2,537 research outputs found

    Deadlock detection of Java Bytecode

    Full text link
    This paper presents a technique for deadlock detection of Java programs. The technique uses typing rules for extracting infinite-state abstract models of the dependencies among the components of the Java intermediate language -- the Java bytecode. Models are subsequently analysed by means of an extension of a solver that we have defined for detecting deadlocks in process calculi. Our technique is complemented by a prototype verifier that also covers most of the Java features.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Sound Static Deadlock Analysis for C/Pthreads (Extended Version)

    Full text link
    We present a static deadlock analysis approach for C/pthreads. The design of our method has been guided by the requirement to analyse real-world code. Our approach is sound (i.e., misses no deadlocks) for programs that have defined behaviour according to the C standard, and precise enough to prove deadlock-freedom for a large number of programs. The method consists of a pipeline of several analyses that build on a new context- and thread-sensitive abstract interpretation framework. We further present a lightweight dependency analysis to identify statements relevant to deadlock analysis and thus speed up the overall analysis. In our experimental evaluation, we succeeded to prove deadlock-freedom for 262 programs from the Debian GNU/Linux distribution with in total 2.6 MLOC in less than 11 hours

    A Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs

    Full text link
    The actor model is an attractive foundation for developing concurrent applications because actors are isolated concurrent entities that communicate through asynchronous messages and do not share state. Thereby, they avoid concurrency bugs such as data races, but are not immune to concurrency bugs in general. This study taxonomizes concurrency bugs in actor-based programs reported in literature. Furthermore, it analyzes the bugs to identify the patterns causing them as well as their observable behavior. Based on this taxonomy, we further analyze the literature and find that current approaches to static analysis and testing focus on communication deadlocks and message protocol violations. However, they do not provide solutions to identify livelocks and behavioral deadlocks. The insights obtained in this study can be used to improve debugging support for actor-based programs with new debugging techniques to identify the root cause of complex concurrency bugs.Comment: - Submitted for review - Removed section 6 "Research Roadmap for Debuggers", its content was summarized in the Future Work section - Added references for section 1, section 3, section 4.3 and section 5.1 - Updated citation

    Toward the Static Detection of Deadlock in Java Software

    Get PDF
    Concurrency is the source of many real-world software reliability and security problems. Concurrency defects are difficult to detect because they defy conventional software testing techniques due to their non-local and non-deterministic nature. We focus on one important aspect of this problem: static detection of the possibility of deadlock - a situation in which two or more processes are prevented from continuing while each waits for resources to be freed by the continuation of the other. This thesis proposes a flow-insensitive interprocedural static analysis that detects the possibility that a program can deadlock at runtime. Our analysis proceeds in two steps. The first extracts the real call graph decorated with acquired locks from the target program. The second analysis this decorated graph to report how a possible deadlock may occur at runtime. We demonstrate our analysis via a prototype implementation that detects deadlock conditions within two small Java programs. The two principle limitations of our analysis are on the target program: (1) we need its real call graph and (2) its overall size is limited. Construction of the real call graph requires perfect aliasing information. The program\u27s size our technique is able to analyze is roughly 35 kSLOC

    Multilevel Contracts for Trusted Components

    Full text link
    This article contributes to the design and the verification of trusted components and services. The contracts are declined at several levels to cover then different facets, such as component consistency, compatibility or correctness. The article introduces multilevel contracts and a design+verification process for handling and analysing these contracts in component models. The approach is implemented with the COSTO platform that supports the Kmelia component model. A case study illustrates the overall approach.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Static deadlock detection for concurrent go by global session graph synthesis

    No full text
    © 2016 ACM.Go is a programming language developed at Google, with channelbased concurrent features based on CSP. Go can detect global communication deadlocks at runtime when all threads of execution are blocked, but deadlocks in other paths of execution could be undetected. We present a new static analyser for concurrent Go code to find potential communication errors such as communication mismatch and deadlocks at compile time. Our tool extracts the communication operations as session types, which are then converted into Communicating Finite State Machines (CFSMs). Finally, we apply a recent theoretical result on choreography synthesis to generate a global graph representing the overall communication pattern of a concurrent program. If the synthesis is successful, then the program is free from communication errors. We have implemented the technique in a tool, and applied it to analyse common Go concurrency patterns and an open source application with over 700 lines of code
    corecore