. Marlow (editor). Haskell 2010 Language Report. 2010.
[MCPW08] L. Murta, C. Corrêa, J. a. G. Prudêncio, and C. Werner. Towards

Odyssey-VCS 2: Improvements over a UML-based version control
system. In Proceedings of the 2008 International Workshop on Com-
parison and Versioning of Software Models, CVSM ’08, pp. 25–30.
ACM, New York, NY, USA, 2008.

[MCT08] Y.-S. Ma, G. Chen, and G. Thimm. Paradigm shift: unified and
associative feature-based concurrent and collaborative engineering.
Journal of Intelligent Manufacturing, 19(6):625–641, 2008.

[MG06] T. Mens and P. V. Gorp. A taxonomy of model transformation.
Electronic Notes in Theoretical Computer Science, 152:125–142,
2006.

[MSG+13] A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and P. J. Clarke (edi-
tors). Model-Driven Engineering Languages and Systems – 16th In-
ternational Conference, MODELS 2013, Miami, FL, USA, Septem-
ber 29 - October 4, 2013. Proceedings, vol. 8107 of Lecture Notes in
Computer Science. Springer, 2013.

[MTR05] T. Mens, G. Taentzer, and O. Runge. Detecting structural refac-
toring conflicts using critical pair analysis. Electronic Notes in
Theoretical Computer Science, 127(3):113 – 128, 2005. Proceed-
ings of the Workshop on Software Evolution through Transfor-
mations: Model-based vs. Implementation-level Solutions (SETra
2004) Software Evolution through Transformations: Model-based
vs. lmplementation-level Solutions 2004.

[MV11] R. Mannadiar and H. Vangheluwe. Debugging in domain-specific
modelling. In Proceedings of the Third International Conference

236 BIBLIOGRAPHY

on Software Language Engineering, SLE’10, pp. 276–285. Springer-
Verlag, Berlin, Heidelberg, 2011.

[Ode13] M. Odersky. The Scala Language Specification. Programming Meth-
ods Laboratory EPFL, Switzerland, November 2013. Version 2.8
Draft.

[OJT+12] F. Oestersötebier, V. Just, A. Trächtler, F. Bauer, and S. Dziwok.
Model-based design of mechatronic systems by means of semantic
web ontologies and reusable solution elements. In Proceedings of
the ASME 2012 11th Biennial Conference on Engineering Systems
Design and Analysis. ASME, ASME, Nantes, France, 2012.

[OMG01] Object Management Group. Model Driven Architecture (MDA) –
a technical perspective, 2001. OMG document ormsc/01-07-01.

[OMG06] Object Management Group. Meta Object Facility (MOF) Core 2.0
specification, 2006.

[OMG08] Object Management Group. MOF Query/View/Transformation
(QVT) 1.0 specification, 2008.

[OMG10a] Object Management Group. Systems modeling language (OMG
SysML™) v1.2, 2010.

[OMG10b] Object Management Group. Unified modeling language
(UML) 2.3 superstructure specification, 2010. OMG document
formal/2010-05-05.

[OMG12] Object Management Group. Object constraint language (OCL)
2.3.1 specification, 2012.

[OMT+08] S. Osmic, E. Münch, A. Trachtler, S. Henkler, W. Schäfer, H. Giese,
and M. Hirsch. Safe online-reconfiguration of self-optimzing mecha-
tronic systems. In J. Gausemeier, F. J. Rammig, and W. Schäfer
(editors), Selbstoptimierende mechatronische Systeme: Die Zukunft
gestalten. 7. Internationales Heinz Nixdorf Symposium für indus-
trielle Informationstechnik, pp. 411–426. Feb. 2008.

[PKP05] R. F. Paige, D. S. Kolovos, and F. A. Polack. Refinement via consis-
tency checking in MDA. Electronic Notes in Theoretical Computer
Science, 137(2):151–161, 2005. Proceedings of the REFINE 2005
Workshop.

[PST13] C. Priesterjahn, D. Steenken, and M. Tichy. Timed hazard analy-
sis of self-healing systems. In J. Cámara, R. de Lemos, C. Ghezzi,
and A. Lopes (editors), Assurances for Self-Adaptive Systems As-
surances for Self-Adaptive Systems, vol. 7740 of Lecture Notes in
Computer Science (LNCS), pp. 112–151. Springer-Verlag, Berlin,
Heidelberg, 2013.

[QACT12a] A. Queralt, A. Artale, D. Calvanese, and E. Teniente. OCL-Lite:
A decidable (yet expressive) fragment of OCL. In Proceedings of
the 25th International Workshop on Description Logics (DL 2012),
vol. 846 of CEUR Electronic Workshop Proceedings, pp. 312–322.
2012.

BIBLIOGRAPHY 237

[QACT12b] A. Queralt, A. Artale, D. Calvanese, and E. Teniente. OCL-Lite:
Finite reasoning on UML/OCL conceptual schemas. Data & Knowl-
edge Engineering, 73:1–22, 2012.

[RDS+12] J. Rieke, R. Dorociak, O. Sudmann, J. Gausemeier, and W. Schäfer.
Management of cross-domain model consistency for behavior mod-
els of mechatronic systems. In Proceedings of the International De-
sign Conference – DESIGN 2012. 2012.

[RH09] R. Reussner and W. Hasselbring (editors). Handbuch der
Softwarearchitektur. 2. überarbeitete und erweiterte Auflage.
dpunkt.verlag, Heidelberg, 2009.

[Rie08] J. Rieke. Konsistenzerhaltung zwischen domänenübergreifenden und
domänenspezifischen Modellen im Entwicklungsprozess mechatron-
ischer Systeme. Master’s thesis, University of Paderborn, 2008.

[RK10] D. D. Ruscio and D. S. Kolovos (editors). IWMCP ’10: Proceed-
ings of the 1st International Workshop on Model Comparison in
Practice. ACM, New York, NY, USA, 2010.

[RK11] D. D. Ruscio and D. S. Kolovos (editors). IWMCP ’11: Proceed-
ings of the 2nd International Workshop on Model Comparison in
Practice. ACM, New York, NY, USA, 2011.

[Ros96] J. B. Rosenberg. How Debuggers Work: Algorithms, Data Struc-
tures, and Architecture. John Wiley & Sons, Inc., New York, NY,
USA, 1996.

[RS12] J. Rieke and O. Sudmann. Specifying refinement relations in ver-
tical model transformations. In Proceedings of the 8th European
Conference on Modelling Foundations and Applications (ECMFA
2012). Springer Berlin/Heidelberg, 2012.

[SC13] M. Stephan and J. R. Cordy. A survey of model comparison ap-
proaches and applications. In Proceedings of the 1st International
Conference on Model-Driven Engineering and Software Develop-
ment (MODELSWARD 2013), pp. 265–277. 2013.

[Sch95] A. Schürr. Specification of graph translators with triple graph gram-
mars. In E. W. Mayr, G. Schmidt, and G. Tinhofer (editors), 20th
International Workshop on Graph-Theoretic Concepts in Computer
Science (WG’94), vol. 903 of Lecture Notes in Computer Science
(LNCS), pp. 151–163. Springer Verlag, Heidelberg, 1995.

[Sch12] J. Schönböck. Testing and Debugging of Model Transformations.
Ph.D. thesis, Vienna University of Technology, 2012.

[SEH+10] W. Schäfer, T. Eckardt, C. Henke, L. Kaiser, T. Kerstan, J. Rieke,
and M. Tichy. Der Softwareentwurf im Entwicklungsprozess mecha-
tronischer Systeme. In 7. Paderborner Workshop Entwurf mecha-
tronischer Systeme. 2010.

[SK08a] A. Schürr and F. Klar. 15 years of triple graph grammars. In Pro-
ceedings of the International Conference on Graph Transformations
(ICGT 08), LNCS 5214, pp. 411–425. Springer, 2008.

238 BIBLIOGRAPHY

[SK08b] M. Seifert and S. Katscher. Debugging triple graph grammar-based
model transformations. In Proceedings of 6th International Fujaba
Days, Dresden, Germany. 2008.

[SKK+10] J. Schoenboeck, G. Kappel, A. Kusel, W. Retschitzegger,
W. Schwinger, and M. Wimmer. Catch me if you can – debugging
support for model transformations. In S. Ghosh (editor), Models
in Software Engineering, vol. 6002 of Lecture Notes in Computer
Science, pp. 5–20. Springer Berlin / Heidelberg, 2010.

[Sta73] H. Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, Wien,
New York, 1973.

[SV06] T. Stahl and M. Völter. Model-Driven Software Development. John
Wiley and Sons, 2006.

[SW07] W. Schäfer and H. Wehrheim. The challenges of building advanced
mechatronic systems. In Future of Software Engineering (FOSE
’07), pp. 72–84. IEEE Computer Society, 2007.

[Ecl13] The Eclipse Foundation. EMF Compare Project. online, 2013.
Accessed on 2013-07-01.

[TMW14] The MathWorks. MATLAB Documentation, 2014. http://www.
mathworks.de/de/help/stateflow/index.html.

[UPB14] University of Paderborn. TGG Interpreter Tool Suite,
2010–2014. http://www.cs.uni-paderborn.de/index.php?id=
tgg-interpreter.

[Var06] D. Varró. Model transformation by example. In O. Nierstrasz,
J. Whittle, D. Harel, and G. Reggio (editors), Model Driven En-
gineering Languages and Systems, vol. 4199 of Lecture Notes in
Computer Science, pp. 410–424. Springer Berlin Heidelberg, 2006.

[VBD+13] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander,
L. Kats, E. Visser, and G. Wachsmuth. DSL Engineering – Design-
ing, Implementing and Using Domain-Specific Languages. 2013.

[vDHP+12] M. von Detten, C. Heinzemann, M. C. Platenius, J. Rieke,
D. Travkin, and S. Hildebrandt. Story diagrams – syntax and
semantics. Tech. Rep. tr-ri-12-324, Software Engineering Group,
Heinz Nixdorf Institute, University of Paderborn, July 2012. Ver-
sion 0.2.

[VDI2206] Verein Deutscher Ingenieure. Design methodology for mechatronic
systems, 2004.

[vP07] J. von Pilgrim. Mental map and model driven development. ECE-
ASST, 7, 2007.

[Wag09] R. Wagner. Inkrementelle Modellsynchronisation. Ph.D. thesis,
University of Paderborn, 2009.

[WLS+13] K. Wieland, P. Langer, M. Seidl, M. Wimmer, and G. Kappel.
Turning conflicts into collaboration. Computer Supported Coopera-
tive Work (CSCW), 22(2-3):181–240, 2013.

http://www.mathworks.de/de/help/stateflow/index.html
http://www.mathworks.de/de/help/stateflow/index.html
http://www.cs.uni-paderborn.de/index.php?id=tgg-interpreter
http://www.cs.uni-paderborn.de/index.php?id=tgg-interpreter

BIBLIOGRAPHY 239

[W3C01] World Wide Web Consortium. XML Path Language (XPath) 2.0,
2010.

[XLH+07] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei. Towards
automatic model synchronization from model transformations. In
Proceedings of the 22th IEEE/ACM International Conference on
Automated Software Engineering (ASE ’07). 2007.

[XSHT09] Y. Xiong, H. Song, Z. Hu, and M. Takeichi. Supporting parallel
updates with bidirectional model transformations. In Proceedings of
the 2nd International Conference on Theory and Practice of Model
Transformations (ICMT ’09). Springer-Verlag, 2009.

[XSHT13] Y. Xiong, H. Song, Z. Hu, and M. Takeichi. Synchronizing concur-
rent model updates based on bidirectional transformation. Software
& Systems Modeling, 12(1):89–104, 2013.

[Zün05] A. Zündorf. Story driven modeling: A practical guide to model
driven software development. In Proceedings of the 27th Interna-
tional Conference on Software Engineering, ICSE ’05, pp. 714–715.
ACM, New York, NY, USA, 2005.

[ZWPG03] F. Zorriassatine, C. Wykes, R. M. Parkin, and N. Gindy. A survey of
virtual prototyping techniques for mechanical product development.
Journal of Engineering Manufacture, 217(4):513–530, 2003.

List of Figures

1.1 V-Model as a process for mechatronic system development
(adapted from [VDI2206, BRD06]) 2

1.2 Illustration of the RailCab research project 5
1.3 Active structure of the RailCab . 6
1.4 Evolution of the different models in the example scenario 7

2.1 Traditional sequential development process (“throw it over the
wall”) . 16

2.2 V-Model as a process for mechatronic system development
(adapted from [VDI2206, BRD06]) 17

2.3 Aspects of the principle solution (adapted from [Fra06, GFDK09]) 18
2.4 Conceptual design phase (adapted from [GFDK09]) 19
2.5 Simplified active structure of the RailCab 20
2.6 Behavior–States model defining the discrete and communication

behavior for convoys . 20
2.7 Design and development phase (from [GRS14a]) 22
2.8 Software component structure of the RailCab (excerpt) 25
2.9 Software component structure of the Velocity Control component 25
2.10 (Simplified) statechart that defines the behavior of the DriveCon-

trol component . 26
2.11 Basic structure of a mechatronic system (“control loop”) 28
2.12 Velocity controllers of the RailCab 29
2.13 Fading between signals with a fading function in the velocity

controllers of the RailCab . 29
2.14 MATLAB/Simulink chart for controller reconfiguration 30
2.15 Circuit diagram of an active low-pass filter (according to

IEC 60617) . 31
2.16 Fundamental concepts of model transformation (adapted

from [CH06] . 32
2.17 Features of Model Transformation (adapted from [CH06]) 33
2.18 A simple type graph in class diagram syntax 37
2.19 A simple graph typed over the type graph of Fig. 2.18 37
2.20 Object diagram of Fig. 2.19 . 38
2.21 A simple typed graph transformation rule 38
2.22 Finding an monomorphism (“matching”) and applying a graph

transformation rule . 40

240

LIST OF FIGURES 241

2.23 Matching with a non-injective morphism 40
2.24 Derivation tree created by sequentially applying rules 42
2.25 TGG Rule SystemElement2HybridComponent: relating system el-

ements (CONSENS) to hybrid components (MechatronicUML) 43
2.26 Compact notation of the TGG Rule SystemEle-

ment2HybridComponent (cf. Fig. 2.25) 44
2.27 TGG Rule SystemElement2Controller: relating system elements

(CONSENS) to controller components (MechatronicUML) . 46
2.28 The binding semantics of the TGG nodes in the application sce-

narios . 47
2.29 Incremental update algorithm (adapted from [Wag09]) 51

3.1 Convoy coordination concept of the RailCab system 56
3.2 Evolution of different models during the development process . . 58
3.3 Excerpt of the active structure of the RailCab (from Fig. 2.5)

with relevance annotations . 61
3.4 Initial transformation from the active structure to a software

component diagram . 62
3.5 Mapping from CONSENS to MechatronicUML 64
3.6 Initial transformation from the active structure to a MAT-

LAB/Simulink control engineering model 65
3.7 Initial transformation from Behavior–States to a MAT-

LAB/Stateflow model . 67
3.8 Mapping from CONSENS to MATLAB/Simulink and State-

flow . 68
3.9 Simultaneous changes to both the system model and the software

engineering model . 70
3.10 Updating the active structure using the altered software compo-

nent diagram . 71
3.11 Updating the MATLAB/Simulink control engineering model

using the updated active structure diagram 72
3.12 Models used in Model-Driven Architecture development 73

4.1 Partially overlapping models in the system development 76
4.2 Activities of the new incremental update algorithm 82
4.3 Evolution of different models during the development process

(excerpt of Fig. 3.2) . 84
4.4 Initial transformation from the active structure to a software

component diagram, here: transforming the Velocity Control sys-
tem elememt . 85

4.5 Changes to the CONSENS system model and the Mechatron-
icUML software engineering model (step 2) after the initial
transformation . 86

4.6 Abstract syntax after rule revocation due to deletion of a flow . . 87
4.7 Abstract syntax after applying the rule SystemElementToCon-

troller (with reusing elements) . 88

242 LIST OF FIGURES

4.8 Revocation of two rules and a subsequent “wrong” partial pattern
match . 90

4.9 Matching tree resulting from searching the produced pattern of
SystemElementToController in the set of deleted elements from
Fig. 4.8 . 94

4.10 Sequence of pattern-matching steps for the left subtree of Fig. 4.9
within the TGG rule SystemElementToController 95

4.11 Refinements and relevant changes in a discipline-specific model
and its effects on the discipline-spanning system model 100

4.12 Concept overview . 101
4.13 Formalization of vertical model transformations 103
4.14 TGG Rule CONSENS State to MATLAB/Stateflow State 104
4.15 TGG Rule Transition to Transition 104
4.16 Evolution of the different models during the development process 106
4.17 Refinement rule (concrete syntax) for adding intermediate states

in the Stateflow control engineering model 107
4.18 Refinement rule from Fig. 4.17 in abstract syntax 108
4.19 TGG Rule Transition to Transition (refined, with intermediate state) 109
4.20 Excerpts from Stateflow model: a) before updating; updated

in different ways: b) lost fading state, c) “wrong” propagation of
the change, d) correctly updated . 112

4.21 General formalization of n-to-n consistency relations 114
4.22 Dimensions of editing conflicts and its resolution approaches . . . 119
4.23 Using model merging to synchronize simultaneous changes 123
4.24 Changing software engineering model and system model 125
4.25 Automatically propagating software engineering changes to the

system model . 125
4.26 Merging the manual changes from the system model and the

propagated changes from the software model 126
4.27 Result: Automatically merged software engineering model and

system model . 126
4.28 Overview of the improved merging and conflict resolution approach 128
4.29 Changes in “top” rule applications may impede synchronization . 129
4.30 Activity diagram of the improved approach for synchronizing

concurrent changes . 130
4.31 Activity diagram of the activitiy propagate non-conflicting source

changes . 130

5.1 TGG Rule SystemElement2HybridComponent: examples of at-
tribute assignments and application conditions 136

5.2 Distributing type properties into non-typed instances 140
5.3 Using regular TGGs for a distribution of properties 142
5.4 Reusable source nodes and constraints for combinatoric distribu-

tion (attribute constraints omitted) 143
5.5 Backward incremental update: Inconsistent state 144
5.6 Branching point to start a nested (child) transformation 145

LIST OF FIGURES 243

5.7 Backward incremental update: Correct incremental updates us-
ing a nested transformation . 145

5.8 Using the concrete syntax of a modeling language in TGG rules . 150
5.9 Stack frames in a Java debugger . 154
5.10 Hierarchy of transformation execution steps 155
5.11 Mock-up of the Pattern Matching Debug View 157
5.12 Mock-up of the Rule Dependency Debug View 158

6.1 Screenshot of the rule editor of the TGG Interpreter tool suite 160
6.2 Incremental update result overview dialog 161
6.3 Architecture of the TGG Interpreter Tool Suite 161
6.4 Activity diagram of the complete (bidirectional, conflict-

resolving) model synchronization 163
6.5 Critical pair analysis: Example for a critical pair that does not

constitute a rule conflict . 167
6.6 Screenshot of the rule dependency analysis 167
6.7 Screenshot of the correspondence view showing a CONSENS ac-

tive structure and a MechatronicUML component diagram . . 168
6.8 Exemplary rule application tree . 170
6.9 Technical concept for generating the consistency relation R from

the initial transformation I and the refinement rules 171
6.10 Screenshot of the TGG rule editor using the concrete syntax

of the modeling languages CONSENS (left) and Mechatron-
icUML (right) [AGL+12] . 173

6.11 Screenshot of the TGG Debugger during matching 177
6.12 Overview of the implemented transformations 178
6.13 Performance evaluation scenario 1: Typical editing operations in

a system model during the Design and Development phase 180
6.14 Performance evaluation scenario 2: Artificial example with larger

system element hierarchy . 180

A.1 Inheritance relations between the different TGG rules 192
A.2 TGG Axiom CONSENS2MUML . 193
A.3 TGG Rule System2StructuredComponent 194
A.4 TGG Rule SystemElement2Component 195
A.5 TGG Rule SystemElementNoTemplate2Component 196
A.6 TGG Rule SystemElementNoTemplate2AtomicComponent 197
A.7 TGG Rule SystemElementNoTemplate2StructuredComponent . . . 198
A.8 TGG Rule SystemElementWithTemplate2Component 199
A.9 TGG Rule SystemElementWithTemplate2AtomicComponent 200
A.10 TGG Rule SystemElementWithTemplate2StructuredComponent . . 201
A.11 TGG Rule BidirectionalFlow2Assemblies 202
A.12 TGG Rule Flow2Connector . 203
A.13 TGG Rule Flow2Delegation . 204
A.14 TGG Rule FlowPort2Port . 205
A.15 TGG Rule InFlow2InDelegation . 206
A.16 TGG Rule InOutFlow2InOutDelegation 207

244 LIST OF FIGURES

A.17 TGG Rule OutFlow2OutDelegation 208
A.18 TGG Rule UnidirectionalFlow2Assembly 209

B.1 TGG Rule ActivityEdge2ActivityEdge-1 212
B.2 TGG Rule ActivityEdge2ActivityEdge-2 213
B.3 TGG Rule FinalNode2FinalNode . 214
B.4 TGG Rule InitialNode2InitialNode 214
B.5 TGG Rule MSNode2MSNode . 215
B.6 TGG Rule Type2Type . 215
B.7 TGG Rule StoryPattern2StoryPattern 216
B.8 TGG Rule Variable2Variable . 217
B.9 TGG Rule Variable2Variable-contextNode 218
B.10 TGG Rule Variable2Variable-producedNode-create 219
B.11 TGG Rule Variable2Variable-producedNode-destroy 220
B.12 TGG Rule LinkVariable2Edge-checkonly-create 221
B.13 TGG Rule LinkVariable2Edge-destroy 222
B.14 TGG Rule AttributeAssignment2OCLConstraint 223
B.15 TGG Rule Constraint2Constraint . 224

Das Heinz Nixdorf Institut –
Interdisziplinäres Forschungszentrum

für Informatik und Technik

Das Heinz Nixdorf Institut ist ein Forschungszentrum der Universität Pader-
born. Es entstand 1987 aus der Initiative und mit Förderung von Heinz
Nixdorf. Damit wollte er Ingenieurwissenschaften und Informatik zusammen-
führen, um wesentliche Impulse für neue Produkte und Dienstleistungen zu
erzeugen. Dies schließt auch die Wechselwirkungen mit dem gesellschaftli-
chen Umfeld ein.

Die Forschungsarbeit orientiert sich an dem Programm „Dynamik, Mobilität,
Vernetzung: Eine neue Schule des Entwurfs der technischen Systeme von
morgen“. In der Lehre engagiert sich das Heinz Nixdorf Institut in Studiengän-
gen der Informatik, der Ingenieurwissenschaften und der Wirtschaftswissen-
schaften.

Heute wirken am Heinz Nixdorf Institut acht Professoren mit insgesamt 200
Mitarbeiterinnen und Mitarbeitern. Etwa ein Viertel der Forschungsprojekte der
Universität Paderborn entfallen auf das Heinz Nixdorf Institut und pro Jahr
promovieren hier etwa 30 Nachwuchswissenschaftlerinnen und Nachwuchs-
wissenschaftler.

Heinz Nixdorf Institute –
Interdisciplinary Research Centre

for Computer Science and Technology

The Heinz Nixdorf Institute is a research centre within the University of Pader-
born. It was founded in 1987 initiated and supported by Heinz Nixdorf. By do-
ing so he wanted to create a symbiosis of computer science and engineering
in order to provide critical impetus for new products and services. This in-
cludes interactions with the social environment.

Our research is aligned with the program “Dynamics, Mobility, Integration: En-
route to the technical systems of tomorrow.” In training and education the
Heinz Nixdorf Institute is involved in many programs of study at the University
of Paderborn. The superior goal in education and training is to communicate
competencies that are critical in tomorrows economy.

Today eight Professors and 200 researchers work at the Heinz Nixdorf Insti-
tute. The Heinz Nixdorf Institute accounts for approximately a quarter of the
research projects of the University of Paderborn and per year approximately
30 young researchers receive a doctorate.

Bände der HNI-Verlagsschriftenreihe

__

Bezugsadresse:
Heinz Nixdorf Institut
Universität Paderborn
Fürstenallee 11
33102 Paderborn

Bd. 306 GAUSEMEIER, J. (Hrsg.): Vorausschau und
Technologieplanung. 8. Symposium für
Vorausschau und Technologieplanung,
Heinz Nixdorf Institut, 6. und 7. Dezem-
ber 2012, Brandenburgische Akademie
der Wissenschaften, Berlin, HNI-Verlags-
schriftenreihe, Band 306, Paderborn,
2012 – ISBN 978-3-942647-25-0

Bd. 307 REYMANN, F.: Verfahren zur Strategieent-

wicklung und -umsetzung auf Basis einer
Retropolation von Zukunftsszenarien.
Dissertation, Fakultät für Maschinenbau,
Universität Paderborn, HNI-Verlags-
schriftenreihe, Band 307, Paderborn,
2013 – ISBN 978-3-942647-26-7

Bd. 308 KAHL, S.: Rahmenwerk für einen selbst-

optimierenden Entwicklungsprozess
fortschrittlicher mechatronischer Syste-
me. Dissertation, Fakultät für Maschinen-
bau, Universität Paderborn, HNI-Verlags-
schriftenreihe, Band 308, Paderborn,
2013 – ISBN 978-3-942647-27-4

Bd. 309 WASSMANN, H.: Systematik zur Entwick-

lung von Visualisierungstechniken für die
visuelle Analyse fortgeschrittener mecha-
tronischer Systeme in VR-Anwendungen.
Dissertation, Fakultät für Maschinenbau,
Universität Paderborn, HNI-Verlagsschrif-
tenreihe, Band 309, Paderborn, 2013 –
ISBN 978-3-942647-28-1

Bd. 310 GAUSEMEIER, J.; RAMMIG, F.; SCHÄFER, W.;

TRÄCHTLER, A. (Hrsg.): 9. Paderborner
Workshop Entwurf mechatronischer Sys-
teme. HNI-Verlagsschriftenreihe, Band
310, Paderborn, 2013 – ISBN 978-3-
942647-29-8

Bd. 311 GAUSEMEIER, J.; GRAFE, M.; MEYER AUF

DER HEIDE, F. (Hrsg.): 11. Paderborner
Workshop Augmented & Virtual Reality in
der Produktentstehung. HNI-Verlags-
schriftenreihe, Band 311, Paderborn,
2013 – ISBN 978-3-942647-30-4

Bd. 312 BENSIEK, T.: Systematik zur reifegrad-

basierten Leistungsbewertung und
-steigerung von Geschäftsprozessen im
Mittelstand. Dissertation, Fakultät für
Maschinenbau, Universität Paderborn,
HNI-Verlagsschriftenreihe, Band 312,
Paderborn, 2013 – ISBN 978-3-942647-
31-1

Bd. 313 KOKOSCHKA, M.: Verfahren zur Konzi-
pierung imitationsgeschützter Produkte
und Produktionssysteme. Dissertation,
Fakultät für Maschinenbau, Universität
Paderborn, HNI-Verlagsschriftenreihe,
Band 313, Paderborn, 2013 – ISBN 978-
3-942647-32-8

Bd. 314 VON DETTEN, M.: Reengineering of

Component-Based Software Systems in
the Presence of Design Deficiencies.
Dissertation, Fakultät für Elektrotechnik,
Informatik und Mathematik, Universität
Paderborn, HNI-Verlagsschriftenreihe,
Band 314, Paderborn, 2013 – ISBN 978-
3-942647-33-5

Bd. 315 MONTEALEGRE AGRAMONT, N. A.: Immun-

orepairing of Hardware Systems. Disser-
tation, Fakultät für Elektrotechnik, Infor-
matik und Mathematik, Universität Pader-
born, HNI-Verlagsschriftenreihe, Band
315, Paderborn, 2013 – ISBN 978-3-
942647-34-2

Bd. 316 DANGELMAIER, W.; KLAAS, A.; LAROQUE, C.:

Simulation in Produktion und Logistik
2013. HNI-Verlagsschriftenreihe, Band
316, Paderborn, 2013 – ISBN 978-3-
942647-35-9

Bd. 317 PRIESTERJAHN, C.: Analyzing Self-healing

Operations in Mechatronic Systems.
Dissertation, Fakultät für Elektrotechnik,
Informatik und Mathematik, Universität
Paderborn, HNI-Verlagsschriftenreihe,
Band 317, Paderborn, 2013 – ISBN 978-
3-942647-36-6

Bd. 318 GAUSEMEIER, J. (Hrsg.): Vorausschau und

Technologieplanung. 9. Symposium für
Vorausschau und Technologieplanung,
Heinz Nixdorf Institut, 5. und 6. Dezember
2013, Berlin-Brandenburgische Akademie
der Wissenschaften, Berlin, HNI-Verlags-
schriftenreihe, Band 318, Paderborn, 2013
– ISBN 978-3-942647-37-3

Bd. 319 GAUSEMEIER, S.: Ein Fahrerassistenz-

system zur prädiktiven Planung energie-
und zeitoptimaler Geschwindigkeitsprofile
mittels Mehrzieloptimierung. Dissertation,
Fakultät für Maschinenbau, Universität
Paderborn, HNI-Verlagsschriftenreihe,
Band 319, Paderborn, 2013 – ISBN 978-
3-942647-38-0

Bände der HNI-Verlagsschriftenreihe

__

Bezugsadresse:
Heinz Nixdorf Institut
Universität Paderborn
Fürstenallee 11
33102 Paderborn

Bd. 320 GEISLER, J.: Selbstoptimierende Spur-
führung für ein neuartiges Schienen-
fahrzeug. Dissertation, Fakultät für Ma-
schinenbau, Universität Paderborn, HNI-
Verlagsschriftenreihe, Band 320, Pader-
born, 2013 – ISBN 978-3-942647-39-7

Bd. 321 MÜNCH, E.: Selbstoptimierung verteilter

mechatronischer Systeme auf Basis
paretooptimaler Systemkonfigurationen.
Dissertation, Fakultät für Maschinenbau,
Universität Paderborn, HNI-Verlags-
schriftenreihe, Band 321, Paderborn, 2014
– ISBN 978-3-942647-40-3

Bd. 322 RENKEN, H.: Acceleration of Material Flow

Simulations - Using Model Coarsening by
Token Sampling and Online Error
Estimation and Accumulation Controlling.
Dissertation, Fakultät für Wirtschafts-
wissenschaften, Universität Paderborn,
HNI-Verlags-schriftenreihe, Band 322,
Paderborn, 2014 – ISBN 978-3-942647-
41-0

Bd. 323 KAGANOVA, E.: Robust solution to the

CLSP and the DLSP with uncertain
demand and online information base.
Dissertation, Fakultät für
Wirtschaftswissenschaften, Universität
Paderborn, HNI-Verlags-schriftenreihe,
Band 323, Paderborn, 2014 – ISBN 978-
3-942647-42-7

Bd. 324 LEHNER, M.: Verfahren zur Entwicklung

geschäftsmodell-orientierter
Diversifikationsstrategien. Dissertation,
Fakultät für Maschinenbau, Universität
Paderborn, HNI-Verlagsschriftenreihe,
Band 324, Paderborn, 2014 – ISBN 978-
3-942647-43-4

Bd. 325 BRANDIS, R.: Systematik für die

integrative Konzipierung der Montage auf
Basis der Prinziplösung mechatronischer
Systeme. Dissertation, Fakultät für
Maschinenbau, Universität Paderborn,
HNI-Verlagsschriftenreihe, Band 325,
Paderborn, 2014 – ISBN 978-3-942647-
44-1

Bd. 326 KÖSTER, O.: Systematik zur Entwicklung

von Geschäftsmodellen in der Produkt-
entstehung. Dissertation, Fakultät für
Maschinenbau, Universität Paderborn,
HNI-Verlagsschriftenreihe, Band 326,
Paderborn, 2014 – ISBN 978-3-942647-
45-8

Bd. 327 KAISER, L.: Rahmenwerk zur Modellierung
einer plausiblen Systemstrukturen
mechatronischer Systeme. Dissertation,
Fakultät für Maschinenbau, Universität
Paderborn, HNI-Verlagsschriftenreihe,
Band 327, Paderborn, 2014 – ISBN 978-
3-942647-46-5

Bd. 328 KRÜGER, M.: Parametrische Modellord-

nungsreduktion für hierarchische
selbstoptimierende Systeme.
Dissertation, Fakultät für Maschinenbau,
Universität Paderborn, HNI-
Verlagsschriftenreihe, Band 328, Pader-
born, 2014 – ISBN 978-3-942647-47-2

Bd. 329 AMELUNXEN, H.: Fahrdynamikmodelle für

Echtzeitsimulationen im komfortrelevan-
ten Frequenzbereich. Dissertation, Fakul-
tät für Maschinenbau, Universität Pader-
born, HNI-Verlagsschriftenreihe, Band
329, Paderborn, 2014 – ISBN 978-3-
942647-48-9

Bd. 330 KEIL, R.; SELKE, H. (Hrsg):. 20 Jahre

Lernen mit dem World Wide Web.
Technik und Bildung im Dialog. HNI-
Verlagsschriftenreihe, Band 330, Pader-
born, 2014 – ISBN 978-3-942647-49-6

Bd. 331 HARTMANN, P.: Ein Beitrag zur Verhaltens-

antizipation und -regelung kognitiver
mechatronischer Systeme bei langfristiger
Planung und Ausführung. Dissertation,
Fakultät für Wirtschaftswissenschaften,
Universität Paderborn, HNI-Verlagsschrif-
tenreihe, Band 331, Paderborn, 2014 –
ISBN 978-3-942647-50-2

Bd. 332 ECHTERHOFF, N.: Systematik zur Planung

von Cross-Industry-Innovationen
Dissertation, Fakultät für Maschinenbau,
Universität Paderborn, HNI-Verlagsschrif-
tenreihe, Band 332, Paderborn, 2014 –
ISBN 978-3-942647-51-9

Bd. 333 HASSAN, B.: A Design Framework for

Developing a Reconfigurable Driving
Simulator. Dissertation, Fakultät für
Maschinenbau, Universität Paderborn,
HNI-Verlagsschriftenreihe, Band 333,
Paderborn, 2014 – ISBN 978-3-942647-
52-6

Bd. 334 GAUSEMEIER, J. (Hrsg.): Vorausschau und

Technologieplanung. 10. Symposium für
Vorausschau und Technologieplanung,
Heinz Nixdorf Institut, 20. und 21. Novem-
ber 2014, Berlin-Brandenburgische Aka-
demie der Wissenschaften, Berlin, HNI-
Verlagsschriftenreihe, Band 334, Pader-
born, 2014 – ISBN 978-3-942647-53-3

	List of Publications
	1 Introduction
	1.1 Running Example
	1.2 Problem
	1.3 Objective
	1.4 Approach and Contribution
	1.5 Structure of this Thesis

	2 Foundations
	2.1 Model-based Development of Mechatronic Systems
	2.1.1 Models and Model-Based Development
	2.1.2 Development Process
	2.1.3 Interdisciplinary Conceptual Design
	2.1.4 Discipline-Specific Design and Development
	2.1.5 Further Disciplines

	2.2 Model Transformations
	2.2.1 General Concepts and Terms
	2.2.2 Feature-Based Classification of Model Transformation Approaches

	2.3 Graph Grammars and Graph Transformations
	2.3.1 Graphs
	2.3.2 Graph Transformations
	2.3.3 Graph Grammars

	2.4 Triple Graph Grammars
	2.4.1 Basic TGG Syntax and Semantics
	2.4.2 Model Transformation with TGGs
	2.4.3 Incremental Updates and Model Synchronization
	2.4.4 Model Transformation Features

	3 Synchronizing Mechatronic System Development Models
	3.1 Example Scenario Overview
	3.2 Deriving Initial Discipline-Specific Models from the System Model
	3.2.1 Defining Discipline Relevance
	3.2.2 Transformation from CONSENS to Software Engineering Models
	3.2.3 Transformation from CONSENS to Control Engineering Models
	3.2.4 Transformation to Other Disciplines

	3.3 Synchronizing Models During the Discipline-Specific Refinement Phase
	3.3.1 Updating the System Model
	3.3.2 Updating Control Engineering Models
	3.3.3 Tackling the Challenges of Synchronizing Models for Mechatronic System Development

	3.4 Comparison with Other Scenarios
	3.4.1 Summary

	4 Model Synchronization
	4.1 Incremental Updates
	4.1.1 Related Work
	4.1.2 General Approach
	4.1.3 Example
	4.1.4 Concept of the Incremental Update Algorithm
	4.1.5 Selection of Elements to be Reused
	4.1.6 Selection Metrics
	4.1.7 Partially Reusable Pattern Matching Algorithm
	4.1.8 Formal Properties of the Approach
	4.1.9 Summary

	4.2 Abstraction and Concretion Relations
	4.2.1 Related Work
	4.2.2 Problem Formalization
	4.2.3 Definition of the Initial Transformation Function I
	4.2.4 Definition of Refinement Operations
	4.2.5 Derivation of the Consistency Relation R
	4.2.6 Model Synchronization with a 1-to-n Consistency Relation
	4.2.7 Generalization to n-to-n Consistency Relations
	4.2.8 Summary

	4.3 Synchronizing Concurrent Modifications
	4.3.1 Conflict Categorization
	4.3.2 Related Work
	4.3.3 Model Comparison for Merging Concurrent Modifications
	4.3.4 Improving Conflict Resolution
	4.3.5 Summary

	5 TGG Extensions
	5.1 Constraints and Application Conditions
	5.1.1 Attribute Value Constraints
	5.1.2 General Constraints
	5.1.3 Transformation Semantics of Application Conditions
	5.1.4 Correctness of Application Condition and Constraint Semantics

	5.2 Combinatoric Distributions
	5.2.1 Reusable Nodes and Application Conditions
	5.2.2 Child Transformations

	5.3 Concrete-Syntax-Based TGG Rules
	5.3.1 General Approach
	5.3.2 Related Work
	5.3.3 Concept

	5.4 TGG Debugging
	5.4.1 Related Work
	5.4.2 Debugging Concept

	6 Realization and Evaluation
	6.1 Implementation
	6.1.1 Incremental Bidirectional Synchronization Algorithm
	6.1.2 Static Analyses
	6.1.3 Correspondence View
	6.1.4 Rule Backtracking/Look-Ahead
	6.1.5 Abstraction and Concretion Relations
	6.1.6 TGG Syntax Extensions
	6.1.7 Constraints and Application Conditions
	6.1.8 TGG Debugging

	6.2 Model Transformations
	6.3 Evaluation
	6.3.1 Incremental Updates with Element Reuse
	6.3.2 Bidirectional Synchronization
	6.3.3 TGG Debugging

	7 Conclusion and Future Research
	7.1 Summary
	7.2 Future Research

	A Transformation from CONSENS to MechatronicUML
	B Transformation from Refinement Rules to TGG Refinements
	Bibliography
	List of Figures

