4,156 research outputs found

    DebateKG: Automatic Policy Debate Case Creation with Semantic Knowledge Graphs

    Full text link
    Recent work within the Argument Mining community has shown the applicability of Natural Language Processing systems for solving problems found within competitive debate. One of the most important tasks within competitive debate is for debaters to create high quality debate cases. We show that effective debate cases can be constructed using constrained shortest path traversals on Argumentative Semantic Knowledge Graphs. We study this potential in the context of a type of American Competitive Debate, called Policy Debate, which already has a large scale dataset targeting it called DebateSum. We significantly improve upon DebateSum by introducing 53180 new examples, as well as further useful metadata for every example, to the dataset. We leverage the txtai semantic search and knowledge graph toolchain to produce and contribute 9 semantic knowledge graphs built on this dataset. We create a unique method for evaluating which knowledge graphs are better in the context of producing policy debate cases. A demo which automatically generates debate cases, along with all other code and the Knowledge Graphs, are open-sourced and made available to the public here: https://github.com/Hellisotherpeople/DebateKGComment: 8 pages, knife-edge reject from EACL 2023 and workshops, System Demonstration pape

    The Role of Human Knowledge in Explainable AI

    Get PDF
    As the performance and complexity of machine learning models have grown significantly over the last years, there has been an increasing need to develop methodologies to describe their behaviour. Such a need has mainly arisen due to the widespread use of black-box models, i.e., high-performing models whose internal logic is challenging to describe and understand. Therefore, the machine learning and AI field is facing a new challenge: making models more explainable through appropriate techniques. The final goal of an explainability method is to faithfully describe the behaviour of a (black-box) model to users who can get a better understanding of its logic, thus increasing the trust and acceptance of the system. Unfortunately, state-of-the-art explainability approaches may not be enough to guarantee the full understandability of explanations from a human perspective. For this reason, human-in-the-loop methods have been widely employed to enhance and/or evaluate explanations of machine learning models. These approaches focus on collecting human knowledge that AI systems can then employ or involving humans to achieve their objectives (e.g., evaluating or improving the system). This article aims to present a literature overview on collecting and employing human knowledge to improve and evaluate the understandability of machine learning models through human-in-the-loop approaches. Furthermore, a discussion on the challenges, state-of-the-art, and future trends in explainability is also provided

    Guideline for Trustworthy Artificial Intelligence -- AI Assessment Catalog

    Full text link
    Artificial Intelligence (AI) has made impressive progress in recent years and represents a key technology that has a crucial impact on the economy and society. However, it is clear that AI and business models based on it can only reach their full potential if AI applications are developed according to high quality standards and are effectively protected against new AI risks. For instance, AI bears the risk of unfair treatment of individuals when processing personal data e.g., to support credit lending or staff recruitment decisions. The emergence of these new risks is closely linked to the fact that the behavior of AI applications, particularly those based on Machine Learning (ML), is essentially learned from large volumes of data and is not predetermined by fixed programmed rules. Thus, the issue of the trustworthiness of AI applications is crucial and is the subject of numerous major publications by stakeholders in politics, business and society. In addition, there is mutual agreement that the requirements for trustworthy AI, which are often described in an abstract way, must now be made clear and tangible. One challenge to overcome here relates to the fact that the specific quality criteria for an AI application depend heavily on the application context and possible measures to fulfill them in turn depend heavily on the AI technology used. Lastly, practical assessment procedures are needed to evaluate whether specific AI applications have been developed according to adequate quality standards. This AI assessment catalog addresses exactly this point and is intended for two target groups: Firstly, it provides developers with a guideline for systematically making their AI applications trustworthy. Secondly, it guides assessors and auditors on how to examine AI applications for trustworthiness in a structured way

    Consolidating Findings from Business Process Change Case Studies Using System Dynamics: The Example of Employee Morale

    Get PDF
    In this paper, we explore system dynamics as a useful approach to consolidate findings from case studies on business process change (BPC) projects. We compile data from 65 BPC case studies to develop a system dynamics simulation model that helps us to investigate ‘employee morale’ as an important construct in BPC projects. We show that such simulation models consolidate the complex and often non-linear findings from BPC case studies in a way that makes it available to discourse among researchers, lecturers and students as well as BPC professionals. Thus, this paper contributes to knowledge management and learning by suggesting system dynamics as a valuable approach to illustrate and convey the complex relationships between important constructs in BPC. This paper also contributes to the domain of business process management by demonstrating the benefits of system dynamics as a way to review and consolidate the abundance of BPC case studies
    • …
    corecore