
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2006

Toward the Static Detection of Deadlock in Java Software Toward the Static Detection of Deadlock in Java Software

Jose E. Fadul

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Fadul, Jose E., "Toward the Static Detection of Deadlock in Java Software" (2006). Theses and
Dissertations. 3482.
https://scholar.afit.edu/etd/3482

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F3482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3482?utm_source=scholar.afit.edu%2Fetd%2F3482&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Toward the Static Detection of Deadlock

in Java Software

THESIS

Jose E. Fadul, Captain, USAF

AFIT/GE/ENG/06-19

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GE/ENG/06-19

Toward the Static Detection of Deadlock

in Java Software

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Jose E. Fadul, B.S.E.E.

Captain, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GE/ENG/06-19

Toward the Static Detection of Deadlock

in Java Software

Jose E. Fadul, B.S.E.E.

Captain, USAF

Approved:

/signed/ 3 Mar 2006

Maj Robert P Graham, PhD (Chairman) date

/signed/ 3 Mar 2006

Lt Col Timothy J Halloran (Member) date

/signed/ 3 Mar 2006

Maj Christopher B Mayer (Member) date

AFIT/GE/ENG/06-19

Abstract

Concurrency is the source of many real-world software reliability and security

problems. Concurrency defects are difficult to detect because they defy conventional

software testing techniques due to their non-local and non-deterministic nature. We

focus on one important aspect of this problem: static detection of the possibility of

deadlock—a situation in which two or more processes are prevented from continuing

while each waits for resources to be freed by the continuation of the other.

This thesis proposes a flow-insensitive interprocedural static analysis that de-

tects the possibility that a program can deadlock at runtime. Our analysis proceeds in

two steps. The first extracts the “real” call graph decorated with acquired locks from

the target program. The second analyzes this decorated graph to report how a pos-

sible deadlock may occur at runtime. We demonstrate our analysis via a prototype

implementation that detects deadlock conditions within two small Java programs:

Dining Philosophers and Double Lock Equals.

The two principle limitations of our analysis are on the target program: (1) we

need its “real” call graph and (2) its overall size is limited. Our prototype tool can

only construct the target program’s “real” call graph in the presence of perfect aliasing

information about its object references. This aliasing information is provided by an

external oracle. Combinatorial explosion limits the size of programs our technique is

able to analyze to a rough ceiling of 35 kSLOC. Our prototype tool uses a combination

of call graph reduction techniques (aided by the insight that our analysis is only

concerned with program paths that can acquire one or more locks) and efficient data

structure choices to help mitigate this limitation.

iv

To My Family
Thanks for all your Encouragement and Support

v

Acknowledgements

I would like to express my sincere appreciation to my faculty advisors for their

guidance and support throughout the course of this thesis effort. Their insight and

experience was certainly appreciated.

Jose E. Fadul

vi

Table of Contents
Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . x

List of Tables . xii

List of Abbreviations . xiv

I. Introduction . 1
1.1 This Thesis . 2

1.2 A Motivating Example 3

1.3 Analysis Overview . 6

1.3.1 Two Steps . 6

1.3.2 Properties . 9

1.3.3 Context Matters 9

1.4 Tool Overview . 10
1.5 Results and Observations 10

1.6 Organization . 11

II. Definitions and Prior Work . 12
2.1 What is Deadlock? . 12

2.2 Prior Approaches to Deadlock Detection 14

2.2.1 Deadlock Detection via Static Analysis 14

2.2.2 Deadlock Detection via Dynamic Analysis . . . 17

2.2.3 Deadlock Detection via Model Checking 18

2.2.4 Java PathFinder 19

2.2.5 Comparison of Detection Approaches 19

2.3 Static Call Graphs . 21

2.3.1 Definitions . 21

2.3.2 Object-Oriented Call Graph Example 26

2.3.3 Context-Sensitive Call Graph Example 26

2.3.4 Call Graph Classification 28

vii

Page

III. CSOOCG Generator . 32
3.1 CSOOCG . 32

3.2 CSOOCG Generator . 36
3.2.1 Starting Point 37

3.2.2 Code Under Test (CUT) Graph 38

3.2.3 Call Completer 38

3.2.4 Reducer Process 42

3.2.5 aliasing Oracle 44

3.2.6 Oracle Interface 44

3.2.7 CSOOCG builder 46
3.3 CSOOCG Soundness . 49

3.4 Generator Implementation 50

3.4.1 CSOOCG Data File 51

3.5 A Second Example: Double Lock Equals 52

IV. CSOOCG Analyzer . 57

4.1 Overview . 57

4.2 Analysis Model . 57

4.2.1 Definitions and Functions Table Explained . . . 65

4.3 Analyzer Implementation 66

4.3.1 Trace Generator 66
4.3.2 Trace Eliminator 70

4.3.3 LockMap Builder 70

4.3.4 Deadlock Determinator 70

4.3.5 Presenter . 70
4.3.6 Implementation Challenges 72

4.4 A Second Example: Double Lock Equals 73

V. Conclusion . 81

5.1 Summary of Contributions 81

5.2 Recommendations for Future Work 82

5.2.1 Integrate an alias analysis 82

5.2.2 Support analysis cut-points and composability of
results . 83

5.2.3 Find and focus on the nexuses of locking 83

5.2.4 Support util.concurrent-style locks 84

5.2.5 Use a model checker 84

5.3 Concluding Thoughts . 84

viii

Page

Appendix A. Use and SetUp . 85

A.1 Required Items . 85

A.2 Using the Generator . 86

A.3 Using the Analyzer . 88

Appendix B. Dining Philosophers Results Deadlock Version 89

B.1 Statistics . 89

Appendix C. Double Equals Results Deadlock version 93

C.1 Statistics . 93

Appendix D. Glossary of Technical Terms 99

Bibliography . 102

ix

List of Figures

Figure Page

1.1. The Dining Philosophers . 3

1.2. Steps to Detect Deadlock . 4

1.3. Dining Philosophers Source Code 7

1.4. Dining Philosophers CSOOCG 8

2.1. Java Locking Semantics Example 22

2.2. Call Graph of Locking Semantics Example 23

2.3. Abbreviated Call Graph of Locking Semantics Example 25

2.4. Class Hierarchy Code Example 26

2.5. UML Class Diagram . 27

2.6. Object-Oriented Call Graph of The Hierarchy Code Example . 27

2.7. Context-Sensitive Java Code Example 29

2.8. Object-Oriented Call Graph of the Context-Sensitive Java Code

Example . 30

2.9. Context-Sensitive Call Graph 30

2.10. Regions in a Call Graph Lattice Domain (Grove et al. [12]) . . 31

3.1. Dining Philosophers Source Code 34

3.2. Dining Philosophers CSOOCG 35

3.3. CUT Graph Semantics . 38

3.4. Dining Philosophers Initial CUT Graph 39

3.5. Dining Philosophers Updated CUT Graph 40

3.6. CUT Graph is Object-Oriented 41

3.7. Dining Philosophers Reduced CUT Graph 42

3.8. Dining Philosophers Reduced CSOOCG 43

3.9. Java Source Code Example Demonstrating Aliasing 45

3.10. Alias Oracle Interface . 46

x

Figure Page

3.11. Generator Class Diagram . 50

3.12. Abbreviated Data File . 53

3.13. Double Lock Equals Java Source Code 55

3.14. Double Lock Equals CSOOCG 56

4.1. Dining Philosophers CSOOCG 58

4.2. Analyzer Class Diagram . 67

4.3. Non-Trie Data Structure . 68

4.4. Trie Data Structure . 69

4.5. Sample HTML Output File Table 71

4.6. Sample Latex Output File Table 72

B.1. Dining Philosophers Source Code 90

C.1. Double Lock Equals Java Source Code 94

xi

List of Tables

Table Page

1.1. Dining Philosophers Deadlock Conditions. 6

2.1. Analysis Classification Table 20

2.2. Analysis Capabilities Table . 20

3.1. Dining Philosophers Deadlock Conditions. 37

4.1. Trace Generator Equations . 59

4.2. Definitions and Functions . 60

4.3. Dining Philosophers Results: First Iteration 61

4.4. Dining Philosophers Results: Second Iteration 62

4.5. Dining Philosophers Results: Third Iteration 62

4.6. Dining Philosophers Results: Forth Iteration 63

4.7. Dining Philosophers Results: Fifth Iteration 63

4.8. Dining Philosophers Results: Sixth Iteration 64

4.9. Dining Philosophers Deadlock Conditions 65

4.10. Double Lock Equals Results: First Iteration 74

4.11. Double Lock Equals Results: Second Iteration 75

4.12. Double Lock Equals Results: Third Iteration 76

4.13. Double Lock Equals Results: Fourth Iteration 77

4.14. Double Lock Equals Statistics 79

4.15. Double Lock Equals Deadlock Conditions 80

A.1. CSOOCG Generator Switch Options 86

A.2. CSOOCG Analyzer Switch Options 88

B.1. Dining Philosophers Statistics 89

B.2. Dining Philosophers Nodes . 91

B.3. Dining Philosophers Edges . 91

B.4. Dining Philosophers Locks . 92

xii

Table Page

B.5. Dining Philosophers Lock Map Entries 92

B.6. Dining Philosophers Deadlock Conditions 92

C.1. Double Lock Equals Statistics 93

C.2. Double Lock Equals Nodes . 95

C.3. Double Lock Equals Edges . 96

C.4. Double Lock Equals Locks . 97

C.5. Double Lock Equals Lock Map Entries 97

C.6. Double Lock Equals Deadlock Conditions 98

xiii

List of Abbreviations

Abbreviation Page

CMU Carnegie Mellon University 2

CSOOCG Context-Sensitive Object-Oriented Call Graph 6

CUT Code Under Test . 10

IDE Integrated Development Environment 10

DFS Depth First Search . 14

SDDCE Scheme for Dynamic Detection of Concurrent Execution . 20

UML Unified Modeling Language 26

AST Abstract Syntax Tree . 37

HTML Hypertext Markup Language 70

xiv

Toward the Static Detection of Deadlock

in Java Software

I. Introduction

Multicore processors [9] and programming languages, such as Java [10], have

made concurrent programming accessible to a wider audience of practicing program-

mers. Concurrent programs provide the user a more responsive software experience

compared to sequential programs, and make use of the new multicore processor capa-

bilities to improve overall program speedup compared to sequential programs. How-

ever, these improvements in responsiveness and speed come at a price, namely in-

creased code complexity.

Concurrent programs are effectively non-deterministic due to the exponential

number of possible thread interweavings. This property makes their correctness

harder to reason about than that the correctness of a sequential program. In Java,

concurrent program threads communicate with each other via fields. These fields are

the program’s shared state. The shared state between concurrent program threads

may become corrupted when an incomplete state change in one thread is interrupted

and the shared state is modified by another thread. This undesirable interweaving

between threads is called a race condition.

The “cure” for race conditions is to add exclusive locking around critical sections

of code. An exclusive locking policy insures that shared state is accessed by only one

thread at a time. Unfortunately this “cure” introduces a problem called deadlock. A

deadlock condition occurs when a process waits for an event that will never occur.

Cheng [4, 5] and Levine [19], have refined this general definition of deadlock into 18

types of deadlock. The one that is germane to our work is circular deadlock. Circular

deadlock occurs when two or more threads are waiting on each other to release an

exclusive lock. For example, thread1 in a Java program may be stuck waiting for

1

the availability of an exclusive lock being held by thread2. This prevents thread1

from proceeding to a desired end state, i.e., thread1 is blocked by thread2. At the

same time, thread2 may be waiting for the availability of an exclusive lock being held

by thread1, i.e., thread2 is blocked by thread1. We say that thread1 and thread2

are stuck in a circular deadlock. In general, this “circle” of deadlock could contain

more than two threads. Our interest is to detect, statically, the possibility of circular

deadlock occurring within programs written in the Java programming language.

1.1 This Thesis

This thesis describes a flow-insensitive interprocedural static analysis for a sub-

set of Java programs that detects the possibility that a particular program can circu-

larly deadlock at runtime. The subset of Java programs the analysis is designed for

includes those Java programs where it is possible to statically determine what Grove,

DeFouw, Dean, and Chambers in [11, 12] refer to as the “real” call graph (described

in Figure 2.10 on page 31). We demonstrate our analysis via a prototype implementa-

tion that detects circular deadlock conditions within two small Java programs: Dining

Philosophers and Double Lock Equals. This analysis is implemented using the Fluid

analysis infrastructure developed at Carnegie Mellon University (CMU).1

Our primary contribution is the development of an analysis that can statically

detect the potential for deadlock in object-oriented programs. Prior work has focused

on C-like languages [7] that lack dynamic (or runtime) dispatch of function calls. Our

work is, to the best of our knowledge, novel in this respect. A secondary contribu-

tion is the the formal definition of a Context-Sensitive Object-Oriented Call Graph

(CSOOCG), which is a model of the call structure of a program that appears to be

potentially useful for other analyses.

2

Legend:

 Table

 Spaghetti

 Philosopher

 Fork

1

1

2

3 4

5
2

3

4

5

Figure 1.1: The Dining Philosophers Five philosophers sitting at the same round
table with five forks and one plate of spaghetti. Forks are shared and a philosopher
needs two forks to eat.

1.2 A Motivating Example

The Dining Philosophers problem is a classic example of how processes sharing

limited resources can become deadlocked. The Dining Philosophers problem, shown

in Figure 1.1, has five philosophers sitting at the same round table with five forks and

one plate of spaghetti. Each philosopher uses two forks to eat spaghetti. The five

philosophers repeatedly eat spaghetti and then think. A philosopher must pick up

both forks in order to eat: first the right fork then the left fork. Using this order of

picking up forks, circular deadlock occurs when each philosopher picks up his or her

respective right forks and is waiting for the availability of the left fork. Once deadlock

occurs, the philosophers starve to death. To eliminate this potential for deadlock, the

philosophers need to define a consistent fork acquisition order, i.e., a partial order

relation between forks used to order fork acquisition by all the philosophers.

To map this problem into a Java program, we can consider the philosophers

to be program threads and the forks to be objects used as locks. To detect that

deadlock may occur, we need to know when two or more locks are acquired, and the

order these locks are acquired in. Finally, for a particular thread of execution (i.e.

1The Fluid project website is at http://www.fluid.cs.cmu.edu

3

Fork 1

Fork 2

Fork 3

Fork 4

Fork 5

Fork 1

Fork 2

Fork 3

Fork 4

Fork 5

Fork 1

Fork 2

Fork 3

Fork 4

Fork 5

a b c

Figure 1.2: Steps to Detect Deadlock (a) Identify the shared resources. (b)
Determine the order these resources are acquired in. (c) Perform the transitive closure
and determine if the order the objects are acquired in is ever reversed. In this figure,
circles represent the objects being locked, the solid arrows represent the order the locks
are acquired across all threads, and the dashed arrows represent some of the transitive
closure orders that need to be added or accounted for. Sub-figure c shows some
acquisition orders are reversed, i.e., the graph in sub-figure c is not anti-symmetric.

4

philosopher) we need to answer the question: Is this order ever reversed? First, as

shown in Figure 1.2.a., we note the five forks used as “locks.” Next, we need to

determine the possible lock acquisition order for each “thread” or philosopher in our

example:

Philosopher Lock Acquisition Order

1 Fork 1, Fork 2

2 Fork 2, Fork 3

3 Fork 3, Fork 4

4 Fork 4, Fork 5

5 Fork 5, Fork 1

From this per-thread lock order, we can determine the lock order across all threads.

This is shown in Figure 1.2.b. Next, we compute the transitive closure and determine

if the order the forks are acquired in is ever reversed. The transitive closure is shown

in Figure 1.2.c. For the purposes of detecting deadlock, we consider the five forks

to be elements of a set and the transitive closure of the global acquisition order to

be a binary relation on this set. By inspection, we can see that the graph shown in

Figure 1.2.c. (of the binary relation representing the transitive closure of the global

lock acquisition order) is not anti-symmetric. Thus, cycles exist amongst the fork

(lock) acquisition orders and therefore hence deadlock is possible.

We will use a simplified Java implementation of the Dining Philosophers problem

that uses only two philosophers and two forks. Our implementation is shown in

Figure 1.3. This program can deadlock at runtime. The results from our prototype

tool are shown in Table 1.1. The tool uses numbers to model runtime object identifiers

(the tool creates a static model of the runtime heap). Each object gets a unique

identifier, called its “ID” in the table. In one possible thread of execution we see that

the right fork is Fork instance 1 and the left is Fork instance 2 (which are locked at

lines 21 and 22 in the code). For a second possible thread of execution we see that the

right fork is Fork instance 2 and the left is Fork instance 1. Thus, the tool reports

the possibility that the program may deadlock at runtime. The tool reports the two

5

Table 1.1: Dining Philosophers Deadlock Conditions.
CSOOCG Deadlock Conditions

Locks Acquired
ID First Second Method Call File Line #
0 heap ID: 1 heap ID: 2

Trace 1
synchronized (this.right) Philosopher.java 21
synchronized (this.left) Philosopher.java 22

1 heap ID: 2 heap ID: 1
Trace 1

synchronized (this.right) Philosopher.java 21
synchronized (this.left) Philosopher.java 22

locks involved (including their modeled object identifiers) and the trace in the code

where they were acquired.

1.3 Analysis Overview

1.3.1 Two Steps. We broke our analysis into two distinct steps: a CSOOCG

generator and a CSOOCG analyzer. The CSOOCG generator runs as part of the

Fluid assurance tool. This tool was developed as part of the Fluid project which is

dedicated to developing practical software assurance2 and transformation techniques.

This project includes several researchers at Carnegie Mellon University, the Air Force

Institute of Technology, and the University of Milwaukee-Wisconsin. For our pur-

poses, this tool provided a well-tested infrastructure for the analysis of Java code.

Our CSOOCG analyzer is independent of Fluid.

The communication vehicle between the two steps of our analysis is the Context-

Sensitive Object-Oriented Call Graph (CSOOCG). The CSOOCG is a model of calls

that may be made by a particular Java program at runtime, with what locks are

acquired and released during those calls. The CSOOCG for our Dining Philosophers

program is shown in Figure 1.4 (this figure will be explained further in Chapter III).

2In this thesis the word “assurance” is synonymous with verification—proof that an implemen-
tation is consistent with a precise behavioral specification or model

6

1 public class Philosopher extends Thread {
2

3 public static final class Fork { }
4

5 final Fork right;
6

7 final Fork left;
8

9 final int identity;
10

11 Philosopher(int identity, Fork right, Fork left) {
12 this.identity = identity;
13 this.right = right;
14 this.left = left;
15 }
16

17 @Override
18 public void run() {
19 while (true) {
20 // Thinking
21 synchronized (right) {
22 synchronized (left) {
23 // Eating
24 }
25 }
26 }
27 }
28

29 public static void main(String[] args) {
30 final Fork f1 = new Fork();
31 final Fork f2 = new Fork();
32 final Philosopher p1 = new Philosopher(1, f1, f2);
33 final Philosopher p2 = new Philosopher(2, f2, f1);
34 start(p1);
35 start(p2);
36 }
37

38 private static void start(final Philosopher p) {
39 p.setName(‘‘philosopher-’’ + p.identity);
40 p.start();
41 }
42 }

Figure 1.3: Dining Philosophers Source Code.

7

Exp: External call Site

Imp: Philosopher.main ()

Acq. Lock on:

Heap id: 0

1
Exp: new Fork ()

Imp: Fork.Fork ()

Acq. Lock on:

Heap id: 1

Exp: new Fork ()

Imp: Fork.Fork ()

Acq. Lock on:

Heap id: 2

Exp: new Philosopher (1, { Fork id = 2},{ Fork id = 1})

Imp: Philosopher.Philosopher (int, Fork, Fork)

Acq. Lock on:

Heap id: 3

Exp: new Philosopher (1, { Fork id = 1},{ Fork id = 2})

Imp: Philosopher.Philosopher (int, Fork, Fork)

Acq. Lock on:

Heap id: 4

5

4

3

2

Exp: start ({Philosopher id = 3})

Imp: Philosopher.start (Philosopher)

Acq. Lock on:

Heap id:

Exp: {Philosopher id = 3}.start ()

Imp: Thread.start ()

Acq. Lock on : Heap id = 3

Heap id:

Exp: start ({Philosopher id = 4})

Imp: Philosopher.start (Philosopher)

Acq. Lock on:

Heap id:

Exp: {Philosopher id = 4}.start ()

Imp: Thread.start ()

Acq. Lockon : Heap id = 4

Heap id:

6

8

7

9

Exp: { Philosopher id = 3 }.run ()

Imp: Philosopher.run ()

Acq. Lock on:

Heap id:

10 13

Exp: { Philosopher id = 4 }.run ()

Imp: Philosopher.run ()

Acq. Lock on:

Heap id:

Exp: Synchronized (right)

Imp: Synchronized ({Fork id = 1})

Acq. Lock on: Heap id =1

Heap id:

Exp: Synchronized (left)

Imp: Synchronized ({Fork id = 2})

Acq. Lock on: Heap id = 2

Heap id:

Exp: Synchronized (left)

Imp: Synchronized ({Fork id = 2})

Acq. Lock on: Heap id = 2

Heap id:

Exp: Synchronized (right)

Imp: Synchronized ({Fork id = 1})

Acq. Lock on: Heap id =1

Heap id:

11

12

14

15

Legend

 Node representing a method or constructor invocation. Exp: call site expression.

 Node representing a synchronized statement. Imp: call site’s implementation.

 Edge representing a may happens before relationship between the nodes. Acq. Lock on: node’s acquired lock

 Heap id: a reference used to track this object

Figure 1.4: Dining Philosophers CSOOCG This is the CSOOCG for the Dining
Philosophers program example in Figure 3.1.

8

1.3.2 Properties. Our CSOOCG analysis is a flow-insensitive interproce-

dural analysis. Our analysis only handles locks acquired by synchronized syntactic

blocks, e.g., synchronized methods and statements in Java. It does not support the

new util.concurrent.locks lock objects, which would require a flow-sensitive anal-

ysis to track individual lock acquisition and release statements. If the acquisition and

release of a lock is defined by a syntactic block, then determining the set of calls which

may be invoked within such a block is flow-insensitive. Our analysis is interprocedural

because to deadlock a thread must try to acquire two or more locks and the only way

to acquire two or more locks is to nest synchronized blocks by having one “call” the

other. Thus, we must consider the whole program or most of the program to produce

useful results.

1.3.3 Context Matters. Deadlock detection requires us to know each call’s

context because, in Java, locks are associated with object references (not object ref-

erence variables). Thus to understand which objects (on the heap) are being locked

requires us to understand which object is being referenced by a particular object refer-

ence expression. The context sensitivity of the CSOOCG uses an external alias oracle

to resolve reference variables within the program. Our intent is to cleanly separate

the alias analysis from our own analysis. We have left to future work the integration

of a state-of-the-art alias analysis tool into our analysis tool.

We need to make a important distinction about use of the alias oracle by our

analysis. The alias oracle must produce correct information about any reference used

as a lock within the program for our results to be correct (i.e., sound). It is not

required that this be the case for creating the context-sensitive call graph. In this

case our results will be correct, in the sense that they are conservative, but we will

report cases of possible deadlock which really can’t occur at runtime (i.e., we will

have false positive results).

9

Our prototype tool uses the aliasing oracle to build the CSOOCG. It uses it to

determine what objects are locked and the context of all calls. Future work could

relax the latter if an increase in false positive results is deemed acceptable.

1.4 Tool Overview

Our deadlock detection prototype tool requires five major components

1. Java program Code Under Test (CUT),

2. Eclipse IDE,

3. Fluid assurance tool,

4. CSOOCG generator, and

5. CSOOCG analyzer.

The Eclipse Java Integrated Development Environment (IDE)3 is the platform

used by the Fluid assurance tool. Our CSOOCG generator uses the Fluid analysis

infrastructure to extract the CSOOCG for the Java CUT. The generated CSOOCG

is saved to an XML data file to be subsequently processed by the CSOOCG analyzer.

The CSOOCG analyzer determines if the CSOOCG contains traces that can deadlock

at runtime.

1.5 Results and Observations

The CSOOCG analysis algorithm is able to detect deadlock conditions in both

of our test programs using an external alias oracle. Without an aliasing oracle, our

results are incorrect (due to the issue of tracking lock references noted earlier in this

chapter).

The combinatoric explosion of possible paths in our CSOOCG has caused in-

sufficient memory errors to occur and remains the most significant challenge to this

3Eclipse is a Java IDE created and maintained by the Eclipse Foundation at http://www.

eclipse.org.

10

work. The Reducer and Trace Eliminator processes (described in Chapter III and

Chapter IV) were designed to reduce memory requirements and thus help us to scale

to larger programs. On a typical desktop, our approach can roughly scale up to

35kSLOC of Java.

We observed that the actual number of traces that acquire two or more locks

in most programs is small. For our Dining Philosophers test case the number of

traces before the Trace Eliminator is 15 and the number after is 2. For our Double

Lock Equals test case the number of traces before the Trace Eliminator is 19 and the

number after is 4. A similar observation was also made by Engler et al. [7, page 240],

Rugina and Rinard [21, page 71] and Holzmann [16].

1.6 Organization

The rest of this thesis is organized as follows:

• Chapter II, “Definitions and Prior Work,” defines deadlock and various static

call graphs. This chapter also presents relevant prior work in deadlock detection.

• Chapter III, “CSOOCG Generator,” provides a deeper understanding of the

CSOOCG and the CSOOCG generator process with a closer look at how the

CSOOCG for the Dining Philosophers is generated.

• Chapter IV, “CSOOCG Analyzer,” provides a deeper understanding of the

CSOOCG Analyzer process with a closer look at how the CSOOCG for the

Dining Philosophers is analyzed to determine if possible deadlock condition ex-

ist.

• Chapter V, “Conclusion,” summarizes our results and covers possible future

directions that this research topic may follow.

Several appendices contain instructions on how to set up and use our prototype tool

as well as the data from our case studies of the Dining Philosophers and Double Lock

Equals Java programs.

11

II. Definitions and Prior Work

In this chapter we present definitions and relevant related work on deadlock detection.

We first define deadlock and then compare and contrast our work to prior deadlock

detection approaches and tools. We then define several different forms of a static call

graph to situate our CSOOCG, the “heart” of our proposed approach, in prior static

analysis work.

2.1 What is Deadlock?

Deadlock occurs when two or more programs are waiting to acquire exclusive

access to common resources held by one of the waiting programs. For example,

consider two programs, program 1 and program 2:

pseudo code for program 1.

acquire(lock a); acquire(lock b);
//do some work
release(lock b); release(lock a);

pseudo code for program 2.

acquire(lock b); acquire(lock a);
//do some work
release(lock a); release(lock b);

These programs are attempting to acquire exclusive access to common resources

A and B. Resource A is protected by lock a and resource B is protected by lock b.

A program holding lock a has exclusive access to resource A. Similarly, A program

holding lock b has exclusive access to resource B. Let us consider the following

execution steps for program 1 and program 2:

Step 1. Program 1 acquires lock a.

Step 2. A context switch occurs, causing program 1 to be paused while program 2

starts execution.

12

Step 3. Program 2 acquires lock b and is unable to acquire lock a. This causes

program 2 to wait until lock a is available, i.e., wait until program 1 releases

lock a.

Step 4. Another context switch occurs, causing program 2 to be paused while program

1 resumes execution.

Step 5. Program 1 is unable to acquire lock b. This causes program 1 to wait until

lock b is available, i.e., wait until program 2 releases lock b.

This circular waiting between program 1 and program 2 is defined as deadlock.

Program 1 can not continue execution and hence is unable to release lock a. Similarly,

program 2 is unable to release lock b. This example can be fixed by having all

programs acquire multiple locks in a consistent order. This solution would require

one of the two programs to change their order of lock acquisition. For example,

program 1 could acquire lock b before acquiring lock a as shown below.

pseudo code for program 1 modified.

acquire(lock b); acquire(lock a);
//do some work
release(lock a); release(lock b);

This solution could be applied easily to small programs where multiple locks are

acquired and released in single methods. It is more difficult to detect and correct this

problem in larger programs where methods may be holding locks when they call other

methods that acquire other locks. The numerous program execution interweaving

possibilities create many possible lock acquisition orders. These possibilities increase

the complexity of deadlock detection. Furthermore, unlike the domain of relational

database management systems, we cannot simply detect deadlock at runtime and

“rollback” the errant program. This is because (1) dynamic deadlock detection is

costly (in terms of runtime overhead) and (2) general programs have side-effects other

than on (tables of) data.

13

2.2 Prior Approaches to Deadlock Detection

Prior work in the area of deadlock detection in concurrent programs have used

the following techniques: dynamic (including postmortem) analysis, model checking,

and static analysis. We will compare our approach to prior results based upon each

of these techniques.

We consider an approach to be sound if it does not miss any possible deadlock

conditions within a program, i.e., no false negatives. We consider an approach to be

complete if every deadlock condition reported can actually occur at runtime, i.e., no

false positives.

2.2.1 Deadlock Detection via Static Analysis. Static approaches, such as

[1, 7, 18, 20, 25], attempt to detect possible deadlock conditions without executing

the program. Our approach falls into this category. Static analysis approaches to

deadlock typically create an abstract representation of the program or may try to

find a given source code pattern within the code. This abstract representation may

take the form of graphs, where the nodes represent program states of interest and

edges represent program transition statements. Static approaches are also typically

very memory-intensive and suffer from large numbers of false positives. Few tools

in this category have been created, the most similar tool, which in fact inspired our

work, is RacerX.

2.2.1.1 RacerX. RacerX [7] is a static data race and deadlock detec-

tion tool for concurrent programs written in C. According to the authors, Engler and

Ashcraft, RacerX’s data race and deadlock detection method is a top-down, flow- and

context-sensitive, interprocedural lockset analysis [7, page 240]. They accomplish this

analysis via a depth-first search (DFS) of the program’s control flow graph (CFG).

The search originates from the roots of each call graph (i.e., where threads start their

execution) and the lockset is adjusted at every node visited in the CFG. The lockset

adjustments entail adding and deleting locks from the lockset based on the operating

14

system library procedures for acquiring and releasing locks. Additional source code

stubs are used to suppress false positives and improve RacerX’s accuracy. the source

code stubs are programmer’s annotation used to inject the programmer’s intent.

RacerX’s [7] analysis proceeds as follows. The tool first perform a DFS traversal

of the CFG that (1) adds and/or removes locks from the lockset and (2) calls the race

and deadlock checker on every node in the CFG. The locksets are cached at both the

statement and function level of the program. The cached locksets are used to improve

RacerX’s execution speed. RacerX’s analysis is deterministic in the sense that two

execution paths from the same node with the same lockset will produce the same

result. So the cached locksets may be considered a set of locksets. This means that if

an execution path reaches a previously traversed node in the CFG with a copy of the

lockset already in its cache, then the DFS traversal along this path can be terminated.

This means the DFS can continue on to the next branch of the analysis as if it had

reached a leaf node. This reduces the execution time of the analysis by eliminating

unnecessary duplicate processing. The terminology used by Engler for the cached

locksets are “statement cache” and “summary cache.” The statement cache identifies

the cached lockset associated with each statement. The summary cache identifies the

cached lockset associated with each function. The statement and function level of

analysis act the same way, namely that if the lockset is contained in the cache, then

there is no need to reprocess the statement or function.

The locksets being cached at the function and statement levels are commonly

referred to as the “entry lockset”. This identifies the state of the lockset just before

the function or statement is executed. The resulting lockset is referred to as the “exit

lockset”. The exit lockset is the lockset resulting from the function or statement

execution with a given entry set.

The exit locksets produced per function are used to determine the overall state

of the concurrent program. An exit lockset can result from each possible CFG path.

This could lead to an exponentially large number of locksets based on the number

15

of threads, the number of functions and the number of function interactions. Engler

reports that the actual number of exit locksets created is much less than the theoretical

maximum. Most functions either do not acquire any locks or release all their acquired

locks before completion (i.e., most functions produce an empty exit lockset).

Locksets are initialized at the roots of the program’s call graph. These roots are

functions that have no callers. Locksets are transfered around the global CFG and

are cached at both the statement and function levels. The transfer function entails

adding and removing locks from the entry lockset. Statements and functions capable

of adding and removing locks are based on the operating system functions used to

perform lock acquisition and release.

RacerX’s deadlock detection method uses a two-step process: “(1) constraint

extraction, which extracts all locking constraints and (2) constraint resolving, which

does a transitive closure [to identify and flag cycles].” The constraint extraction step

is applied at every lock acquisition node in the global CFG. This step determines the

constraints between the newly acquired lock and the locks in the current lockset. For

example, if the current lockset contains locks x and y, then the acquisition of lock z

creates two constrains x → z and y → z. This first step also collects trace information

concerning how the code was traversed between acquiring lock x and lock z as well as

between acquiring lock y and lock z.

Constraint resolution creates the transitive closure of all constraints and detec-

tion cycles. This step uses a user–defined value n, which represents the maximum

number of threads to consider in this deadlock analysis, i.e., RacerX detects dead-

lock conditions involving 2,. . ., n threads. This step also records the shortest error

path, ranks the errors and displays the results. For example, given the following three

constraints x → y, y → z and z → x, RacerX computes the transitive closure which

identifies the following additional constraints x → z, y → x, z → y, x → x, y → y,

and z → z. In this case the cyclic deadlock condition between the three threads is

flagged. This deadlock condition is created when thread 1 holds lock x and is waiting

16

on lock y, thread 2 holds lock y and is waiting on lock z, and thread 3 holds lock z

and is waiting on lock x.

RacerX is similar to our prototype tool except that it does not support dynamic

method dispatch which is nearly ubiquitous in object oriented languages like Java.

In fact, our analysis started as an implementation of the RacerX algorithm for Java.

Another difference is that our approach is sound for the subset of the Java programs

we handle, while RacerX is not sound for the C language. The drawback to our

decision is that, currently, RacerX scales much better than our approach.

2.2.2 Deadlock Detection via Dynamic Analysis. Dynamic analysis ap-

proaches to deadlock detection, such as [3, 23], monitor the execution of one or more

runs of a concurrent program to determine if deadlock may occur in another execution

of the program. Unlike dynamic analysis approaches, our approach has the advantage

that we don’t have to run the program. In addition, dynamic analysis techniques are

never sound because they only see one (or a few) of the possible executions of the pro-

gram. We now describe the Eraser tool which supports dynamic deadlock detection

in Java programs.

2.2.2.1 Eraser. Eraser [23] is a dynamic analysis program originally

designed to detect possible data race conditions in multithreaded programs and later

modified to detect possible deadlock conditions. Eraser uses dynamic analysis tech-

niques to monitor the correctness of multithreaded concurrent programs. The mon-

itoring effect is achieved by adding and removing locks to locksets associated with

specific variables. This process maintains a map-like data structure. The memory lo-

cation of the shared variable is used as the key to the map structure and the lockset is

the associated value. The locksets initially contain all the locks identified in the mul-

tithreaded concurrent program. The set of locks held by a thread that accesses these

shared variables is intersected with the appropriate lockset in the map. If the result

of the intersection is the empty set, then the variable is not consistently protected

during all accesses and may indicate a possible race condition. Eraser has been modi-

17

fied to detect deadlock conditions using the same lockset information gathered during

the data race detection analysis. Manual annotations are added to the source code

to help minimize the false positives and false negatives reported by Eraser. Eraser

is considered an automated process–after the annotations have been added. Eraser

is not a sound or complete algorithm. Eraser is able to handle aliasing due to its

dynamic nature, i.e., it is easy to determine an object’s memory address during pro-

gram execution. Eraser is able to find, but not assure the absence of, data races and

deadlock conditions.

Eraser and our CSOOCG analyzer have very little in common. Both analyses

build, maintain and analyze the contents of a lock data structure. In Eraser this data

structure is the lock sets in our CSOOCG analyzer it is a lock map. This is where

the commonality between these two approaches ends. Eraser does not attempt to

cover all possible executions paths to determine where data races and deadlocks may

occur. Our analysis traverses every possible execution path in an attempt to locate

all possible deadlock conditions. Eraser–being a dynamic analysis–does not face the

same aliasing problem that our static analysis does. As we can see, their are more

differences between our CSOOCG analyzer and Eraser than there are similarities.

2.2.3 Deadlock Detection via Model Checking. Model checking approaches to

deadlock detection, such as [6, 14–17], use an abstract representation of a concurrent

program (typically based upon a model logic) and, using the model checking tool,

verify specific properties about that abstraction of the program. The abstraction

of the program is called a model of the program. Model checking approaches to

deadlock detection typically use a static analysis to create the model of the program.

Our approach is similar to deadlock detection via model checking. We suffer the

same scalability problems typical to model checking approaches (due to combinatoric

explosion). We have proposed, in Chapter V, that future work consider replacing our

CSOOCG analyzer component (or part of it) with a model checker.

18

2.2.4 Java PathFinder. Java PathFinder (JPF) [14] is an attempt to au-

tomate the creation of a Promela model from Java source code for simple Promela

interpreter (SPIN) analysis. JPF is part of a larger effort by NASA to make formal

method applicable within NASA’s areas of space, aviation, and robotics. The main

strength of JPF is the maturity of SPIN. The main weakness is scalability, the tool

reports only being able to support 2KSLOC. The size of the Promela model to be

analysis must be small and finite, where finite means that only a specified small num-

ber of threads and variables may be created in the model. A secondary weakness

is the need for annotations to add programmer’s intent to the Java program. These

annotations are assertions to be included in the Promela model for SPIN to verify.

2.2.5 Comparison of Detection Approaches. In this section we summarize

the classifications and capabilities of all the analyses covered and additional analyses

that were not discusses but follow a similar approach. Table 2.1 covers their classi-

fications and Table 2.2 covers their capabilities. We also discuss the similarity and

difference between the analyses.

Our approach does not use annotations to suppress false positive and/or false

negatives, which Eraser and RacerX do. This means that the user does not have to

add additional information to his source code to use our tool (however, we admit that

our current manual aliasing oracle perhaps more than makes up for this advantage).

Our approach is implemented in Java to analyze Java source code. This increases the

difficulty of our analysis compared to RacerX, which analyzes C code, and does not

have to consider dynamic dispatch of methods.

19

T
ab

le
2.

1:
A

n
al

y
si

s
C

la
ss

ifi
ca

ti
on

T
ab

le

A
n
al

y
si

s
M

et
h
o
d

A
p
p
ro

ac
h

C
la

ss
ifi

ca
ti

on
P

ro
gr

am
m

in
g

L
an

gu
ag

e
L
im

it
at

io
n
s

E
ra

se
r

D
y
n
am

ic
C

/C
+

+
n
ot

ex
h
au

st
iv

e
S
D

D
C

E
a

D
y
n
am

ic
J
av

a
n
ot

ex
h
au

st
iv

e
A

d
a

T
IG

M
o
d
el

C
h
ec

ke
r

A
d
a

co
m

b
in

at
or

ic
ex

p
lo

si
on

p
ro

b
le

m
R

ac
er

X
S
ta

ti
c

C
co

m
b
in

at
or

ic
ex

p
lo

si
on

p
ro

b
le

m
O

w
n
er

sh
ip

T
y
p
e

S
ta

ti
c

J
av

a
co

m
b
in

at
or

ic
ex

p
lo

si
on

p
ro

b
le

m
C

S
O

O
C

G
b

A
n
al

y
si

s
S
ta

ti
c

J
av

a
co

m
b
in

at
or

ic
ex

p
lo

si
on

p
ro

b
le

m

a
S
D

D
C

E
is

“
A

S
ch

em
e

fo
r

D
y
n
a
m

ic
D

et
ec

ti
o
n

o
f
C

o
n
cu

rr
en

t
E

x
ec

u
ti
o
n

o
f
O

b
je

ct
O

ri
en

te
d

S
o
ft
w

a
re

”
.

b
C

S
O

O
C

G
is

a
C

o
n
te

x
t

S
en

si
ti
v
e

O
b
je

ct
O

ri
en

te
d

C
a
ll

G
ra

p
h
.

T
ab

le
2.

2:
A

n
al

y
si

s
C

ap
ab

il
it

ie
s

T
ab

le

A
n
al

y
si

s
M

et
h
o
d

S
ou

n
d

C
om

p
le

te
A

b
il
it
y

to
H

an
d
le

A
li
as

in
g

D
ea

d
lo

ck
C

on
d
it

io
n
s

D
at

a
R

ac
e

C
on

d
it

io
n
s

E
ra

se
r

N
o

N
o

Y
es

F
in

d
F
in

d
S
D

D
C

E
a

N
o

N
o

Y
es

F
in

d
F
in

d
A

d
a

T
IG

N
o

N
o

N
o

F
in

d
F
in

d
R

ac
er

X
N

o
N

o
N

o
F
in

d
F
in

d
O

w
n
er

sh
ip

T
y
p
e

Y
es

N
o

N
o

F
in

d
F
in

d
C

S
O

O
C

G
b

A
n
al

y
si

s
N

o
N

o
Y

es
F
in

d
N

/A

a
S
D

D
C

E
is

“
A

S
ch

em
e

fo
r

D
y
n
a
m

ic
D

et
ec

ti
o
n

o
f
C

o
n
cu

rr
en

t
E

x
ec

u
ti
o
n

o
f
O

b
je

ct
O

ri
en

te
d

S
o
ft
w

a
re

”
.

b
C

S
O

O
C

G
is

a
C

o
n
te

x
t

S
en

si
ti
v
e

O
b
je

ct
O

ri
en

te
d

C
a
ll

G
ra

p
h
.

20

2.3 Static Call Graphs

Here we define the terms call graph (CG), object-oriented call graph (OOCG)

and context-sensitive call graph (CSCG). We then proceed to discuss the CSCG clas-

sification technique proposed by Grove et al. in [12]. We consider a CG to be sound

if and only if it accurately represents all possible runtime executions. This section is

intended to to situate our CSOOCG, the “heart” of our proposed approach, in prior

static analysis work.

2.3.1 Definitions. Grove et al. in [12] define a call graph as “a directed

graph that represents the calling relationships between the programs procedures,”

where procedures represent procedures, functions, and methods. This definition of a

CG is typical of the definitions used by Ryder [22], Callahan [2], and Mary W. Hall

and Ken Kennedy [13]. We need to account for a subset of the Java language’s locking

semantics, namely synchronized statements and synchronized methods. We do not

account for the new util.concurrent-style locks added to Java 5.

Figure 2.1 contains a short example of the Java language’s locking semantics

accounted for in our call graph representation. This Java example contains four meth-

ods (main, addOne v1, addOne v2 and addOne v3) and two instance variables (lock

and count). The main method creates a new instance of LockSemantics and assigns

it to a local variable named m LS. This main method proceeds to call addOne v1,

addOne v2 and addOne v3 before terminating. Method addOne v1 is a synchronized

method. Methods addOne v2 and addOne v3 are not synchronized methods, but con-

tain a synchronized statement. In Java, a synchronized method, e.g., addOne v1, is

shorthand for enclosing all the method’s statements and call sites within a synchro-

nized statement that acquires a lock on the this pointer, e.g., addOne v2. Hence, call

sites implemented by addOne v1() and addOne v2() will acquire a lock on the object

reference pointed to by the receiver variable, i.e. this pointer. Call sites implemented

by addOne v3() will acquire a lock on the object reference pointed to by the lock

variable. Our call graph definition must account for both the implicit acquisition of

21

1 public class LockSemantics {
2 private final Object lock = new Object();
3 private int count = 0;
4 public static void main(String[] args) {
5 LockSemantics m_LS = new LockSemantics();
6 m_LS.addOne_v1();
7 m_LS.addOne_v2();
8 m_LS.addOne_v3();
9 }

10 public synchronized void addOne_v1() {
11 count++;
12 }
13 public void addOne_v2() {
14 synchronized (this) {
15 count++;
16 }
17 }
18 public void addOne_v3() {
19 synchronized (lock) {
20 count++;
21 }
22 }
23 }

Figure 2.1: Java Locking Semantics Example This is a short contrived Java
code example to illustrate the two different locking semantics accounted for in our
call graph representation.

22

Exp: external call site

Imp: LockSemantics.main (…)

Acq:

Exp: new LockSemantics ()

Imp: LockSemantics.LockSemantics ()

Acq:

Exp: m_LS.addOne_v2

Imp: LockSemantics.addOne_v2 ()

Acq:

Exp: synchronized (this)

Imp: LockSemantics.synchronized (this)

Acq: this --> object reference

Exp: m_LS.addOne_v1

Imp: LockSemantics.addOne_v1

Acq: m_LS --> object reference

Exp: m_LS.addOne_v3

Imp: LockSemantics.addOne_v3 ()

Acq:

Exp: synchronized (lock)

Imp: LockSemantics.synchronized (lock)

Acq: lock --> object reference

1

32

4 5

6 7

Legend

 CG Node representing a method or constructor invocation. Exp: call site expression.

 CG Node representing a synchronized statement. Imp: call site’s implementation.

 CG Edge representing a happens before relationship between the nodes. Acq: CG node’s acquired lock

NOTE: “Acq: X --> object reference” means “this node acquires a lock on the object reference that variable X points to.”

Figure 2.2: Call Graph of Locking Semantics Example This is a call graph
representation of the Java Locking Semantics Example code in Figure 2.1

23

the object reference pointed to by the receiver variable and the explicit acquisition of

the object reference pointed to by an object reference variable.

An example of our CG representation of our lock semantics is provided in Fig-

ure 2.2. Our CG nodes represent particular method and constructor invocations which

could occur at runtime. Our CG node representation enables us to account for lock

acquisitions. The explicit lock acquisitions are accounted for by considering synchro-

nized statements to be method calls that are always implemented by its associated

block statement. Of course, we consider the object reference acquired by the CG

node to be the same object reference acquired by the synchronized statement. Our

CG edges represent a may call relation and a happens before ordering between the

nodes. Our definition of a CG captures the information we will need to determine all

the object references being acquired for a given program and the order in which these

object references are acquired.

There are times when the full node description does not need to be displayed in

the call graph’s diagram (e.g., when there is only one possible implementation or when

no locks are acquired). In this call graph section (Section 2.3), we use the full node

description in the call graph’s diagrams to insure the reader’s full understanding of

our meanings. In the remainder of this thesis we use an abbreviated node description

in the call graph diagrams to improve readability. The abbreviated call graph diagram

for our lock semantics example code is shown in Figure 2.3.

Not only is there more than one way to define a call graph, but there is more

than one way to create it. How a call graph is created determines the classification

of the call graph. The call graph in Figure 2.2 was created base on the structure of

the Java lock semantics example, Figure 2.1. If the call graph creation process uses

object-oriented information to determine the nodes or the edges then the resulting

call graph is an OOCG. Similarly, if the call graph creation process uses context-

sensitive information to determine the nodes or the edges then the resulting call

24

LockSemantics.main (…)

new

LockSemantics ()

{id = 1}

{LockSemantics id = 1}.addOne_v2()

synchronized

({LockSemantics id = 1})

{LockSemantics id = 1}.addOne_v1()

{LockSemantics id = 1}.addOne_v3()

synchronized

({Object id = 1})

1

32

4 5

6 7

Legend

 CG Node representing a method or constructor invocation.

 CG Node representing a synchronized statement.

 CG Edge representing a happens before relationship between the nodes.

Figure 2.3: Abbreviated Call Graph of Locking Semantics Example This
is an abbreviated call graph representation of the Java Locking Semantics Example
code in Figure 2.1

25

1 public class foo {
2 public static void main(String[] args) {
3 DD d = new FFF();
4 d.m2();
5 }
6 }

Figure 2.4: Class Hierarchy Code Example This short contrived Java code
example is part of the class hierarchy example used to explain OOCG concepts.

graph is a CSCG. Our CSOOCG generator process uses both object-oriented and

context-sensitive information, making our CSOOCG both an OOCG and a CSCG.

2.3.2 Object-Oriented Call Graph Example. Statically creating an OOCG

requires object-oriented information concerning the target program. This information

includes knowledge of class and interface hierarchies. This information is need to re-

solve sub-typing relationships between classes and interfaces. This information is also

need to resolve method invocations–with respect to determining overridden methods.

For example, consider method call d.m2() in foo.main(. . .), Figure 2.4 and the

object-oriented information available in the Unified Modeling Language (UML) class

diagram in Figure 2.5. In Java, we can determine the static type of the receiver

variable d, the subtypes of the static type, and whether or not the subtypes have

overridden method m2(). The OOCG would need to create four nodes to represent

the four possible runtime implementations of method call d.m2(), Figure 2.6.

2.3.3 Context-Sensitive Call Graph Example. Statically creating a CSCG

requires context-sensitive information concerning the target program. This informa-

tion includes knowledge of a method call’s possible runtime receiver object reference

and knowledge of the method call’s arguments. Given an OOCG, this information

could be used to select possible runtime implementation from the possible object-

oriented implementations identified in the construction of the OOCG. For example,

consider the the Java code in Figure 2.7, along with the OOCG in Figure 2.8 and the

26

A

+ m1 () : void

+ m2 () : void

CC

+ m1 () : void

BB

+ m1 () : void

+ m2 () : void

DD

+ m2 () : void

EEE

+ m1 () : void

+ m2 () : void

FFF

+ m1 () : void

+ m2 () : void

GGG

+ m1 () : void

+ m2 () : void

Figure 2.5: UML Class Diagram This is a UML class diagram used to illustrate
a class hierarchy. This is part of the class hierarchy example used to explain OOCG
concepts.

Exp: external call site

Imp: foo.main (…)

Acq:

Exp: new DD ()

Imp: DD.DD ()

Acq:

Exp: d.m2 ()

Imp: DD.m2 ()

Acq:

Exp: d.m2 ()

Imp: EEE.m2 ()

Acq:

Exp: d.m2 ()

Imp: FFF.m2 ()

Acq:

Exp: d.m2 ()

Imp: GGG.m2 ()

Acq:

Figure 2.6: Object-Oriented Call Graph of The Hierarchy Code Example
This is an OOCG representation of the class hierarchy code example in Figure 2.4
based on the object-oriented information provided by the UML diagram in Figure 2.5

27

CSCG in Figure 2.9. Note: the OOCG is also the CSCG, because no context-sensitive

information was used to create the OOCG. We start by describing the Java code.

The Java code in Figure 2.7 contains four classes. An abstract Vehicle class

and three concrete classes, namely AirVehicle, GroundVehicle and VehicleExample.

The abstract Vehicle class is extended by the AirVehicle and GroundVehicle classes.

The VehicleExample class contains the program’s entry point, i.e., “public static void

main(String[]. . .).” This main method serves as the root of our call graphs, Figure 2.8

and Figure 2.9. We start by considering how context-sensitive information improves

our OOCG representation of the Java code in Figure 2.7.

The context-sensitive call graph requires the ability to determined statically

the context of every expression involved in a call. In this example the informa-

tion would be used to identifying possible runtime implementation of method calls

v.isAirVehicle() and v.isGroundVehicle(). The context of these two calls deter-

mines which of the two possible implementations will be invoked at runtime. This is

an improvement to the accuracy of the OOCG representation in Figure 2.8.

This example helps explain how context sensitive can be use to improve the

accuracy of an OOCG. This same concept is applied in our analysis. The CSOOCG

generator utilizes context-sensitive information to improve its program representation

accuracy.

2.3.4 Call Graph Classification. Grove et al. in [12] provides technique to

classify program call graphs. This technique system considers the CG’s soundness and

precision. Grove considers a CSCG to be sound if it accurately represents all possible

runtime executions and considers a CG to be precise if it only represents possible

runtime executions. This provides us with a technique to classify our CSOOCG.

Grove has constructed a graphical lattice, shown in Figure 2.10, representing

varying degrees of soundness, precision and optimism of CGs. An optimistic CG does

not contain all possible runtime executions, but optimistically creates nodes and edges

to reflect the most likely runtime executions. The points on the lattice represent CGs,

28

1 public abstract class Vehicle {
2 public abstract boolean isAirVehicle();
3 public abstract boolean isGroundVehicle();
4 }
5

6 public class AirVehicle extends Vehicle {
7 @Override
8 public boolean isAirVehicle() {
9 return true;

10 }
11 @Override
12 public boolean isGroundVehicle() {
13 return false;
14 }
15 }
16

17 public class GroundVehicle extends Vehicle {
18 @Override
19 public boolean isAirVehicle() {
20 return false;
21 }
22 @Override
23 public boolean isGroundVehicle() {
24 return true;
25 }
26 }
27

28 public class VehicleExample {
29 public static void main(String[] args) {
30 Vehicle transport = new AirVehicle();
31 printStatus(transport);
32 }
33 private static void printStatus(Vehicle v){
34 String s1 = ‘‘Transport is an Air Vehicle: ’’;
35 String s2 = ‘‘Transport is a Ground Vehicle: ’’;
36 System.out.println(s1 + v.isAirVehicle());
37 System.out.println();
38 System.out.println(s2 + v.isGroundVehicle());
39 }
40 }

Figure 2.7: Context-Sensitive Java Code Example This is a short contrived
Java code example to illustrate the improvement in accuracy compare to an OOCG.

29

Exp: external call site

Imp: VehicleExample.main (…)

Acq:

Exp: printStatus (transport)

Imp: VehicleExample.printStatus (transport)

Acq:

Exp: new AirVehicle ()

Imp: AirVehicle.AirVehicle ()

Acq:

Exp: v.isAirVehicle ()

Imp: AirVehicle.isAirVehicle ()

Acq:

Exp: v.isGroundVehicle ()

Imp: AirVehicle.isGroundVehicle ()

Acq:

Exp: v.isAirVehicle ()

Imp: GroundVehicle. isAirVehicle ()

Acq:

Exp: v.isGroundVehicle ()

Imp: GroundVehicle.isGroundVehicle ()

Acq:

Figure 2.8: Object-Oriented Call Graph of the Context-Sensitive Java
Code Example This is a context-insensitive call graph representation of the Java
code in Figure 2.7

Exp: external call site

Imp: VehicleExample.main (…)

Acq:

Exp: printStatus (transport)

Imp: VehicleExample.printStatus (transport)

Acq:

Exp: new AirVehicle ()

Imp: AirVehicle.AirVehicle ()

Acq:

Exp: v.isAirVehicle ()

Imp: AirVehicle.isAirVehicle ()

Acq:

Exp: v.isGroundVehicle ()

Imp: AirVehicle.isGroundVehicle ()

Acq:

Figure 2.9: Context-Sensitive Call Graph This is a context-sensitive call graph
representation of the Java code in Figure 2.7

30

Opt

Sound

G

G

Gideal

Figure 2.10: Regions in a Call Graph Lattice Domain (Grove et al. [12])
NOTE: This figure, title and description is taken in its entirety from Grove et al. [12].
This diagram depicts a lattice whose elements are call graphs. We order one call graph
below another (and depict it in the cone below the other) if it is more conservative (less
precise) than the other. The top and bottom elements, corresponding to the empty
call graph and the complete call graph, respectively, are denoted by G⊤ and G⊥. The
point Gideal identifies the “real” but usually uncomputable call graph, which can be
described precisely as the greatest lower bound over all call graphs corresponding to
actual program executions. Any particular program execution induces a call graph
in the cone above Gideal labeled Opt (for “optimistic”). Any call graph produced by
a correct call graph construction algorithm must be in the cone below Gideal labeled
Sound.

where G⊤ represents an empty CG and is considered to be the most optimistic and

unsound CG. The remaining two points Gideal and G⊥ are considered sound CG with

varying degrees of precision. G⊥ is the most vague (least precise) CG, which consider

a call to be implemented by all methods in the program. Gideal is the most precise

CG, which is considered to be statically unattainable.

Our CSOOCG is at the Gideal point of of the lattice shown in Figure 2.10. This

limits the Java programs our technique can consider to those where it is possible to

construct a Gideal call graph. What is required to construct a CSOOCG is nearly

perfect static aliasing information about each Java reference variable. We accomplish

this via an aliasing oracle as we describe in the next chapter.

31

III. CSOOCG Generator

This chapter explains what our context-sensitive object-oriented call graph (CSOOCG)

is and how it is created. This chapter also defines the aliasing oracle interface needed

by our CSOOCG generator. The Dining Philosophers case study is used to help

solidify the CSOOCG generator process.

3.1 CSOOCG

A CSOOCG is a Java program’s call graph decorated with the locks that may

be acquired at runtime. This call graph consist of two types of nodes. One type of

node represents method and constructor invocations, where an invocation is defined

to be a call site and the implementation of this call site. The other type of node

represents synchronized statements. Both node types are needed to capture the two

locking mechanisms we are interested in, namely the lock acquired by synchronized

statements and the locks acquired by method calls implemented by synchronized

method definitions–method definitions with the “synchronized” modifier.

We represent each synchronized statement in the program as if it were a private

method invoked only at the point where the synchronized statement occurs. This

allows us to account for the locks acquired by these synchronized statements in our

CSOOCG. For example, for the purpose of CSOOCG construction, we pretend that

public void safePrint(Object o) {
// code before the synchronized statement
synchronized(o) {
System.out.println(o);

}
// code after the synchronized statement

}

looks like

public void safePrint(Object o) {
// code before the synchronized statement
syncBlock(o);
// code after the synchronized statement

}

32

private synchronized syncBlock(Object o) {
System.out.println(o);

}

where the introduced method name, in this case syncBlock, would be unique within

the class. This example is only intended to build intuition, however, and this refactor-

ing of the code is not concretely carried out. The actual CSOOCG node (as we shall

see below) replaces its reference to the call site with a reference to the synchronized

statement and its reference to the called method or constructor implementation with

a reference to the block of statements within the synchronized statement.

The Java source code and CSOOCG for the Dining Philosophers are shown in

Figure 3.1 and Figure 3.2, respectively. The CSOOCG for the Dining Philosophers

code consists of 3 disconnected graph components. One graph component represents

the main method call and all the nodes this main method call can reach. The re-

maining two graph components represent the run method calls that are started in

the main method and all the nodes this run method call can reach. Each connected

graph component has one and only one root node. Root nodes are the entry points

to graph components. Each root node is either a call to run or a call to main.

The directed edges of the CSOOCG represent a may happen before relation-

ship between the CSOOCG nodes. This relationship between the nodes is used to

generate possible runtime executions in the CSOOCG Analyzer. When a runtime

execution acquire two or more locks then the edges along this execution are used

to establish lock acquisition orders. The node at the tail of a directed edge occur

before the node at the head of the same directed edge. In Figure 3.2, for exam-

ple, the root node, node 1, represents an external invocation of Philosopher.main

(String[] args). This invocation creates an object on the heap that we refer to

as heap id = 0. This root node would be invoked before all the other nodes in

its component, namely nodes 2 through 9. Node 6 represents the start(p1) call

site located within Philosopher.main(String[] args) on line 34 of Figure 3.1 and

node 7 represents the p.start() call site located within Philosopher.start(final

33

1 public class Philosopher extends Thread {
2

3 public static final class Fork { }
4

5 final Fork right;
6

7 final Fork left;
8

9 final int identity;
10

11 Philosopher(int identity, Fork right, Fork left) {
12 this.identity = identity;
13 this.right = right;
14 this.left = left;
15 }
16

17 @Override
18 public void run() {
19 while (true) {
20 // Thinking
21 synchronized (right) {
22 synchronized (left) {
23 // Eating
24 }
25 }
26 }
27 }
28

29 public static void main(String[] args) {
30 final Fork f1 = new Fork();
31 final Fork f2 = new Fork();
32 final Philosopher p1 = new Philosopher(1, f1, f2);
33 final Philosopher p2 = new Philosopher(2, f2, f1);
34 start(p1);
35 start(p2);
36 }
37

38 private static void start(final Philosopher p) {
39 p.setName(‘‘philosopher-’’ + p.identity);
40 p.start();
41 }
42 }
43

Figure 3.1: Dining Philosophers Source Code This is the Java source code for
the Dining Philosopher program.

34

Exp: External call Site

Imp: Philosopher.main ()

Acq. Lock on:

Heap id: 0

1
Exp: new Fork ()

Imp: Fork.Fork ()

Acq. Lock on:

Heap id: 1

Exp: new Fork ()

Imp: Fork.Fork ()

Acq. Lock on:

Heap id: 2

Exp: new Philosopher (1, { Fork id = 2},{ Fork id = 1})

Imp: Philosopher.Philosopher (int, Fork, Fork)

Acq. Lock on:

Heap id: 3

Exp: new Philosopher (1, { Fork id = 1},{ Fork id = 2})

Imp: Philosopher.Philosopher (int, Fork, Fork)

Acq. Lock on:

Heap id: 4

5

4

3

2

Exp: start ({Philosopher id = 3})

Imp: Philosopher.start (Philosopher)

Acq. Lock on:

Heap id:

Exp: {Philosopher id = 3}.start ()

Imp: Thread.start ()

Acq. Lock on : Heap id = 3

Heap id:

Exp: start ({Philosopher id = 4})

Imp: Philosopher.start (Philosopher)

Acq. Lock on:

Heap id:

Exp: {Philosopher id = 4}.start ()

Imp: Thread.start ()

Acq. Lockon : Heap id = 4

Heap id:

6

8

7

9

Exp: { Philosopher id = 3 }.run ()

Imp: Philosopher.run ()

Acq. Lock on:

Heap id:

10 13

Exp: { Philosopher id = 4 }.run ()

Imp: Philosopher.run ()

Acq. Lock on:

Heap id:

Exp: Synchronized (right)

Imp: Synchronized ({Fork id = 1})

Acq. Lock on: Heap id =1

Heap id:

Exp: Synchronized (left)

Imp: Synchronized ({Fork id = 2})

Acq. Lock on: Heap id = 2

Heap id:

Exp: Synchronized (left)

Imp: Synchronized ({Fork id = 2})

Acq. Lock on: Heap id = 2

Heap id:

Exp: Synchronized (right)

Imp: Synchronized ({Fork id = 1})

Acq. Lock on: Heap id =1

Heap id:

11

12

14

15

Legend

 Node representing a method or constructor invocation. Exp: call site expression.

 Node representing a synchronized statement. Imp: call site’s implementation.

 Edge representing a may happens before relationship between the nodes. Acq. Lock on: node’s acquired lock

 Heap id: a reference used to track this object

Figure 3.2: Dining Philosophers CSOOCG This is the CSOOCG for the Dining
Philosophers program example in Figure 3.1.

35

Philosopher p) on line 40 of Figure 3.1. The edge between node 1 and node 6 indi-

cate that node 1 may be invoked before node 6. The edge between node 6 and node 7

indicate that node 6 may be invoked before node 7. Through transitivity we conclude

that node 1 may be invoked before node 7.

This Dining Philosophers example has a deadlock condition, as is explained

in Chapter IV, that is highlighted by a dashed rectangular box in Figure 3.2. The

four CSOOCG nodes in this box become part of two disjoint traces that acquire two

object locks in reversed order. The CSOOCG contains information needed to identify

object locks and the execution traces that acquire them. For example, information

concerning conditional statements, loops and assignment statements is not captured

or represented in the CSOOCG. The CSOOCG for the Dining Philosophers does

not contain nodes for the p.setName(‘‘philosopher-’’ + p.identity) call (which

sets the receiver thread’s textual name). This is because the method invoked by

p.setName(. . .) is implemented in the Thread class which is outside the source code

of our example. Our prototype tool doesn’t analyze Java libraries (i.e., Jar files).

The only exception to this rule is calls that invoke Thread.start(). Calls that

invoke Thread.start() create a new graph component rooted at Run(). The CSOOCG

in Figure 3.2, contains two calls, nodes 7 and 9, that call thread.start(). These two

calls cause two threads to be created and started. These two new threads of execution

are represented in our CSOOCG by the root nodes 10 and 13.

The actual report of the possible deadlock condition within the Dining Philoso-

phers example is shown in Table 3.1. This report informs the programmer of the

two possible runtime traces which might deadlock the program (or at least those two

threads). Chapter IV explains how the CSOOCG is analyzed to produce this output.

3.2 CSOOCG Generator

The CSOOCG Generator process extracts from the Java source code under

test (CUT) all the method and constructor invocations as well as its synchronized

36

Table 3.1: Dining Philosophers Deadlock Conditions.
CSOOCG Deadlock Conditions

Locks Acquired
ID First Second Method Call File Line #
0 heap ID: 1 heap ID: 2

Trace 1
synchronized (this.right) Philosopher.java 21
synchronized (this.left) Philosopher.java 22

1 heap ID: 2 heap ID: 1
Trace 1

synchronized (this.right) Philosopher.java 21
synchronized (this.left) Philosopher.java 22

statements. This information is store in a CUT graph. This CUT graph captures

the may happen before execution relationship between the three CSOOCG nodes

elements; method invocations, constructor invocations and synchronized statements.

An aliasing oracle is used to statically determine the possible runtime object reference

of reference variables being lock and reference variables acting as method call receivers.

The aliasing oracle is used to determine the identity of reference variables being locked

and to improve the precision of the CSOOCG. Here improved precision refers to

eliminating execution paths through the CSOOCG that may not occur at runtime.

The CSOOCG generation process creates a CUT graph form the Java source files

and uses an aliasing oracle to determine the identity of objects being acquired along

CSOOCG paths and the improve the precision of the CSOOCG.

3.2.1 Starting Point. The creation of a CSOOCG starts with a forest of

abstract syntax trees (ASTs) consisting of an AST for each Java class. This forest of

ASTs is traversed with a double visitor to capture the program’s structure. We call

the structure we create from this double visitor traversal of the AST forest a CUT

graph.

A CUT graph is a bipartite graph. One set of nodes (rectangles) represents

blocks of code and the other (ellipses) represents call sites. An edge from a code

37

Site
CallContainsBlock

Relationship
of

code

Call
Site

Block
of

code

May bind to

Relationship

Block
of

code

Block
of

code

Not allowed

Relationship

Call
Site

Call
Site

Not allowed

Relationship

synchronized statement

Figure 3.3: CUT Graph Semantics

block node to a call site node means that the code contains the call site. An edge

from a call site to a code block means that the site may bind to the code block

(possibly not until runtime). Synchronized statements are represented by an octagon.

Synchronized statements represent both a block of code and a “call” site in our CUT

graph (saving us a node and an edge).

3.2.2 Code Under Test (CUT) Graph. The CUT graph is built in several

stages. The initial CUT graph consist of nodes for each code block and call site in

the AST forest, but no “may bind to” edges. Figure 3.4 shows the initial CUT graph

for the Dining Philosophers.

3.2.3 Call Completer. This step completes the CUT graph (later Figure 3.5

shows the complete CUT graph for the Dining Philosophers) by connecting calls sites

to their possible implementations. It uses the call site receivers’ and arguments’ typing

38

public static void main(String[] args)

start(p1) start(p2)new Philosopher(1, f1, f2) new Fork() new Philosopher(2, f2, f1) new Fork()

{ } { } { } { } { } { }

Fork() public static void start(final Philosopher p)

p.setName(…)

Philosopher(int identity, Fork right, Fork left)

{ } p.start() { }

synchronized (right) synchronized (left) public void run() { } { } { }

Legend

 Method or Constructor Declaration

 Method or Constructor Call site

 Synchronized Statement

 Contains relationship

 May bind to relationship

Figure 3.4: Dining Philosophers Initial CUT Graph This is the initial CUT
graph for the Dining Philosophers program example in Figure 3.1.

39

public static void main(String[] args)

start(p1) start(p2)new Philosopher(1, f1, f2) new Fork() new Philosopher(2, f2, f1) new Fork()

Fork()

{ }

p.start()

public static void start(final Philosopher p)

p.setName(…) { }

Philosopher(int identity, Fork right, Fork left)

{ }

public void run() synchronized (right) synchronized (left) { }

public synchronized void start()

Legend

 Method or Constructor Declaration

 Method or Constructor Call site

 Synchronized Statement

 Contains relationship

 May bind to relationship

Figure 3.5: Dining Philosophers Updated CUT Graph This is the updated
CUT graph for the Dining Philosophers program example in Figure 3.1.

40

public void foo(B a)

a.m()

A.m() CA.m() CB.m()

1

2

3 4 5

A

m()

B

C

CB

m()

CA

m()

Figure 3.6: CUT Graph is Object-Oriented

information to determine possible runtime binding to an implementation. The receiver

is the only runtime type considered because Java only performs dynamic dispatch on

the receiver object. The static type of the call site’s receiver and arguments do limit

the possible implementations to those located within the declared class type or within

classes that extend the declared class type (and in some cases, like the situation in

Figure 3.5, this is enough to uniquely identify the runtime binding). At this point any

call sites with no “may bind to” edges means the possible call binding is outside the

program’s source code (it is most likely contained within a Jar file acting as a library

for the program).

The CUT graph is object-oriented but not context-sensitive. Consider the class

hierarchy shown in Figure 3.6 and the following Java code segment:

public void foo(B a) {
a.m()
}

The corresponding CUT graph for this segment of Java code is shown in Figure 3.6.

The possible object-oriented implementations of a.m() is illustrated by the three

edges from Node 2 to Nodes 3, 4 and 5. Our Dining Philosophers example does not

have multiple implementations possibilities for the call sites.

41

start(p1) start(p2)

public static void main(String[] args)

public static void start(final Philosopher p)

p.start()

synchronized (right) synchronized (left) public void run() { }

public synchronized void start()

Legend

 Method or Constructor Declaration

 Method or Constructor Call site

 Synchronized Statement

 Contains relationship

 May bind to relationship

Figure 3.7: Dining Philosophers Reduced CUT Graph This is the reduced
CUT graph for the Dining Philosophers program example in Figure 3.1.

3.2.4 Reducer Process. It is possible to reduce the CUT graph because we

only care about the traces that acquire locks or start threads. Reducing the size of the

updated CUT graph reduces the size of the resulting CSOOCG. Nodes in CUT graph

paths that do not acquire at least one lock or start a thread can be deleted. A single

depth first search traversal of the CUT graph’s entry points is sufficient to determine

unneeded nodes. The unneeded nodes can then be deleted from the graph along with

their edges. We call this new version of the updated CUT graph the reduced CUT

graph, Figure 3.7. The corresponding reduced CSOOCG created from this reduced

CUT graph is shown in Figure 3.8.

42

Exp: External call Site

Imp: Philosopher.main ()

Acq. Lock on:

Heap id: 0

1

Exp: start ({Philosopher id = 3})

Imp: Philosopher.start (Philosopher)

Acq. Lock on:

Heap id:

Exp: {Philosopher id = 3}.start ()

Imp: Thread.start ()

Acq. Lock on : Heap id = 3

Heap id:

Exp: start ({Philosopher id = 4})

Imp: Philosopher.start (Philosopher)

Acq. Lock on:

Heap id:

Exp: {Philosopher id = 4}.start ()

Imp: Thread.start ()

Acq. Lockon : Heap id = 4

Heap id:

6

8

7

9

Exp: { Philosopher id = 3 }.run ()

Imp: Philosopher.run ()

Acq. Lock on:

Heap id:

10 13

Exp: { Philosopher id = 4 }.run ()

Imp: Philosopher.run ()

Acq. Lock on:

Heap id:

Exp: Synchronized (right)

Imp: Synchronized ({Fork id = 1})

Acq. Lock on: Heap id =1

Heap id:

Exp: Synchronized (left)

Imp: Synchronized ({Fork id = 2})

Acq. Lock on: Heap id = 2

Heap id:

Exp: Synchronized (left)

Imp: Synchronized ({Fork id = 2})

Acq. Lock on: Heap id = 2

Heap id:

Exp: Synchronized (right)

Imp: Synchronized ({Fork id = 1})

Acq. Lock on: Heap id =1

Heap id:

11

12

14

15

Legend

 Node representing a method or constructor invocation. Exp: call site expression.

 Node representing a synchronized statement. Imp: call site’s implementation.

 Edge representing a may happens before relationship between the nodes. Acq. Lock on: node’s acquired lock

 Heap id: a reference used to track this object

Figure 3.8: Dining Philosophers Reduced CSOOCG This is the reduced
CSOOCG for the Dining Philosophers program example in Figure 3.1.

43

3.2.5 aliasing Oracle. It is not possible to create a perfect CSOOCG for

most Java programs. This is primarily due to aliasing and late binding (dynamic

binding). The identity of every locked object must be known. This means that the

references (aliasing) to locked objects must be statically resolvable. The runtime

binding of every method call must be able to be statically determined in order to

create a precise CSOOCG. The precision minimizes false possitive, but the main

reason for an aliasing oracle is the need to statically resolve the identity of references

variables being locked.

The aliasing oracle does not directly resolve runtime method bindings but, it

does statically models the program’s runtime heap to allow us to understand what

objects each reference variable may point to at runtime. This allows our analysis

to understand aliasing of references in the program for the purpose of determining

runtime method bindings and lock object aliasing.

Consider Figure 3.9, we have a Java method with a synchronized statement

that acquires a lock on the object reference pointed to by o1. What does o1 reference

at runtime? We can’t be sure statically, it might be what p1 referenced or what

p2 referenced. To be conservative we consider both. More precisely, if we define

a function, hm, which takes a reference as its only argument and returns the set

of possible runtime object references, then the set returned would be the union of

possible runtime references of p1 and p2, i.e.,

hm(o1) = hm(p1) ∪ hm(p2).

If an aliasing oracle is given o1 as an expression, then it would return the union

of the object references pointed to by expressions p1 and p2. We did not write this

alias analysis as part of our work, but did design an interface to it as described below.

3.2.6 Oracle Interface. Figure 3.10 is a Unified Modeling Language (UML)

class diagram of the aliasing oracle used by the CSOOCG generator to resolve ref-

44

1 void m(Object p1, Object p2) {
2 Object o1;
3 if (Math.random() > 0.5)
4 o1 = p1;
5 else
6 o1 = p2;
7 synchronized (o1) {
8 // do stuff
9 }

10 }

Figure 3.9: Java Source Code Example Demonstrating Aliasing

erence variables into possible runtime object references. The aliasing oracle provides

the getHeapReference method for this function. The getHeapReference method

takes three parameters, the expression’s IRNode (a Fluid internal representation (IR)

node), the context the call is being made under, and the Fluid IBinder (which is used

to determine static bindings in the Fluid analysis infrastructure). The expression is

the reference variable we wish to resolve into the possible runtime object references.

The Fluid IBinder provides static binding, such as binding for local variables. The

context the call is being made under encompasses three things:

1. the receiver of the call site,

2. the mapping between the actual arguments and the formal parameters and

3. the method definition the call site is located in.

This getHeapReference method returns a set of static object references, that stati-

cally model runtime objects (and their associated types).

We now provide an example of how a runtime method binding is resolved using

our aliasing oracle. This aliasing oracle is external to our CSOOCG analysis. Con-

sider the CSOOCG for the Dining Philosophers in Figure 3.2 (on page 35). Node 11, a

synchronized block, was created with this aliasing oracle. The call site expression for

this node was synchronized(right). Our CSOOCG generator process determines

that this expression is a synchronized block and that a lock is acquired on the run-

45

<< interface >>

StaticObjectReference

+ getObjectType(): IJavaType

+ getObjectID(): long

+ getField(IRNode): StaticObjectReference

+ addMapping(IRNode, StaticObjectReference): boolean

+ removeMapping(IRNode, StaticObjectReference): boolean

Context

+ Context(StaticObjectReference receiver): Context

+ addMapping(IRNode, IRNode): void

+ getReceiver(): StaticObjectReference

+ getArgument(IRNode param): IRNode

Aliasing_Oracle

+ getHeapReference(IRNode, Context, IBinder): Set<StaticObjectReference>

Figure 3.10: Alias Oracle Interface

time objects references pointed to by right. We must determine the context of this

call, i.e., determine the possible runtime objects that this may be pointing to. The

context of a synchronized block is determined by the receiver of the enclosing method

invocation. In this case the receiver is Philosopher id = 3. This is the receiver

of the call to Thread.start() in CSOOCG node 7. This call created and started

CSOOCG node 10, {Philosopher id = 3}.run(). We provide the reference vari-

able, right, and the context of this call site, Philosopher id = 3, along with the

current binder to the aliasing oracle getHeapReference method. The return value

is set of object references, namely {FORK id = 1}. We annotate in node 11 that it

acquires a lock on heap id = 1.

3.2.7 CSOOCG builder. The CSOOCG builder process uses the aliasing

oracle and the reduced CUT graph to produce a the CSOOCG. The CSOOCG is

created via continued traversals of the reduced CUT graph until all call site nodes,

46

have been visited. We consider a CUT graph call site node to be visited if the call

site is reached under the same calling context. Here we define the context to be the

receiver’s identity and the identity of all the passed in reference variable arguments.

The CUT graph traversal starts with the main method definitions. These main method

definitions are entry points to CUT graph components and become entry points in the

CSOOCG components. There is a one-to-one correspondence between the main entry

points in the reduced CUT graph and the main entry points in the CSOOCG. For

example, the main entry point for our Dining Philosophers is Philosophers.main.

The receiver for this main entry point is the enclosing class object, i.e., the Philosopher

static class object. The remaining call site’s receivers are determined by querying the

aliasing oracle with the call site’s receiver reference variable and the context under

which this call would be made at runtime.

For the main method definition from our Dining Philosophers example code the

remaining component call sites are:

• new Fork()

• new Fork()

• new Philosopher(1, f1, f2)

• new Philosopher(2, f2, f1)

• start(p1)

• start(p2)

• p1.start()

• p2.start()

The constructor call sites do not need an aliasing oracle to determine their

runtime implementations. For the remaining 4 method calls the CSOOCG builder

ask the aliasing oracle for the set of possible object references these method call

site receivers may be at runtime. The response from the aliasing oracle is used to

47

select the possible runtime implementation of the method call sites. The resulting

implementations of the above calls are listed below:

• Fork.Fork()

• Fork.Fork()

• Philosopher.Philosopher(1, f1, f2)

• Philosopher.Philosopher(2, f2, f1)

• Philosopher.start(p1)

• Philosopher.start(p2)

• Thread.start()

• Thread.start()

Remaining CUT graph call site and implementation node pairs are added to

the CSOOCG as a single node. Each time a CUT graph call site and implementation

node pair are visited, may results in a new unique CSOOCG node.

The p.start() call sites are implemented by Thread.start() and requires

additional processing. We first create a unique CSOOCG node for this special case and

then create a new CSOOCG component with the corresponding run method definition

as its entry point. The receiver for this run entry point is the same receiver identified

in the start() call site. The run CUT graph components are traversed in the same

way as the main CUT graph components (i.e., they are staring points in the CUT

graph). In our Dining Philosophers example we create two CSOOCG nodes, one for

the p1.start() invocation in Philosopher.main and one for Philosopher.run().

In Figure 3.8, these two nodes are 7 and 10 for the first implementation of p.start()

nodes 9 and 13 for the second invocation of p.start().

Synchronized statements in the CUT graph are another special case. We con-

sider synchronized statements to be both a call site and an implementation and hence

one synchronized statement satisfies the “call site and implementation node pair”

48

requirement for a single CSOOCG node. In our Dining Philosophers example, the

CUT graph node for synchronized(right) becomes node 11 and 14 in CSOOCG

Figure 3.8–one node for each thread’s invocation of the synchronized statement. De-

termining the set of object reference locks that may be acquired by a CUT graph

synchronized statement node is done by querying the aliasing oracle. In our example

this means the reference variable right is sent to the aliasing oracle, along with the

context (heap id = 3 for the philosopher object corresponding to p1), and the cur-

rent binder. The response from the aliasing oracle is {Fork id = 1}. We annotate

in CSOOCG node 11, that it acquires a lock on heap id=1. CUT graph call sites

pointing to an empty set are ignored, because their implementation’s source code is

not available.

CSOOCG creation is complete when all the updated CUT graph main entry

points and identified run entry points have been traversed.

3.3 CSOOCG Soundness

In Chapter II the term soundness and precision with respect to a call graph

were highlighted, where Grove et al. [12] considers a call graph to be sound if it

accurately represents all possible runtime executions and precise if it only represents

possible runtime executions. The CSOOCG is sound due to the representation of all

possible object-oriented implementations of a call site in the CUT graph. During the

generation of the CSOOCG all the CUT graph call site nodes are visited. When an

aliasing oracle is not available the CSOOCG nodes corresponding to each possible

implementation is be generated. This accounts for all the possible implementations of

each call site in the original Java source code. This generation process reproduces in

the CSOOCG all the possible runtime implementations of each call site in the original

Java source code. This is why we state that the CSOOCG is sound.

The aliasing oracle use to determine the possible runtime identity of object ref-

erence variables being acquired is also used to improve the precision of the CSOOCG.

We can provide the aliasing oracle with the receiver variable of a method call site

49

CallGraph

+ c_AllDecs: Strategy

Generator

- CUTGraph: Map<IRNode, Set<IRNode>>

+ preBuild(IProject): void

+ doAnalysisOnAFile(IRNode): void

+ postBuild(IProject) : void

CUTGraphB

- CUTGraph: Map<IRNode, Set<IR

uilder

+ Build(AnalysisContext, IRNode): Map<IRNode, Set<IRNode>>

Node>>

CallCompletor

Node>>

Node, Set<IRNode>>) : Map<IRNode, Set<IRNode>>

- CUTGraph : Map<IRNode, Set<IR

+ Complete(AnalysisContext, Map<IR

+ c_concreteDecs : Strategy

+ getMayCall (IRNode, Strategy): Set<IRNode>

CSOOC

+ nodes : Set<Node>

+ edges : Set<Edge>

+ CSOOCG(Map<IRNode, Set<IRNode>>, AnalysisContext) : CSOOCG

+ createCSOOCG() : void

G

+ printNodes() : void

+ printEdges() : void

+ writeXML(String) : void

Node

id : Long

- threadId : int

- initNode : boolean

- caller : Node

- callee : IRNode

rence

- mapping : Map<IR

-

- lock : Lock

- receiver : StaticObjectRefe

- parameters : List< StaticObjectReference>

Node, IRNode>

Edge

- from : Node

- to : Node

+ Edge(Node, Node) : Edge

+ getFrom() : Node

+ getTo() : Node

Writer

+ filename : String

+ XML_Writer(String) : XML_Writer

+ addFlowElement(Long, Long) : void

+ addNodeElement(Long, boolean) : void

t) : void

d

er) : void

+ addNodeElement(Long, boolean, in

+ addNodeInformation(IRNode) : voi

+ addLockInformation(IRNode, IBind

+ partialWriteToFile() : void

+ writeToFileAndClose() : void

Lock

- f_isClassLock : boolean

- f_type : StaticObjectReference

- f_name : int

+ getInstance(IRNode, IBinder, StaticObjectReference) : Lock

+ getName() : String

+ getType() : StaticObjectReference

+ getTypeName() : String

+ getId() : int

1

0..1
1

1 1

1

1 1..*

1

1
 10 External_Aliasing_Oracle

+ getInstance() : External_Aliasing_Oracle

+ getHeapReference(IRNode, Context, IBinder) : Set<StaticObjectReference>

1

0..1

1

1..*
1..*

0..1

Figure 3.11: Generator Class Diagram This is a UML class diagram representing
the classes used to create and store the CSOOCG. This diagram also shows the links
between these classes.

and receive as a response the set of object reference the receiver variable may be

at runtime. The types of this set of object reference can be used to determine the

valid runtime implementations. The information helps improve the precision of the

CSOOCG. When the aliasing information is prefect, the CSOOCG is considered sound

and precise, that is Grove’s Gideal.

3.4 Generator Implementation

The CSOOCG generation process is made up of many sub-processes. Figure 3.11

is a UML class diagram displaying the most important of these classes. We discuss

50

these classes and their relationships to each other. The primary class in this class

diagram is the Generator. The Generator class is called by the Eclipse IDE. First,

Eclipse invokes preBuild before the CUT files are loaded into Eclipse. Then, Eclipse

invokes doAnalysisOnAFile for each CUT file as it is loaded into Eclipse. Once

all the CUT files are loaded into Eclipse the postBuild method is invoked. Each

method invocation is designed to perform a special task. The preBuild method

is designed to initialize all the CSOOCG data structures, namely the CUT graph

map and the CSOOCG. The doAnalysisOnAFile method is designed to build the

CUT graph incrementally as the CUT files are loaded into Eclipse. The postBuild

method implementation calls the Call Completor process to add all possible method

call implementations to the CUT graph. The Call Completor uses the Fluid call

graph utility class to determine method call implementations. The postBuild then

calls on the Builder class to create the CSOOCG and save it to disk via the Writer

class.

3.4.1 CSOOCG Data File. Now we need to store our CSOOCG (either the

CSOOCG in Figure 3.2 or the reduced CSOOCG in Figure 3.8) in a file that the

CSOOCG analyzer can read and process. Why are we not analyzing the CSOOCG

now? Our design breaks up the analysis into two parts in order to reduce the amount

of memory required to perform our analysis. The generation of the CSOOCG relies

upon the Fluid IR to build a forest of ASTs. Once we generate the CSOOCG, we

no longer need this forest of ASTs. It is not possible to delete this forest of ASTs

and still maintain the CSOOCG for our analysis. This is why we create a data file

representation of the CSOOCG to pass on to the CSOOCG analyzer.

The XML file format was selected to maximized the data file’s portability. We

could not create the whole XML document in memory, so we create and save the

XML document in stages, where each successive stage is appended to the previous

stage’s data file.

51

An abbreviated CSOOCG data file for our Dining Philosopher example is shown

in Figure 3.12. This data file contains four distinct sections. The first section is the

CSOOCG nodes, Figure 3.12 lines 4–5. This first section contains three pieces of

information; node Id, root node boolean value, and lock acquired heap id–if any.

The second section contains the CSOOCG directed edges, Figure 3.12 lines 6–7. The

third section contains additional CSOOCG node information, e.g., the name of the

file containing the code this CSOOCG node represents, Figure 3.12 lines 8–27. The

fourth section contains lock information, e.g., lock ID 4 is acquired by a synchronized

statement on object this.left, which is heap object ID 2. The first two sections

are used by the CSOOCG Analyzer (described in the next chapter) to determine if

deadlock may occur in the Java program. The additional two sections are used to help

the the CSOOCG Analyzer produce results that the programmer can understand.

3.5 A Second Example: Double Lock Equals

The Double Lock Equals example, Figure 3.13, illustrates how deadlock condi-

tions may exist in the simplest of code segments. The main idea behind our Double

Lock Equals example is the need to lock both objects before comparing them for

equality. The first object locked is the this object. The second object locked is the

passed in object. The problem is not the locking order of the reference variables,

but the actual locking order of the objects referenced by these reference variables.

The overridden equals method is called twice with its argument and receiver object

swapped1. This means the locking order is also swapped between the two calls. This

inconsistency in locking order is detectable by our CSOOCG analysis.

This program has nineteen nodes of interest. The DoubleLockEqualsMain.main

method is the entry point for this program. This main method instantiates two

DoubleLockEqualsMain objects by calling the default constructor for this class. These

two constructor calls are illustrated in Figure 3.14 as nodes 2 and 4. These two nodes

1This swapping between items to determine equality is similar to the definition of equality between
sets, i.e., A = B ⇔ A ⊂ B ∧ B ⊂ A.

52

1 <?xml version=‘‘1.0’’ encoding=‘‘UTF-8’’?>
2 <!--These are the node and flow values used in the CSOOCG-->
3 <CSOOCGData>
4 <Node Id=‘‘1’’ Root=‘‘true’’ Lock=‘‘’’/>
5 <Node Id=‘‘2’’ Root=‘‘false’’ Lock=‘‘’’/>
6 <Flow From=‘‘1’’ To=‘‘2’’/>
7 <Flow From=‘‘1’’ To=‘‘3’’/>
8 <NodeInformation Id=‘‘1’’>
9 <Kind>Method call</Kind>

10 <Package/>
11 <Filename>Philosopher.java</Filename>
12 <Line>29</Line>
13 <Type>public class Philosopher # extends # # #</Type>
14 <MethodCall>Philosopher.main(String [])</MethodCall>
15 <NewExpression/>
16 <SynchronizedBlock/>
17 </NodeInformation>
18 <NodeInformation Id=‘‘2’’>
19 <Kind>New Expression</Kind>
20 <Package/>
21 <Filename>Philosopher.java</Filename>
22 <Line>33</Line>
23 <Type>public class Philosopher # extends # # #</Type>
24 <MethodCall/>
25 <NewExpression>new Philosopher (2, f2, f1)</NewExpression>
26 <SynchronizedBlock/>
27 </NodeInformation>
28 <LockInformation Id=‘‘3’’>
29 <AcquiredBy>Synchronized Statement: node id = 12</AcquiredBy>
30 <Static>false</Static>
31 <Final>false</Final>
32 <MethodCall/>
33 <SynchronizedBlock>synchronized (this.right)</SynchronizedBlock>
34 <Object>heap ID: 1</Object>
35 </LockInformation>
36 <LockInformation Id=‘‘4’’>
37 <AcquiredBy>Synchronized Statement: node id = 13</AcquiredBy>
38 <Static>false</Static>
39 <Final>false</Final>
40 <MethodCall/>
41 <SynchronizedBlock>synchronized (this.left)</SynchronizedBlock>
42 <Object>heap ID: 2</Object>
43 </LockInformation>
44 </CSOOCGData>

Figure 3.12: Abbreviated Data File This is an abbreviated data file used as a
small representation of the overall contents stored in the actual XML file.

53

create and start the new thread objects via nodes 3 and 5. Starting these two threads

equates to calling their corresponding run methods. These two run method are nodes

6 and 13 in Figure 3.14. These two run methods contain calls to the overridden equals

method. These calls correspond to nodes 7 and 10 for node 6, and nodes 14 and 17

for node 13. The Equals method contains two synchronization blocks. These nested

blocks correspond to nodes 8, 9, 11, 12, 15, 16, 18, and 19. These eight synchronization

nodes are the only nodes that acquire locks in our figure.

Now that we have identified all the nodes in the CSOOCG, we will identify their

directed edges, i.e., their “may happen before” ordering. The program’s main entry

point make two calls to the DoublLockEqualsMain constructors. These two calls are

represented by the two arrows leaving the main method call, node 1, and entering

the constructor calls, nodes 2 and 4. The directed edges illustrate a happens before

relationship between the CSOOCG nodes. The remaining directed edges are easily

read off Figure 3.14.

This chapter has covered the CSOOCG generation process in detail with a step

by step example to solidify the concepts and needs behind each step. The CSOOCG

data structure contains all the possible runtime execution paths and identifies the

actual object references being acquired along these paths. This information is passed

on to the CSOOCG analyzer process to determine if deadlock conditions exist in the

original CUT files used to create the CSOOCG.

54

1 public final class DoubleLockEqualsMain extends Thread {
2

3 static final DoubleLockEquals f1 = new DoubleLockEquals();
4

5 static final DoubleLockEquals f2 = new DoubleLockEquals();
6

7 public static void main(String[] args) {
8 (new DoubleLockEqualsMain()).start();
9 (new DoubleLockEqualsMain()).start();

10 }
11

12 @Override
13 public void run() {
14 while (true) {
15 boolean result = f1.equals(f2) == f2.equals(f1);
16 }
17 }
18 }
19

20 public final class DoubleLockEquals {
21

22 private long f_readCount = 0;
23

24 @Override
25 public boolean equals(Object obj) {
26 if (obj instanceof DoubleLockEquals) {
27 synchronized (this) {
28 synchronized (obj) {
29 this.f_readCount++;
30 ((DoubleLockEquals) obj).f_readCount++;
31 return super.equals(obj);
32 }
33 }
34 }
35 return false;
36 }
37

38 // OTHER IMPLEMENTATION CODE
39

40 }

Figure 3.13: Double Lock Equals Java Source Code This is the Java source
code for the Double Lock Equals program.

55

E
x

p
:

E
x

te
rn

al
 c

al
l

S
it

e

Im
p

:
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

.m
ai

n
 (

)

A
cq

.
L

o
ck

 o
n

:

H
ea

p
 i

d
:

0

E
x

p
:

n
ew

 D
o

u
b

le
L

o
ck

E
q

u
al

sM
ai

n
 (

)

Im
p

:
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

.D
o

u
b

le
L

o
ck

E
q

u
al

sM
ai

n
 (

)

A
cq

.
L

o
ck

 o
n

:

H
ea

p
 i

d
:

2

n
o

d
e

3

E
x

p
:

{
 D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 (
)

 i
d

 =
 2

}
.s

ta
rt

(
)

Im
p

:
T

h
re

ad
.s

ta
rt

 (
)

A
cq

.
L

o
ck

 o
n

:

H
ea

p
 i

d
:

n
o

d
e

5

E
x

p
:

n
ew

 D
o

u
b

le
L

o
ck

E
q

u
al

sM
ai

n
 (

)

Im
p

:
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

.D
o

u
b

le
L

o
ck

E
q

u
al

sM
ai

n
 (

)

A
cq

.
L

o
ck

 o
n

:

H
ea

p
 i

d
:

1

n
o

d
e

2

E
x

p
:

{
 D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 (
)

 i
d

 =
 1

}
.s

ta
rt

(
)

Im
p

:
T

h
re

ad
.s

ta
rt

 (
)

A
cq

.
L

o
ck

 o
n

:

H
ea

p
 i

d
:

n
o

d
e

4

n
o

d
e

1

E
x

p
:

{
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 1

}
.r

u
n

()

Im
p

:
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

.r
u

n
()

A
cq

.
L

o
ck

 o
n

:

H
ea

p
 i

d
:

E
x
p
:

{
D

o
u
b
le

L
o
ck

E
q
u
al

sM
ai

n
 i

d
 =

 1
}
.r

u
n

({
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 2

}
)

Im
p

:
D

o
u

b
le

L
o

ck
E

q
u

al
s.

eq
u

al
s(

 O
b

je
ct

)

A
cq

.
L

o
ck

 o
n

:

H
ea

p
 i

d
:

n
o

d
e

7

E
x

p
:

sy
n

ch
ro

n
iz

ed
 (

 {
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 1

}
)

Im
p

:
sy

n
ch

ro
n

iz
ed

 (
 t

h
is

)

n
o

d
e

8

E
x
p
:

{
D

o
u
b
le

L
o
ck

E
q
u
al

sM
ai

n
 i

d
 =

 2
}
.r

u
n

({
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 1

}
)

Im
p

:
D

o
u

b
le

L
o

ck
E

q
u

al
s.

eq
u

al
s(

 O
b

je
ct

)

A
cq

.
L

o
ck

 o
n

:

H
ea

p
 i

d
:

n
o

d
e

1
0

A
cq

.
L

o
ck

 o
n

:
id

 =
 1

H
ea

p
 i

d
:

E
x

p
:

sy
n

ch
ro

n
iz

ed
 (

 {
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 2

}
)

n
o

d
e

9

Im
p

:
sy

n
ch

ro
n

iz
ed

 (
 o

b
j

)

A
cq

.
L

o
ck

 o
n

:
id

 =
 2

H
ea

p
 i

d
:

n
o

d
e

6

E
x

p
:

sy
n

ch
ro

n
iz

ed
 (

 {
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 2

}
)

Im
p

:
sy

n
ch

ro
n

iz
ed

 (
 t

h
is

)

A
cq

.
L

o
ck

 o
n

:
id

 =
 2

H
ea

p
 i

d
:

E
x

p
:

sy
n

ch
ro

n
iz

ed
 (

 {
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 1

}
)

n
o

d
e

1
1

n
o

d
e

1
2

Im
p

:
sy

n
ch

ro
n

iz
ed

 (
 o

b
j

)

A
cq

.
L

o
ck

 o
n

:
id

 =
 1

H
ea

p
 i

d
:

E
x

p
:

{
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 2

}
.r

u
n

()

Im
p

:
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

.r
u

n
()

A
cq

.
L

o
ck

 o
n
:

H
ea

p
 i

d
:

E
x
p
:

{
D

o
u
b
le

L
o
ck

E
q
u
al

sM
ai

n
 i

d
 =

 2
}
.r

u
n

({
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 1

}
)

Im
p

:
D

o
u

b
le

L
o

ck
E

q
u

al
s.

eq
u

al
s(

 O
b

je
ct

)

A
cq

.
L

o
ck

 o
n
:

H
ea

p
 i

d
:

n
o

d
e

1
4

E
x

p
:

sy
n

ch
ro

n
iz

ed
 (

 {
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 2

}
)

Im
p

:
sy

n
ch

ro
n

iz
ed

 (
 t

h
is

)

n
o

d
e

1
5

E
x
p
:

{
D

o
u
b
le

L
o
ck

E
q
u
al

sM
ai

n
 i

d
 =

 1
}
.r

u
n

({
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 2

}
)

Im
p

:
D

o
u

b
le

L
o

ck
E

q
u

al
s.

eq
u

al
s(

 O
b

je
ct

)

A
cq

.
L

o
ck

 o
n
:

H
ea

p
 i

d
:

n
o

d
e

1
7

A
cq

.
L

o
ck

 o
n

:
id

 =
 2

H
ea

p
 i

d
:

E
x

p
:

sy
n

ch
ro

n
iz

ed
 (

 {
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 1

}
)

n
o

d
e

1
6

Im
p

:
sy

n
ch

ro
n

iz
ed

 (
 o

b
j

)

A
cq

.
L

o
ck

 o
n

:
id

 =
 1

H
ea

p
 i

d
:

n
o

d
e

1
3

E
x

p
:

sy
n

ch
ro

n
iz

ed
 (

 {
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 1

}
)

Im
p

:
sy

n
ch

ro
n

iz
ed

 (
 t

h
is

)

A
cq

.
L

o
ck

 o
n

:
id

 =
 1

H
ea

p
 i

d
:

E
x

p
:

sy
n

ch
ro

n
iz

ed
 (

 {
D

o
u

b
le

L
o

ck
E

q
u

al
sM

ai
n

 i
d

 =
 2

}
)

n
o

d
e

1
8

n
o

d
e

1
9

Im
p

:
sy

n
ch

ro
n

iz
ed

 (
 o

b
j

)

A
cq

.
L

o
ck

 o
n

:
id

 =
 2

H
ea

p
 i

d
:

L
eg

en
d

N

o
d

e
re

p
re

se
n

ti
n

g
 a

 m
et

h
o

d
 o

r
co

n
st

ru
ct

o
r

in
v

o
ca

ti
o

n
.

E
x

p
:

ca
ll

 s
it

e
ex

p
re

ss
io

n
.

N

o
d

e
re

p
re

se
n

ti
n

g
 a

 s
y

n
ch

ro
n

iz
ed

 s
ta

te
m

en
t.

Im
p

:
ca

ll
 s

it
e’

s
im

p
le

m
en

ta
ti

o
n

.

E

d
g

e
re

p
re

se
n

ti
n

g
 a

 m
ay

 h
ap

p
en

s
b

ef
o

re
 r

el
at

io
n

sh
ip

 b
et

w
ee

n
 t

h
e

n
o

d
es

.
A

cq
.
L

o
ck

 o
n

:
n

o
d

e’
s

ac
q

u
ir

ed
 l

o
ck

H
ea

p
 i

d
:

a
re

fe
re

n
ce

 u
se

d
 t

o
 t

ra
ck

 t
h

is
 o

b
je

ct

F
ig

u
re

3.
14

:
D

o
u
b
le

L
o
ck

E
q
u
a
ls

C
S
O

O
C

G
T

h
is

is
th

e
re

d
u
ce

d
C

S
O

O
C

G
fo

r
th

e
D

ou
b
le

L
o
ck

E
q
u
al

s
p
ro

gr
am

ex
am

p
le

in
F
ig

u
re

3.
13

.

56

IV. CSOOCG Analyzer

This chapter describes the context-sensitive object-oriented call graph (CSOOCG)

analyzer. This component takes the CSOOCG created by the CSOOCG generator,

described in Chapter III, and produces results for the programmer. In this chapter we

continue to use the Dining Philosophers program as a running example (and present

results for the Double Lock Equals lock program at the end of the chapter).

4.1 Overview

The CSOOCG analyzer proceeds as follows. It first traverses the CSOOCG and

identifies the possible runtime traces. These traces are used to determine the acqui-

sition order relation between the program’s lock object references. It then computes

the transitive closure of these lock object references, with respect to this relation, and

determine if any cycles exist. If a cycle does exist, then we report the lock object

references involved in creating the cycle and the traces that acquire them as a possi-

ble deadlock condition to the programmer. If no cycles exist, then we report to the

programmer that no deadlock conditions were found. For programs with a CSOOCG

based upon perfect aliasing information (and for which we have all the program’s

source code) this is a strong assurance that the program is deadlock-free.

4.2 Analysis Model

In this section we present a formal model of the analysis done on the CSOOCG to

produce results for the programmer. Consider Figure 4.1, the CSOOCG for the Dining

Philososphers. This CSOOCG contains 15 nodes and 12 edges in three connected

graph components. We consider an edge to be an ordered pair where the first element

in the order pair represents the tail of an edge and the second element represents

the head of an edge. In our example, the ordered pair < 1, 2 > represents the edge

leaves CSOOCG node 1 and arrives at CSOOCG node 2. We say that node 1 may be

invoked before node 2.

57

Exp: External call Site

Imp: Philosopher.main ()

Acq. Lock on:

Heap id: 0

1
Exp: new Fork ()

Imp: Fork.Fork ()

Acq. Lock on:

Heap id: 1

Exp: new Fork ()

Imp: Fork.Fork ()

Acq. Lock on:

Heap id: 2

Exp: new Philosopher (1, { Fork id = 2},{ Fork id = 1})

Imp: Philosopher.Philosopher (int, Fork, Fork)

Acq. Lock on:

Heap id: 3

Exp: new Philosopher (1, { Fork id = 1},{ Fork id = 2})

Imp: Philosopher.Philosopher (int, Fork, Fork)

Acq. Lock on:

Heap id: 4

5

4

3

2

Exp: start ({Philosopher id = 3})

Imp: Philosopher.start (Philosopher)

Acq. Lock on:

Heap id:

Exp: {Philosopher id = 3}.start ()

Imp: Thread.start ()

Acq. Lock on : Heap id = 3

Heap id:

Exp: start ({Philosopher id = 4})

Imp: Philosopher.start (Philosopher)

Acq. Lock on:

Heap id:

Exp: {Philosopher id = 4}.start ()

Imp: Thread.start ()

Acq. Lockon : Heap id = 4

Heap id:

6

8

7

9

Exp: { Philosopher id = 3 }.run ()

Imp: Philosopher.run ()

Acq. Lock on:

Heap id:

10 13

Exp: { Philosopher id = 4 }.run ()

Imp: Philosopher.run ()

Acq. Lock on:

Heap id:

Exp: Synchronized (right)

Imp: Synchronized ({Fork id = 1})

Acq. Lock on: Heap id =1

Heap id:

Exp: Synchronized (left)

Imp: Synchronized ({Fork id = 2})

Acq. Lock on: Heap id = 2

Heap id:

Exp: Synchronized (left)

Imp: Synchronized ({Fork id = 2})

Acq. Lock on: Heap id = 2

Heap id:

Exp: Synchronized (right)

Imp: Synchronized ({Fork id = 1})

Acq. Lock on: Heap id =1

Heap id:

11

12

14

15

Legend

 Node representing a method or constructor invocation. Exp: call site expression.

 Node representing a synchronized statement. Imp: call site’s implementation.

 Edge representing a may happens before relationship between the nodes. Acq. Lock on: node’s acquired lock

 Heap id: a reference used to track this object

Figure 4.1: Dining Philosophers CSOOCG This is the CSOOCG for the Dining
Philosophers program example in Figure 3.1.

58

Table 4.1: Trace Generator Equations

CEntry(n) = {CExit(n
′)|(n′, n) ∈ flow(CSOOCG)}

CExit(n) =

{t ⌢ < n >| t ∈ CEntry(n) ∧ ¬ addsRedundantCycle(t, n)}
∪
{< n >| CEntry(n) = ∅ ∧ isRootNode(n)}

Note: At the start of the first iteration of this specification all the CEntry(n) and
CExit(n) sets are empty.

We need to generate all the possible traces through the CSOOCG, where a

trace is a possible runtime execution represented by a sequence of nodes that traverse

the CSOOCG via a path. This is accomplished by running an analysis, similar to a

forward-may flow-sensitive analysis, on the CSOOCG until it reaches a fixed point.

This analysis uses the trace generation (transfer) equations define in Table 4.1 (with

supporting defintions and functions defined in Table 4.2. The CEntry set of a node

is defined to be the set of all traces entering this node. The CExit set of a node is

defined to be the set of all traces leaving this node. The CEntry and CExit are initially

empty, i.e., CEntry = CExit = ∅. There are two cases in which a node is added to a

trace:

Case 1: The CEntry set is empty and the node is a root node of a graph component.

Case 2: Node, n, being appended to a trace, t, does not cause a redundant cycle,

where a redundant cycle is any cycle that does not add new information to the

trace. For example, consider the trace, t =< 1, 2, 3, 4, 2, 3 >. Appending node

4 to trace t will result in a redundant cycle. This means that no new nodes

have been visited from the last occurrence of node 4, i.e., t(5..6) ⊂ t(1..3) is

true. The addsRedundantCycle(t, n) function is defined in Table 4.2. This

function determines whether adding a given node to a given trace will result in

a redundant cycle.

The results of the first application of this equation to our Dining Philosophers

example is shown in Table 4.3. Only node 1 is added to a trace and placed in the exit

59

Table 4.2: Definitions and Functions

1. CSOOCG is the Context Sensitive Object Oriented Call Graph

2. nodes(CSOOCG) is the set of Java call site invocations in the CSOOCG

3. n ∈ nodes(CSOOCG)

4. flow(CSOOCG) is the set of all directed edges in the CSOOCG of the form
P(nodes(CSOOCG) × nodes(CSOOCG))

5. isRootNode(n) returns true if n is a root node for a CSOOCG graph component, false
otherwise.

6. hasLock(n) returns true if n acquires a lock, false otherwise.

7. getLock(n) returns the lock object refernce acquired by n. getLock(n) is undefined if
hasLock(n) returns false.

8. trace is an ordered list of k nodes, i.e., < n1, n2, ...nk >, representing a trace through the
CSOOCG.

9. l is an ordered list of lock object references, i.e., < lock1, lock2, ... >, representing the locks
acquired along a trace.

10. getLocklist(trace) returns l, a list of locks, acquired along a given trace. note: this list maybe
empty.

11. C is a set of traces.

12. CEntry(n) is a set of traces entering a given node.

13. CExit(n) is a set of traces exiting a given node.

14. # is an operator used to get the cardinality of a list, e.g., # < 2, 4, 6, 8 >= 4.

15. ⌢ is an operator used to concatenate trace elements and sequences together,
e.g., < 1, 3, 4, 2 > ⌢ < 5, 8, 6 > ⌢ < 7 >=< 1, 3, 4, 2, 5, 8, 6, 7 >.

16. S is a set of integers representing the indexes of a list, i.e., S = {t ∈ C ∧ i ∈ N|1 ≤ i ≤ #t}.

17. t (i) is the ith element of sequence t.

18. t (i..j) is the sequence of inclusive elements of sequence t from t (i) to t (j),
i.e., < t(i), t(i + 1), t(i + 2), ..., t(j − 1), t(j) >.

19. occurs(t, n) returns true if ∃i∈S(t(i) = n), false otherwise.

20. lastIndexOf(t, n) returns the index value of the last occurrence of n in sequence t or
-1 if n is not in sequence t.

21. subSequence(t, start, end) returns a sequence t (start..end),
if start, end ∈ S ∧ 1 ≤ start ≤ end ≤ #t then t(start..end).

22. addsRedundantCycle(t, n) returns true

if occurs(t, n) ∧ ∃x∈S(x = lastIndexOf(t, n) ∧ t(x + 1..#t) ⊂ t(1..x − 1)) is true,
false otherwise.

60

Table 4.3: Dining Philosophers Results: First Iteration

Node CEntry CExit

1 ∅ {< 1 >}
2 ∅ ∅

3 ∅ ∅

4 ∅ ∅

5 ∅ ∅

6 ∅ ∅

7 ∅ ∅

8 ∅ ∅

9 ∅ ∅

10 ∅ ∅

11 ∅ ∅

12 ∅ ∅

13 ∅ ∅

14 ∅ ∅

15 ∅ ∅

set of node 1. This is the main root node of a component being added in accordance

with case 1 above. An additional application of this equation causes the results seen

in Table 4.4. This second iteration increases the lengths to two by insuring that

appending a given node to a trace does not cause a redundant cycle in the resulting

trace. This continues until Table 4.6. This table captures the run Philosophers

threads being starting by nodes 7 and 9. The only other interesting point, is when

the iterating process reaches a fixed point, shown in Table 4.8. For this analysis, the

fixed point represents the point where the trace generation process has created all

possible runtime execution paths. The trace generation algorithm is completed when

it reaches a fixed point.

Once we complete the trace generation process, we collect all the CExit sets

into a single set. This set, L, which represents all possible runtime executions of the

program is defined formally as

L =
⋃

n∈nodes(CSOOCG)

Cexit(n)

61

Table 4.4: Dining Philosophers Results: Second Iteration

Node CEntry CExit

1 ∅ {< 1 >}
2 {< 1 >} {< 1, 2 >}
3 {< 1 >} {< 1, 3 >}
4 {< 1 >} {< 1, 4 >}
5 {< 1 >} {< 1, 5 >}
6 {< 1 >} {< 1, 6 >}
7 ∅ ∅

8 {< 1 >} {< 1, 8 >}
9 ∅ ∅

10 ∅ ∅

11 ∅ ∅

12 ∅ ∅

13 ∅ ∅

14 ∅ ∅

15 ∅ ∅

Table 4.5: Dining Philosophers Results: Third Iteration

Node CEntry CExit

1 ∅ {< 1 >}
2 {< 1 >} {< 1, 2 >}
3 {< 1 >} {< 1, 3 >}
4 {< 1 >} {< 1, 4 >}
5 {< 1 >} {< 1, 5 >}
6 {< 1 >} {< 1, 6 >}
7 {< 1, 6 >} {< 1, 6, 7 >}
8 {< 1 >} {< 1, 8 >}
9 {< 1, 8 >} {< 1, 8, 9 >}
10 ∅ ∅

11 ∅ ∅

12 ∅ ∅

13 ∅ ∅

14 ∅ ∅

15 ∅ ∅

62

Table 4.6: Dining Philosophers Results: Forth Iteration

Node CEntry CExit

1 ∅ {< 1 >}
2 {< 1 >} {< 1, 2 >}
3 {< 1 >} {< 1, 3 >}
4 {< 1 >} {< 1, 4 >}
5 {< 1 >} {< 1, 5 >}
6 {< 1 >} {< 1, 6 >}
7 {< 1, 6 >} {< 1, 6, 7 >}
8 {< 1 >} {< 1, 8 >}
9 {< 1, 8 >} {< 1, 8, 9 >}
10 ∅ {< 10 >}
11 ∅ ∅

12 ∅ ∅

13 ∅ {< 13 >}
14 ∅ ∅

15 ∅ ∅

Table 4.7: Dining Philosophers Results: Fifth Iteration

Node CEntry CExit

1 ∅ {< 1 >}
2 {< 1 >} {< 1, 2 >}
3 {< 1 >} {< 1, 3 >}
4 {< 1 >} {< 1, 4 >}
5 {< 1 >} {< 1, 5 >}
6 {< 1 >} {< 1, 6 >}
7 {< 1, 6 >} {< 1, 6, 7 >}
8 {< 1 >} {< 1, 8 >}
9 {< 1, 8 >} {< 1, 8, 9 >}
10 ∅ {< 10 >}
11 {< 10 >} {< 10, 11 >}
12 ∅ ∅

13 ∅ {< 13 >}
14 {< 13 >} {< 13, 14 >}
15 ∅ ∅

63

Table 4.8: Dining Philosophers Results: Sixth Iteration

Node CEntry CExit

1 ∅ {< 1 >}
2 {< 1 >} {< 1, 2 >}
3 {< 1 >} {< 1, 3 >}
4 {< 1 >} {< 1, 4 >}
5 {< 1 >} {< 1, 5 >}
6 {< 1 >} {< 1, 6 >}
7 {< 1, 6 >} {< 1, 6, 7 >}
8 {< 1 >} {< 1, 8 >}
9 {< 1, 8 >} {< 1, 8, 9 >}
10 ∅ {< 10 >}
11 {< 10 >} {< 10, 11 >}
12 {< 10, 11 >} {< 10, 11, 12 >}
13 ∅ {< 13 >}
14 {< 13 >} {< 13, 14 >}
15 {< 13, 14 >} {< 13, 14, 15 >}

We remove from L all traces that do not acquire two or more locks. Therefore, in our

example,

L = {< 10, 11, 12 >, < 13, 14, 15 >}

which is the set of traces that acquire two or more locks. We can now use these traces

to determine the lock acquisition order.

The first trace,{< 10, 11, 12 >}, acquires locks on id=1 and id=2, where id=1

and id=2 represent possible runtime object references. The order these objects are

acquired in is < id = 1, id = 2 >. We add this to a set of ordered pairs and

consider the next trace. The second trace, {< 13, 14, 15 >}, acquires locks on

id=1 and id=2. The order these objects are acquired in is < id = 2, id = 1 >.

We add this second ordered pair to our list, such that our set of ordered pairs is:

{< id = 1, id = 2 >, < id = 2, id = 1 >}.

Now we perform a transitive closure on this set of ordered pairs. No transitive

ordered pairs are added. The final step is to determine is this set of ordered pairs

64

Table 4.9: Dining Philosophers Deadlock Conditions
CSOOCG Deadlock Conditions

Locks Acquired
ID First Second Method Call File Line #
0 heap ID: 2 heap ID: 3

Trace 1
synchronized (this.right) Philosopher.java 21
synchronized (this.left) Philosopher.java 22

1 heap ID: 3 heap ID: 2
Trace 1

synchronized (this.right) Philosopher.java 21
synchronized (this.left) Philosopher.java 22

is antisymmetric? The set is not antisymmetric because it contains a cycle, namely

< id = 1, id = 2 > and < id = 2, id = 1 > are acquired in opposite ordered forming

a cycle. This indicates that a possible runtime deadlock condition exits in the Java

source code used to generate the CSOOCG.

4.2.1 Definitions and Functions Table Explained. The first four items in

Table 4.2 define the CSOOCG. The CSOOCG is defined by a set of nodes, item 2,

and a set of edges, item 4. These first four item provide a basis for traversing the

CSOOCG.

The trace starting point is determined by the value returned from item 5,

isRootNode(n). If the value returned by isRootNode(n) is true, then the node n

is a starting point, or root, of a CSOOCG graph component. The acquired lock in-

formation is accessed by items 6 and 7 in Table 4.2. Item 6, hasLock(n), is used to

determine if the CSOOCG node, n, acquires a lock and item 7, getLock(n), is used

to access the lock object reference acquired by node, n.

Five sets are created and used by the trace generation algorithm. These data

structures are traces, lock list, entry sets, exit sets and the index set. A trace is a

65

list of nodes. The location of these nodes in the list is consistent with their happens

before ordering. The entry and exit sets are a set of traces. The last set is the index

set, S. The index set is a set of integers representing the indexes of a trace.

four operators are defined for the sequences. The first operator, #, is used to

extract the cardinally of a given list, e.g., # < 2, 4, 8 >= 3. The second operator,

⌢, is used to concatenate sequences together. The third operator, t(i), is used to

extract the ith element in sequence t. The fourth operator, t(i..j), is used to extract

a subsequence from sequence t.

The next four functions are used to access sequence elements. The first function,

occurs(t, n), returns a boolean value. This boolean value is true if the given node, n, is

an element in sequence t, or false if node, n, is not an element of sequence t. The second

function, LastIndexOf(t, n), returns the index of the last occurrence of n in sequence

t. If n does not occur in sequence t, then the value returned by LastIndexOf(t, n) is

-1. The third function, subSequence(t, start, end), is used to extract a subsequence

from sequence t. The fourth function, addsRedundantCycle(t, n), is used to detect

recursion in the trace generation algorithm. This last function returns true if node,

n, occurs in sequence, t, and all the elements from the last occurrence of node, n, to

the end of sequence t have previous occurred in sequence t, false otherwise.

4.3 Analyzer Implementation

The Analyzer is made up of 13 classes and 1 interface as shown in Figure 4.2.

The primary class in Figure 4.2 is the Analyzer. The Analyzer uses two pieces of

information to complete an analysis: the name of the data file to analyze and the

strategy to use for the analysis. The TrieAnalysis is the default strategy used by the

Analyzer.

4.3.1 Trace Generator. The first step in our analyzer is the generation

of all possible traces. This is accomplished by a DFS traversal of the CSOOCG

with a special redundant cycle detection algorithm used to terminate recursive loops.

66

Analyzer

- f_csoocg : CSOOCG

- f_filename : String

- f_analysisMethod : Analysis

TraceEliminator

+ createMinimalTraceSet(Map) : List

+ getMinimalTraceSet() : List

LockMap

- lockMaps : Set<LockMap>

+ createLockMap(List) : void

+ AnalyzeLockMap() : void

+ printLockMap() : void

Reader

- f_filename : String

- f_csoocg : CSOOCG

+ CSOOCG_Reader(String, CSOOCG) : CSOOCG_Reader

+ parseXMLFile() : void

<<Interface>>

Analysis

- traces : Set<List<Node>>

+ initAnalysis() : void

+ doAnalysis() : boolean

+ getC_Exit() : Map<Node, traces>

+ printEntries() : void

+ printExits() : void

OriginalAnalysis

TrieAnalysis

PerNodeAnalysis

CSOOCG

- f_nodes : Set<Node>

- f_edges : Set<Edges>

Node

- f_id : Long

- f_lock : Lock

Edge

- f_from : Node

- f_to : Edges

Lock

- f_id : int

- f_object : Object

1

1..*

1..*

1

1..*

0..1

11

1

1

1

1 1

1

1

1

HTMLWriter

LaTeXWriter

1

10..1

0..1

Figure 4.2: Analyzer Class Diagram This is a UML class diagram representing
the classes used to analyze the Data File. This diagram also shows the links between
these classes.

67

{<1, 4, 16, 30, 32 >}

Legend

Node 38

{<1, 4, 16, 30, 32, 34 >}

{<1, 4, 16, 30, 32, 34, 38 >}

in

out

CSOOCG node

Set of traces leading

to this node

Set of traces

including this node

Node 36

{<1, 4, 16, 30, 32, 34 >}

{<1, 4, 16, 30, 32, 34, 36 >}

in

out

Node 38

{<1, 4, 16, 30, 32, 34 >}

{<1, 4, 16, 30, 32, 34, 38 >}

in

out

in

Node 34

out

{<1, 4, 16, 30, 32, 34 >}

Figure 4.3: Non-Trie Data Structure This figure illustrates how execution traces
are tracked and stored when a trie data structure is not used.

The results of this Trace Generator are sets of execution traces for each node in

the CSOOCG. These sets of traces may contain redundant information that we can

eliminate in the following process, the Trace Eliminator.

An Example on how the trie data structure helped reduce the amount of mem-

ory our CSOOCG analyzer requires. Figure 4.3 illustrates how we originally stored

CSOOCG execution trace information. This figure shows three nodes that are a part

of a larger CSOOCG. The arrow entering a node contain the set of execution call

traces that lead to this node. The arrow leaving a node contains the set of execution

call traces that include the node. This data structure uses 43 memory units to store

these six traces. The trie data structure, shown in Figure 4.4 right side, maintains

the trace information for a CSOOCG starting from the CSOOCG graph component’s

root node. Now the arrows entering and leaving a CSOOCG node needs only one

trie pointer value to represent a trace, Figure 4.4 left side. Using a trie data struc-

ture lowers the number of memory units we needed from 43 down to 22. We save 50

percent of memory.

68

Node 36

{A6}

{A7}

in

out

Node 38

{A6}

{A8}

in

out

Node 34

in

{A5}

{A6}

out

Node 38

{A6}

{A8}

in

out

Legend

CSOOCG node

Set of traces leading

to this node

Set of traces

including this node

4

1

16

30

32

34

36 38

NULL

Trie node A6

Trie node A7 Trie node A8

Trie node A5

Legend

Pointer field to CSOOCG node

Pointer field to Trie node

Trie node

Pointer to Trie node

Figure 4.4: Trie Data Structure This figure illustrates how execution traces are
tracked and stored when a trie data structure is used.

69

4.3.2 Trace Eliminator. The Trace Eliminator removes all the traces that

acquire less than two locks. A trace must acquire at least two lock to be involved in

a deadlock condition. The remaining traces are farther reduced by removing all the

traces that are fully contained in larger traces. This allows us to create a minimal set

of traces that represent the CUT execution paths of interest. This minimal traces set

is analyzed to determine all possible lock acquisition orders, i.e., our LockMap Builder

perform a transitive closure on the locks acquired by each trace.

4.3.3 LockMap Builder. Our LockMap Builder process performs the transi-

tive closure on the minimal set of traces and uses the results to create our lock map.

The lock map is a mapping from a pair of acquired locks–the map key–to a set of

subtraces that acquire these locks–the associated map value. The subtraces consist

of the call trace from the first acquired lock to the second acquired lock. One of the

invariants of the lock map is that The subtraces contains two or more calls, i.e., the

length of the subtraces is greater than or equal to 2.

4.3.4 Deadlock Determinator. The Deadlock Determinator process searches

the lock map’s keys to determine if all locks are acquired in a consistent order. If two

acquired lock pairs are acquired in opposing order, then a possible deadlock condition

exist. These two acquired lock pairs are identified and passed on to the Presenter

process.

4.3.5 Presenter. The Presenter process receives from the Deadlock Deter-

minator all possible deadlock conditions and formats the information for the user.

Three different format options are available; plain text on the console screen, HTML

formatted statistics and LATEX2e formatted statistics. Appendices B and C contains

Presenter output information for our two Java test cases: Dining Philosophers and

Double Lock Equals. The call traces identify the calls from the CUT not the CSOOCG

nodes–this way the user can locate and correct the problem in the CUT.

70

Figure 4.5: Sample HTML Output File Table

71

Figure 4.6: Sample Latex Output File Table

4.3.6 Implementation Challenges. We encounter three challenging problem

during our CSOOCG analyzer implementation. These problems were detecting redun-

dant cycles, inefficient memory storage of traces and providing meaning full results.

Detecting redundant cycles is required to achieve a fixed point in our trace generation

process. At first our inability to detect a redundant cycle was hard to identify as a

problem–our analyzer would enter an endless loop and appear to hang. Creating a

prototype tool to evaluate our redundant cycle detecting function enable us to solve

this problem. Inefficient memory storage of traces cause problems concerning the size

of programs we could analyze. We decided to use a trie data structure to improve

the efficiency of how we stored traces in memory. This require a re-implementation

of our redundant cycle detecting algorithm which made use of the trie’s properties,

namely the property that each trie node has one and only one parent.

In order to provide meaningful results to the user concerning deadlock conditions

found during our analysis, we must maintain a large amount of information relating

each CSOOCG node back to its original CUT file call site. Such information includes

the CUT file’s name, CUT file’s package and the call site’s line number in the CUT file.

72

This information is currently maintained in memory but not needed by the CSOOCG

analyzer until the results are reported to the user.

4.4 A Second Example: Double Lock Equals

For Double Lock Equals, our CSOOCG Analyzer’s Trace Generator starts by

setting all the CEntry and the CExit sets to the emptyset. Then the Analyzer constructs

the CExit sets for all nineteen nodes. This requires the considerations of all entries

sets into the nodes and the isRootNode(n) return value of these nodes. Lucky each

node only has one arrow entering it, hence only one CEntry set must be considered

per CExit set for a given node.

The first iteration through the Trace Generator causes the system to initialize

itself. The CEntry values are all empty during the Trace Generator’s first pass. This

means that the CExit sets will only contain one element in the trace sequence, i.e.,

the initial node for whom the CExit set is being determined. Hence, the results of the

first pass of our Trace Generator is shown in Table 4.10.

The CEntry and CExit set for each node is determined by the Trace Generator

equations in Table 4.1. In this example, we notice that nodes 1, 6, and 13 does not

have any arrows coming into them. We consider these nodes to be the root nodes for

graph components. This means that the CEntry sets and the CExit sets for these nodes

will not change from one pass to another of the CSOOCG Analysis. This is to say

that the CEntry sets of these nodes will always be the empty set. The remaining nodes

will change at least once because they have at lease one arrow coming into them.

The second iteration of the Trace Generator process leads to the results of

Table 4.11. Here we notice that nodes 3 and 5 have been added to the exit trace

sequence of node 1. This results in two new traces being created and cashed in the

exit sets of nodes 3 and 5. Similarly, nodes 7 and 9 have been added to the exit trace

of node 6. Nodes 14 and 17 have also been added to the exit trace of node 13. The

73

Table 4.10: Double Lock Equals Results: First Iteration

Node Centry Cexit

1 ∅ {< 1 >}
2 ∅ ∅

3 ∅ ∅

4 ∅ ∅

5 ∅ ∅

6 ∅ {< 6 >}
7 ∅ ∅

8 ∅ ∅

9 ∅ ∅

10 ∅ ∅

11 ∅ ∅

12 ∅ ∅

13 ∅ {< 11 >}
14 ∅ ∅

15 ∅ ∅

16 ∅ ∅

17 ∅ ∅

18 ∅ ∅

19 ∅ ∅

74

Table 4.11: Double Lock Equals Results: Second Iteration

Node Centry Cexit

1 ∅ {< 1 >}
2 {< 1 >} {< 1, 2 >}
3 {< 1 >} {< 1, 3 >}
4 {< 1 >} {< 1, 4 >}
5 {< 1 >} {< 1, 5 >}
6 ∅ {< 6 >}
7 {< 6 >} {< 6, 7 >}
8 ∅ ∅

9 ∅ ∅

10 {< 6 >} {< 6, 10 >}
11 ∅ ∅

12 ∅ ∅

13 ∅ {< 13 >}
14 {< 13 >} {< 13, 14 >}
15 ∅ ∅

16 ∅ ∅

17 {< 13 >} {< 13, 17 >}
18 ∅ ∅

19 ∅ ∅

75

Table 4.12: Double Lock Equals Results: Third Iteration

Node Centry Cexit

1 ∅ {< 1 >}
2 {< 1 >} {< 1, 2 >}
3 {< 1 >} {< 1, 3 >}
4 {< 1 >} {< 1, 4 >}
5 {< 1 >} {< 1, 5 >}
6 ∅ {< 6 >}
7 {< 6 >} {< 6, 7 >}
8 {< 6, 7 >} {< 6, 7, 8 >}
9 ∅ ∅

10 {< 6 >} {< 6, 10 >}
11 {< 6, 10 >} {< 6, 10, 11 >}
12 ∅ ∅

13 ∅ {< 13 >}
14 {< 13 >} {< 13, 14 >}
15 {< 13, 14 >} {< 13, 14, 15 >}
16 ∅ ∅

17 {< 13 >} {< 13, 17 >}
18 {< 13, 17 >} {< 13, 17, 18 >}
19 ∅ ∅

76

Table 4.13: Double Lock Equals Results: Fourth Iteration

Node Centry Cexit

1 ∅ {< 1 >}
2 {< 1 >} {< 1, 2 >}
3 {< 1 >} {< 1, 3 >}
4 {< 1 >} {< 1, 4 >}
5 {< 1 >} {< 1, 5 >}
6 ∅ {< 6 >}
7 {< 6 >} {< 6, 7 >}
8 {< 6, 7 >} {< 6, 7, 8 >}
9 {< 6, 7, 8 >} {< 6, 7, 8, 9 >}
10 {< 6 >} {< 6, 10 >}
11 {< 6, 10 >} {< 6, 10, 11 >}
12 {< 6, 10, 11 >} {< 6, 10, 11, 12 >}
13 ∅ {< 13 >}
14 {< 13 >} {< 13, 14 >}
15 {< 13, 14 >} {< 13, 14, 15 >}
16 {< 13, 14, 15 >} {< 13, 14, 15, 16 >}
17 {< 13 >} {< 13, 17 >}
18 {< 13, 17 >} {< 13, 17, 18 >}
19 {< 13, 17, 18 >} {< 13, 17, 18, 19 >}

77

traces continue to grow by one element per iteration. This is what is expected from

the specifications listed in Table 4.1.

The results of the third and fourth iterations of the Trace Generator process

are listed in Tables 4.12 and 4.13. The completion of the fourth iterations brings the

trace generator process to its final state. This final state of this process is called the

fixed point. This means that the results of the Trace Generator will not change due to

additional iterations. This fixed point signifies the completion of the Trace Generator

process and we proceed to the Trace Eliminator process.

The Trace Eliminator examines the traces in the CExit sets and selects the traces

that acquire two or more locks. The results of this process are:

1. {< 6, 7, 8, 9 >}

2. {< 6, 10, 11, 12 >}

3. {< 13, 14, 15, 16 >}

4. {< 13, 17, 18, 19 >}

These four traces are passed to the Lockmap builder process. The resulting lock

map is:

1. < DoubleLockEquals id = 2, DoubleLockEquals id = 1 >→ {< 8, 9 >, < 15, 16 >}

2. < DoubleLockEquals id = 1, DoubleLockEquals id = 2 >→ {< 11, 12 >, < 18, 19 >}

These two lock map entries are then processed by the Deadlock Determinator. The

Deadlock Determinator process is capable of detecting the reversed lock acquisition

order in the two acquired locks pairs. This deadlock condition is passed on to the

Presenter process. The Presenter process consolidates all the CSOOCG Analyzer’s

results for the user. The Presenter process’ results for our Double Lock Equals ex-

amples is located in appendix C and provided in Table 4.14 and Table 4.15.

The Presenter formats the CSOOCG Analyzer’s results into HTML and LATEX2e files.

Both files are populated with information similar to the tables located in appendices B

and C.

78

Table 4.14: Double Lock Equals Statistics This table contains statistical infor-
mation concerning the number and types of declarations, calls, CSOOCG elements,
CSOOCG traces and deadlock conditions found in our Double Lock Equals example.
These numbers help quantify our work.

Java Project Code Under Test: Double Lock Equals
Method Declarations: 3

Constructor Declarations: 2
Method Calls: 6

Constructor Calls: 4
Synchronized Statements: 2

Synchronized Method Declarations: 0
CSOOCG Nodes: 19
CSOOCG Edges: 16
CSOOCG Locks: 4

CSOOCG Traces (before eliminator): 19
CSOOCG Traces (after eliminator): 4

Deadlock Conditions found: 1

79

Table 4.15: Double Lock Equals Deadlock Conditions This table list the
deadlock conditions found in our Double Lock Equals example.

CSOOCG Deadlock Conditions
Locks Acquired

ID First Second Method Call File Line #
0 heap ID: 2 heap ID: 1

Trace 1
synchronized (this) DoubleLockEquals.java 27
synchronized (obj) DoubleLockEquals.java 28

Trace 2
synchronized (this) DoubleLockEquals.java 27
synchronized (obj) DoubleLockEquals.java 28

1 heap ID: 1 heap ID: 2
Trace 1

synchronized (this) DoubleLockEquals.java 27
synchronized (obj) DoubleLockEquals.java 28

Trace 2
synchronized (this) DoubleLockEquals.java 27
synchronized (obj) DoubleLockEquals.java 28

80

V. Conclusion

The increased use of concurrency in mission critical software applications increases the

potential for concurrency-related security and reliability problems within these appli-

cations. Traditional testing is ineffective because concurrent code is essentially nonde-

terministic. Traditional inspection techniques are ineffective because these problems

are typically non-local in the code, i.e., examining a small portions of the program’s

code will not find them.

This thesis has described a flow-insensitive interprocedural static analysis for

a subset of Java programs that detects if a program may deadlock at runtime. Our

analysis, as we have described in Chapter III and Chapter IV, proceeds in two steps.

The first extracts the “real” call graph decorated with acquired locks from the target

program, which we call the CSOOCG. The second analyzes our CSOOCG to report

how a possible deadlock may occur at runtime.

The two principle limitations of our analysis are on the target program: (1) we

need its “real” call graph and (2) its overall size is limited. Our prototype tool can

only construct the target program’s “real” call graph in the presence of perfect aliasing

information about its object references. This aliasing information is provided by an

external oracle, which was described in Chapter III. Combinatorial explosion limits

the size of programs our technique is able to analyze to a rough ceiling of 35 kSLOC.

To enable us to reach this ceiling, our prototype tool uses a combination of call graph

reduction techniques, aided by the insight that our analysis is only concerned with

program paths that can acquire one or more locks, and efficient data structure choices

to help mitigate this limitation.

5.1 Summary of Contributions

Our primary contribution is the development of a static analysis technique that

can detect the potential for deadlock in object-oriented programs. Prior work has

focused on C-like languages [7] that lack runtime dispatch of function calls. Our

approach takes into account the runtime dispatch of Java methods based upon the

81

dynamic type of the receiver object. Given correct aliasing information about a

program, our analysis is not susceptible to false negative results, i.e., it will not miss

potential deadlock cases. It can, however, result in false positive reports, i.e., reports

of deadlock which cannot occur at runtime. This is primarily due to our lack of

understanding of what the program does, i.e., our lack of design intent about the

program, and that we make no attempt to model constraints within each procedure,

e.g., to determine if only one of two synchronized blocks will ever be executed.

A secondary contribution is the the formal definition of a Context-Sensitive

Object-Oriented Call Graph, which is a model of the call structure of a program that

appears to be potentially useful for other analyses.

An engineering contribution of our work is the modular design of our two-step

analysis. Our design is composed of a series of distinct steps with clear interfaces.

In particular, our use of the CSOOCG structure as the primary interface between

the CSOOCG generator and the CSOOCG analyzer allows improvements to be made

to one component without impact upon the other. In addition, our definition of a

clear interface to the aliasing oracle allows our design to try and perhaps “swap-out”

several alias analyses.

5.2 Recommendations for Future Work

In this section we speculate on several improvements which could be made to

our result via future research.

5.2.1 Integrate an alias analysis. Our approach defines an interface to,

but does not implement, an alias analysis. Due to two reasons an analysis analysis

was not attempted in our work. First, understanding the body of existing work

on alias analyses (even for just object-oriented languages) is a large task. Second,

without a clear definition of what the requirements for an alias analysis, selecting an

analysis is not possible. Thus we decided to develop a precise specification of what

82

was needed (which we presented in Chapter III) rather than co-develop both our

deadlock detection analysis and an alias analysis.

As we have indicated, the lack of an automatic alias analysis is one of the

major limitations of our approach which we would like to address in future work.

Our approach requires an analysis analysis which is conservative in the model of the

runtime heap it presents to our CSOOCG generator. This requirement exists because

we do not want to have the alias analysis introduce the potential for false negative

results.

5.2.2 Support analysis cut-points and composability of results. Our current

approach requires the whole program to produce useful results. This is a highly unde-

sirable requirement in practice. Today’s software systems are built from components,

therefore our analysis should be able to analyze components separately and compose

its results when components are brought together into a whole.

One observation is that a component or library which does not “callback” its

client can be assured separately and not considered by our analysis. The discriminator

here is that no call into the library ever invokes a method within the client. Assuring

this property is non-trivial. For example, the java.util collection library appears

to have this property, however in specific cases calls to hashCode and compareTo

are made on objects placed within the collections (an example of the first is the

HashSet class and an example of the second is the TreeMap class). These constitute a

“callback” to the client code. Clearly, more research on defining strong analysis cut-

points is needed. We believe this will require some degree of programmer expressed

design intent about the program, i.e., it will not be fully automatic.

5.2.3 Find and focus on the nexuses of locking. In prior work by Engler et

al. [7, page 240], Rugina and Rinard [21, page 34], and Holzmann [17] has noted that

only a small amount of the overall code in a typical program locks–on the order of

a third or a fourth. Our current approach does not optimize CSOOCG creation or

83

analysis based upon this empirical finding. We believe future work should consider

optimized our approach based upon this empirical finding which could help to reduce

the size of the CSOOCG and improve the memory efficiency of our analysis.

5.2.4 Support util.concurrent-style locks. The Java programming language

version 5 added locks which are not restricted to syntactic blocks. As we have in-

dicated, Our approach does not support these locks. This is a possible area of fu-

ture work as it is expected that more and more production Java software will be-

ing to use the util.concurrent library. Our analysis would have to become flow-

sensitive to determine where lock acquisitions and releases may be made on particu-

lar util.concurrent lock objects. In addition, locks with special semantics (e.g., a

reader-writer lock) will require special handling by our analysis.

5.2.5 Use a model checker. It is possible that the CSOOCG analyzer could

largely be replaced with an model checker. This would allow our approach to take

advantage of the significant engineering effort put into the model checker while at the

same time possibly increasing the scalability of our approach. The disadvantage of

using a model checker is the loss of context it can cause, e.g., our approach must be

able to take results from the model checker (typically in the form of counterexample

traces) and communicate them to the programmer in a understandable manner.

5.3 Concluding Thoughts

As the concurrency in mission critical software systems increases our ability to

detect, in a principled manner correct, concurrency related faults within these systems

must also increase. This research has focused on static deadlock detection for Java

and, while not without limitations, shows some promise of becoming a practical tool

for software quality assurance.

84

Appendix A. Use and SetUp

A.1 Required Items

The following items are required for our CSOOCG analysis:

1. The Java program source code to be analyzed,

2. a compatible version of the Eclipse IDE,

3. a compatible version of the Fluid plug-in for Eclipse,

4. a compatible version of the CSOOCG generator plug-in for Eclipse, and

5. a copy of the CSOOCG Analyzer.

Our CSOOCG analysis is a two part process. Part one is the creation of the

CSOOCG data file and part two is the analysis of this data file. The first four items

are used to create and store the CSOOCG data file. The last item, i.e., the CSOOCG

analyzer, is used to analyze the data file and determine if deadlock conditions exist

in the Java program’s source code.

The first step is to get a copy of the Eclipse IDE. A copy of eclipse can be

downloaded from http://www.eclipse.org. The next step is to get a copy of Fluid plug-

in for Eclipse from CMU. The final step is to get a copy of the CSOOCG Generator

plug-in for eclipse and a copy of the CSOOCG Analyzer from AFIT.

Once all the software has been obtained and loaded onto the computer system,

the analysis process can begin. We open Eclipse and insure our two eclipse plug-ins,

Fuild and CSOOCG Generator, are loaded and successfully compile. Then start a

“meta-Eclipse” session within Eclipse. A meta-Eclipse session is an Eclipse application

running within the Eclipse’s IDE. This meta-Eclipse session is were the CUT files are

loaded and manipulated. The results of this meta-Eclipse session is the CSOOCG

data file. This data file is stored under the same name as the Java project containing

the CUT files with the date appended to the end.

The CSOOCG Analyzer processes the data file and determines if deadlock con-

ditions exist within the source CUT files. The results of the CSOOCG analysis are

85

Table A.1: CSOOCG Generator Switch Options

Program Switches Feature Default

DEADLOCK DEBUG Turn the CSOOCG generator on off
ALIAS READY Turn the Alias Oracle methods on off

DINING BROKEN Turn the Dining Philosophers off
deadlock alias information on

DLE BROKEN Turn the Double Lock Equals off
deadlock alias information on

stored in an HTML file with the same name as the data file. The information con-

tained in this HTML file is similar to the information contained in the following three

appendices.

The CSOOCG Generator and CSOOCG Analyzer both utilize command line

switches to determine internal variable values. These command line switches are

covered in the next two sections.

A.2 Using the Generator

A number of program command line switches have been added to the CSOOCG

generator to enable certain features. These switches and the features they control are

listed in Table A.1.

There are five useful switch configuration options the reader should know. The

first switch configuration is:

• -Xms64m -Xmx1024m -Xss8192k -DDEADLOCK DEBUG

This is the base configuration used to run the CSOOCG Generator. The first two

options, Xms64m and Xmx1024m, are used to set the minimum and maximum amount

of memory accessible by the meta-Eclipse application. The third option, Xss8192k, is

used to set the amount of stack memory to allocate to the meta-Eclipse application.

The fourth and last option in the base switch configuration, DDEADLOCK DEBUG,

is used to create a system variable called “DEADLOCK DEBUG.” The CSOOCG

Generator searches the system variables for “DEADLOCK DEBUG,” if this variable

86

is found then the CSOOCG Generator process is run else the process is not run. This

base configuration is used to locate all the traces that acquire two or more locks.

This configuration does not create a CSOOCG–strictly speaking. It creates an object

oriented call graph, i.e., the context sensitivity part of the CSOOCG is missing. The

context sensitivity used to create the CSOOCG is provided by an external process,

e.g., the alias oracle. This base switch configuration is useful in determine if any

execution traces acquire two or more locks.

The second switch configuration is:

• -Xms64m -Xmx1024m -Xss8192k -DDEADLOCK DEBUG -DALIAS READY

This second switch configuration adds a fifth option, DALIAS READY, to enable

the external alias oracle. This external alias oracle provides the context sensitivity

information used to create the CSOOCG. This configuration requires an external alias

oracle process. To date, this external process is not fully operational within the Fluid

plug-in for Eclipse. This leads us to the next three test switch configurations.

The next two switch configurations are used to test out the Dining Philosophers

and Double Lock Equals Java programs. These two options are:

• -Xms64m -Xmx1024m -Xss8192k -DDEADLOCK DEBUG -DALIAS READY

-DDINING BROKEN

• -Xms64m -Xmx1024m -Xss8192k -DDEADLOCK DEBUG -DALIAS READY

-DDLE BROKEN

The two separate switch configurations are used to activate hard coded alias oracles.

The sixth options, DDINING BROKEN and DDLE BROKEN, correspond to hard

coded alias oracle for Dining Philosophers deadlock version and Double Lock Equals

deadlock version, respectively.

87

Table A.2: CSOOCG Analyzer Switch Options

Program Switches Feature Default

USE TRIE Use Trie analyzer Enabled
USE Original Use Original analyzer Disabled

USE SyncNodesOnly Use the Per Node analyzer on the Disabled
CSOOCG nodes that acquire locks

USE PerNode Use the Per Node analyzer Disabled
Latex OFF Turns off the LATEXgeneration Enabled

process.
HTML OFF Turns off the HTML generation Enabled

process.

A.3 Using the Analyzer

A number of program command line switches have been added to the CSOOCG

Analyzer to enable and disable certain features. These switches and the features they

control are listed in Table A.1.

The six optional command line switches listed in Table A.1 may be used in

any combination. The user should be aware of the hierarchal relationship between

the first four switches. This relationship determines which analysis is chosen when

two or more conflicting switches are entered. These first four switches are listed in

Table A.1 in order of precedence. This means that the DUSE TRIE option over-

rides the DUSE Original, DSyncNodesOnly and DUSE PerNode options, while the

DUSE Original option overrides the DSyncNodesOnly and DUSE PerNode options.

Of course, the DSyncNodesOnly option overrides the DUSE PerNode option. The

features controlled by these options are listed in Table A.1 along with their default

setting. The default options within the CSOOCG Analyzer are sufficient to process

most data files.

88

Appendix B. Dining Philosophers Results Deadlock Version

The tables in this appendix contain the results of the CSOOCG analysis for the Dining

Philosophers example, Figure B.1. These results include statistical information, list

of nodes, list of edges, list of locks, list of traces that acquire two or more locks and

list of deadlock conditions.

B.1 Statistics

Table B.1: Dining Philosophers Statistics This table contains statistical infor-
mation concerning the number and types of declarations, calls, CSOOCG elements,
CSOOCG traces and deadlock conditions found in our Double Lock Equals example.
These numbers help quantify our work.

Java Project Code Under Test: Dining Philosophers
Method Declarations: 3

Constructor Declarations: 2
Method Calls: 6

Constructor Calls: 4
Synchronized Statements: 2

Synchronized Method Declarations: 0
CSOOCG Nodes: 15
CSOOCG Edges: 12
CSOOCG Locks: 4

CSOOCG Traces (before eliminator): 15
CSOOCG Traces (after eliminator): 2

Deadlock Conditions found: 1

89

1 public class Philosopher extends Thread {
2

3 public static final class Fork { }
4

5 final Fork right;
6

7 final Fork left;
8

9 final int identity;
10

11 Philosopher(int identity, Fork right, Fork left) {
12 this.identity = identity;
13 this.right = right;
14 this.left = left;
15 }
16

17 @Override
18 public void run() {
19 while (true) {
20 // Thinking
21 synchronized (right) {
22 synchronized (left) {
23 // Eating
24 }
25 }
26 }
27 }
28

29 public static void main(String[] args) {
30 final Fork f1 = new Fork();
31 final Fork f2 = new Fork();
32 final Philosopher p1 = new Philosopher(1, f1, f2);
33 final Philosopher p2 = new Philosopher(2, f2, f1);
34 start(p1);
35 start(p2);
36 }
37

38 private static void start(final Philosopher p) {
39 p.setName(‘‘philosopher-’’ + p.identity);
40 p.start();
41 }
42 }
43

Figure B.1: Dining Philosophers Source Code This is the Java source code for
the Dining Philosopher program.

90

Table B.2: Dining Philosophers Nodes This table list the CSOOCG nodes for
our Dining Philosophers Example.

CSOOCG Nodes
ID Name Lock
4 p.start() heap ID: 3
11 new Fork ()
6 Philosopher.start(p2)
8 Philosopher.run()
7 p.start() heap ID: 4
3 Philosopher.start(p1)
14 synchronized (this.right) heap ID: 1
15 synchronized (this.left) heap ID: 2
9 new Philosopher (2, f2, f1)
1 Philosopher.main(String [])
2 new Fork ()
13 synchronized (this.left) heap ID: 2
5 Philosopher.run()
12 synchronized (this.right) heap ID: 1
10 new Philosopher (1, f1, f2)

Table B.3: Dining Philosophers Edges This table list the edges in our Dining
Philosophers example.

CSOOCG Edges
Count Tail Head

0 1 6
1 3 4
2 5 14
3 14 15
4 1 3
5 1 11
6 1 2
7 1 10
8 8 12
9 1 9
10 12 13
11 6 7

91

Table B.4: Dining Philosophers Locks This table list the lock object references
that may be acquired when the Dining Philosophers example program is executed.

CSOOCG Locks
ID Object Type
3 heap ID: 3 Philosopher
2 heap ID: 2 Fork
4 heap ID: 4 Philosopher
1 heap ID: 1 Fork

Table B.5: Dining Philosophers Lock Map Entries This table list the lock
map created for our Dining Philosophers example.

CSOOCG Lock Maps
Locks Acquired

ID First Second Method Call File Line #
0 heap ID: 1 heap ID: 2

Trace 1
synchronized (this.right) Philosopher.java 21
synchronized (this.left) Philosopher.java 22

1 heap ID: 2 heap ID: 1
Trace 1

synchronized (this.right) Philosopher.java 21
synchronized (this.left) Philosopher.java 22

Table B.6: Dining Philosophers Deadlock Conditions This table list the dead-
lock conditions found in our Dining Philosophers example.

CSOOCG Deadlock Conditions
Locks Acquired

ID First Second Method Call File Line #
0 heap ID: 1 heap ID: 2

Trace 1
synchronized (this.right) Philosopher.java 21
synchronized (this.left) Philosopher.java 22

1 heap ID: 2 heap ID: 1
Trace 1

synchronized (this.right) Philosopher.java 21
synchronized (this.left) Philosopher.java 22

92

Appendix C. Double Equals Results Deadlock version

The tables in this appendix contain the results of the CSOOCG analysis for the Double

Lock Equals example, Figure C.1. These results include statistical information, list

of nodes, list of edges, list of locks, list of traces that acquire two or more locks and

list of deadlock conditions.

C.1 Statistics

Table C.1: Double Lock Equals Statistics This table contains statistical infor-
mation concerning the number and types of declarations, calls, CSOOCG elements,
CSOOCG traces and deadlock conditions found in our Double Lock Equals example.
These numbers help quantify our work.

Java Project Code Under Test: Double Lock Equals
Method Declarations: 3

Constructor Declarations: 2
Method Calls: 6

Constructor Calls: 4
Synchronized Statements: 2

Synchronized Method Declarations: 0
CSOOCG Nodes: 19
CSOOCG Edges: 16
CSOOCG Locks: 4

CSOOCG Traces (before eliminator): 19
CSOOCG Traces (after eliminator): 4

Deadlock Conditions found: 1

93

1 public final class DoubleLockEqualsMain extends Thread {
2

3 static final DoubleLockEquals f1 = new DoubleLockEquals();
4

5 static final DoubleLockEquals f2 = new DoubleLockEquals();
6

7 public static void main(String[] args) {
8 (new DoubleLockEqualsMain()).start();
9 (new DoubleLockEqualsMain()).start();

10 }
11

12 @Override
13 public void run() {
14 while (true) {
15 boolean result = f1.equals(f2) == f2.equals(f1);
16 }
17 }
18 }
19

20 public final class DoubleLockEquals {
21

22 private long f_readCount = 0;
23

24 @Override
25 public boolean equals(Object obj) {
26 if (obj instanceof DoubleLockEquals) {
27 synchronized (this) {
28 synchronized (obj) {
29 this.f_readCount++;
30 ((DoubleLockEquals) obj).f_readCount++;
31 return super.equals(obj);
32 }
33 }
34 }
35 return false;
36 }
37

38 // OTHER IMPLEMENTATION CODE
39

40 }

Figure C.1: Double Lock Equals Java Source Code This is the Java source
code for the Double Lock Equals program.

94

Table C.2: Double Lock Equals Nodes This table list the CSOOCG nodes for
our Double Lock Equals Example.

CSOOCG Nodes
ID Name Lock
3 DoubleLockEqualsMain.run()
19 synchronized (obj) heap ID: 1
12 synchronized (this) heap ID: 2
6 new DoubleLockEqualsMain ()
16 synchronized (obj) heap ID: 2
5 DoubleLockEqualsMain.run()
8 #.f1.equals(#.f2)
7 new DoubleLockEqualsMain ()
14 #.f1.equals(#.f2)
15 synchronized (this) heap ID: 1
18 synchronized (this) heap ID: 2
10 synchronized (obj) heap ID: 2
1 DoubleLockEqualsMain.main(String [])
17 #.f2.equals(#.f1)
2 (new # #).start() heap ID: 6
13 synchronized (obj) heap ID: 1
4 (new # #).start() heap ID: 7
11 #.f2.equals(#.f1)
9 synchronized (this) heap ID: 1

95

Table C.3: Double Lock Equals Edges This table list the edges in our Double
Lock Equals example.

CSOOCG Edges
Count Tail Head

0 12 13
1 11 12
2 5 17
3 15 16
4 9 10
5 5 14
6 3 11
7 1 7
8 17 18
9 3 8
10 1 6
11 8 9
12 1 4
13 1 2
14 18 19
15 14 15

96

Table C.4: Double Lock Equals Locks This table list the lock object references
that may be acquired when the Double lock Equals example program is executed.

CSOOCG Locks
ID Object Type
1 heap ID: 7 DoubleLockEqualsMain
2 heap ID: 1 DoubleLockEquals
3 heap ID: 2 DoubleLockEquals
0 heap ID: 6 DoubleLockEqualsMain

Table C.5: Double Lock Equals Lock Map Entries This table list the lock
map created for our Double Lock Equals example.

CSOOCG Lock Maps
Locks Acquired

ID First Second Method Call File Line #
0 heap ID: 2 heap ID: 1

Trace 1
synchronized (this) DoubleLockEquals.java 27
synchronized (obj) DoubleLockEquals.java 28

Trace 2
synchronized (this) DoubleLockEquals.java 27
synchronized (obj) DoubleLockEquals.java 28

1 heap ID: 1 heap ID: 2
Trace 1

synchronized (this) DoubleLockEquals.java 27
synchronized (obj) DoubleLockEquals.java 28

Trace 2
synchronized (this) DoubleLockEquals.java 27
synchronized (obj) DoubleLockEquals.java 28

97

Table C.6: Double Lock Equals Deadlock Conditions This table list the dead-
lock conditions found in our Double Lock Equals example.

CSOOCG Deadlock Conditions
Locks Acquired

ID First Second Method Call File Line #
0 heap ID: 2 heap ID: 1

Trace 1
synchronized (this) DoubleLockEquals.java 27
synchronized (obj) DoubleLockEquals.java 28

Trace 2
synchronized (this) DoubleLockEquals.java 27
synchronized (obj) DoubleLockEquals.java 28

1 heap ID: 1 heap ID: 2
Trace 1

synchronized (this) DoubleLockEquals.java 27
synchronized (obj) DoubleLockEquals.java 28

Trace 2
synchronized (this) DoubleLockEquals.java 27
synchronized (obj) DoubleLockEquals.java 28

98

Appendix D. Glossary of Technical Terms

This appendix consolidates and defines noteworthy terms used within this disserta-

tion.

Acquired Locks is an entity within the Analyzer representing an order pair of locks

acquired along a trace.

Analyzer is a collection of processes used to determine if a given Data File contains

deadlock conditions.

AST is an abbreviation for Abstract Syntax Tree.

Builder is a process within the Generator used to build the CSOOCG from a given

CUT Graph.

Call Completor is a process within the Generator used to determine all possible

method call site and new expression (constructor call site) implementations for

a given CUT Graph.

CSOOCG is an abbreviation for Context Sensitive Object Oriented Call Graph.

This is an entity created in the Generator, stored in the Data File and used in

the Analyzer. This entity represents the Java program being analyzed.

CUT is an abbreviation for program Code Under Test. This is the Java program

code being analyzed for possible deadlock conditions.

CUT Graph is an entity within the CSOOCG generator. The CUT Graph is a map

data structure containing AST elements. These elements include method dec-

larations (MD), constructor declarations (CD), synchronized statements (SS),

method calls (MC), and new expressions (NE).

The mapping is as follows:

1. MD → {SS|MC|NE} where:

2. CD → {SS|MC|NE} | represents the logical inclusive “or” operation

3. SS → {SS|MC|NE} and the { } symbols are used to represent a set

4. MC → {MD} and → represents the actual mapping from

5. NE → {CD} map key to map value set.

99

Items 1, 2 and 3 capture AST call sites within method declarations, constructor

declarations and synchronized statements. Items 4 and 5 capture all possible

call site implementations, e.g., method calls maybe implemented by one or more

method declarations.

CUT Graph Builder is a process within the Generator used to build a CUT Graph

for a given Java file.

Data File is an XML formatted ASCII file containing all the needed information

to construct a CSOOCG. The information in this file defines CSOOCG nodes,

edges and lock objects.

Deadlock Determinator is a process within the Analyzer use to determine if dead-

lock conditions exist in a given lock map.

fAST is a Fluid Java abstract syntax tree.

Generator is an Eclipse plug-in used to generate the Data File.

Lock Map is an entity within the Analyzer representing the mapping from acquired

locks to the set of traces that acquire them.

Lock Map Builder is a process within the Analyzer used to build the lock map

from a set of traces.

Output Files are two optional analyzer result files. The first is an HTML formatted

ASCII file and the second is a LaTeX formatted ASCII file. Both files contain

the same analyzer statistical information, e.g., the number of methods calls in

the CUT, the number of deadlock conditions found . . . etc.

Presenter is a process within the Analyzer used to translate the Analyzer’s results

into the Output Files.

Reader is a process within the Analyzer use to read in the Data File from disk.

Reducer is an optional process within the Generator used to reduce the size of a

given CUT Graph.

100

Trace is an entity within the Analyzer representing an execution path through the

CSOOCG. A trace is store as a list of CSOOCG nodes.

Trace Eliminator is a process within the Analyzer used to minimize the size of a

list of traces. This is done utilizing the following two rules:

• Eliminate traces that are fully contained in larger traces and share the

same first CSOOCG node.

• Eliminate traces that do not acquire at least two locks.

Trace Generator is a process within the Analyzer used to generate a list of all

possible traces.

Trie is an abbreviation for retrieval. This is a tree like data structure invented

by Edward Fredkin [8, 24] and used within the CSOOCG analyzer process to

maintain trace information in a minimal amount of memory.

Writer is a process within the Generator used to write out the Data File to disk.

101

Bibliography

1. Boyapati, Chandrasekhar, Robert Lee, and Martin Rinard. “Ownership types for
safe programming: preventing data races and deadlocks”. OOPSLA ’02: Pro-
ceedings of the 17th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, 211–230. ACM Press, New York, NY, USA,
2002.

2. Callahan, David, Alan Carle, Mary Wolcott Hall, and Ken Kennedy. “Construct-
ing the Procedure Call Multigraph”. IEEE Trans. Softw. Eng., 16(4):483–487,
1990.

3. Chen, Huo Yan, Yu Xia Sun, and T.H. Tse. “A scheme for dynamic detection of
concurrent execution of object-oriented software”. IEEE International Conference
on Systems, Man and Cybernetics., volume 5, 4828–4833. IEEE, October 2003.

4. Cheng, Jingde. “A classification of tasking deadlocks”. Ada Lett., X(5):110–127,
1990.

5. Cheng, Jingde. “A survey of tasking deadlock detection methods”. Ada Lett.,
XI(1):82–91, 1991.

6. Demartini, C. and R. Sisto. “Static Analysis of Java Multithreaded and Dis-
tributed Applications”. PDSE ’98: Proceedings of the International Symposium
on Software Engineering for Parallel and Distributed Systems, 215. IEEE Com-
puter Society, Washington, DC, USA, 1998.

7. Engler, Dawson and Ken Ashcraft. “RacerX: effective, static detection of race
conditions and deadlocks”. SOSP ’03: Proceedings of the nineteenth ACM sym-
posium on Operating systems principles, 237–252. ACM Press, New York, NY,
USA, 2003.

8. Fredkin, Edward. “Trie memory”. Commun. ACM, 3(9):490–499, 1960.

9. Geer, David. “Chip Makers Turn to Multicore Processors”. Computer, 38(5):11–
13, May 2005.

10. Gosling, James, Bill Joy, Guy L. Steele, and Gilad Bracha. Java Language Spec-
ification. Addison-Wesley, 3nd edition, 2005.

11. Grove, David and Craig Chambers. “A framework for call graph construction
algorithms”. ACM Trans. Program. Lang. Syst., 23(6):685–746, 2001.

12. Grove, David, Greg Defouw, Jeffery Dean, and Craig Chambers. “Call Graph
Construction in Object-Oriented Languages”. Proceedings of the 12th ACM con-
ference on Object-oriented programming, systems, languages, and applications
(OOPSLA 1997), 108–124. ACM Press, 1997.

102

13. Hall, Mary W. and Ken Kennedy. “Efficient call graph analysis”. ACM Lett.
Program. Lang. Syst., 1(3):227–242, 1992.

14. Havelund, Klaus and Jens U. Skakkebæk. “Applying Model Checking in Java
Verification”. Proceedings of the 5th and 6th International SPIN Workshops on
Theoretical and Practical Aspects of SPIN Model Checking, 216–231. Springer-
Verlag, London, UK, 1999.

15. Havelund, Klaus and Thomas Pressburger. “Model Checking Java Programs using
Java PathFinder.” STTT, 2(4):366–381, 2000.

16. Holzmann, Gerard J. “The Model Checker SPIN”. IEEE Transactions on Soft-
ware Engineering, 23(5):279–295, May 1997.

17. Holzmann, Gerard J. The SPIN Model Checker, Primer and Reference Manual.
Addison-Wesley, Reading, Massachusetts, first edition, 2003.

18. Hovemeyer, David and William Pugh. “Finding bugs is easy”. SIGPLAN Not.,
39(12):92–106, 2004.

19. Levine, Gertrude Neuman. “Defining deadlock”. SIGOPS Oper. Syst. Rev.,
37(1):54–64, 2003.

20. Long, Douglas L. and Lori A. Clarke. “Task interaction graphs for concurrency
analysis”. ICSE ’89: Proceedings of the 11th international conference on Software
engineering, 44–52. ACM Press, New York, NY, USA, 1989.

21. Rugina, Radu and Martin C. Rinard. “Pointer analysis for structured parallel
programs”. ACM Trans. Program. Lang. Syst., 25(1):70–116, 2003.

22. Ryder, Barbara G. “Constructing the Call Graph of a Program.” IEEE Trans.
Software Eng., 5(3):216–226, 1979.

23. Savage, Stefan, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. “Eraser: a dynamic data race detector for multithreaded programs”.
ACM Trans. Comput. Syst., 15(4):391–411, 1997.

24. Wikipedia. “Edward Fredkin — Wikipedia, The Free Encyclopedia”,
2005. URL http://en.wikipedia.org/w/index.php?title=Edward\ Fredkin\
&oldid=28511622. [Online; accessed 29-January-2006].

25. Zhou, B., R. T. Yeh, and P.A. Ng. “Principle of Deadlock Detection in Ada
Programs”. Proc. of the 6th IEEE ICDCS, 572–579. IEEE, 1986.

103

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2006 Master’s Thesis Sept 2004 — Mar 2006

Toward the Static Detection of Deadlock
in Java Software

Fadul, Jose, E., Capt, USAF

Air Force Institute of Technology (AFIT/EN)
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GE/ENG/06-19

HCSS/R21
Mr. William B. Martin
Chief, High Confidence Software and Systems Division Information Assurance
Research Group National Security Agency
9800 Savage Road e-mail: wbmarti@alpha.ncsc.mil
Fort George G. Meade, MD 20755-6511 comm: 1-(301)-688-1057

Approval for public release; distribution is unlimited.

Concurrency is the source of many real-world software reliability and security problems. Concurrency
defects are difficult to detect because they defy conventional software testing techniques due to their non-local and
non-deterministic nature. We focus on one important aspect of this problem: static detection of the possibility of
deadlock-a situation in which two or more processes are prevented from continuing while each waits for resources to be
freed by the continuation of the other. This thesis proposes a flow-insensitive interprocedural static analysis that detects
the possibility that a program can deadlock at runtime. Our analysis proceeds in two steps. The first extracts the “real”
call graph decorated with acquired locks from the target program. The second analysis this decorated graph to report
how a possible deadlock may occur at runtime. We demonstrate our analysis via a prototype implementation that detects
deadlock conditions within two small Java programs. The two principle limitations of our analysis are on the target
program: (1) we need its “real” call graph and (2) its overall size is limited. Construction of the “real” call graph
requires perfect aliasing information. The program’s size our technique is able to analyze is roughly 35 kSLOC.

software engineering, software tools, software metrics, computer program verification, verification, Deadlock detection,
static analysis

U U U UU 119

Robert P. Graham, Maj, USAF (AFIT/ENG)

1-937-255–3636, ext. 7256 robert.graham@afit.edu

	Toward the Static Detection of Deadlock in Java Software
	Recommended Citation

	afit.dvi

