5 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Medical Image Enhancement using Deep Learning and Tensor Factorization Techniques

    Get PDF
    La résolution spatiale des images acquises par tomographie volumique à faisceau conique (CBCT) est limitée par la géométrie des capteurs, leur sensibilité, les mouvements du patient, les techniques de reconstruction d'images et la limitation de la dose de rayonnement. Le modèle de dégradation d'image considéré dans cette thèse consiste en un opérateur de ou avec la fonction d'étalement du système d'imagerie (PSF), un opérateur de décimation, et du bruit, qui relient les volumes CBCT à une image 3D super-résolue à estimer. Les méthodes proposées dans cette thèse (SISR - single image super-résolution) ont comme objectif d'inverser ce modèle direct, c'est à dire d'estimer un volume haute résolution à partir d'une image CBCT. Les algorithmes ont été évalués dans le cadre d'une application dentaire, avec comme vérité terrain les images haute résolution acquises par micro CT (µCT), qui utilise des doses de rayonnement très importantes, incompatibles avec les applications cliniques. Nous avons proposé une approche de SISR par deep learning, appliquée individuellement à des coupes CBCT. Deux types de réseaux ont été évalués : U-net et subpixel. Les deux ont amélioré les volumes CBCT, avec un gain en PSNR de 21 à 22 dB et en coefficient de Dice pour la segmentation canalaire de 1 à 2.2 %. Le gain a été plus particulièrement important dans la partie apicale des dents, ce qui représente un résultat important étant donnée son importance pour les applications cliniques. Nous avons proposé des algorithmes de SISR basés sur la décomposition canonique polyadique des tenseurs. Le principal avantage de cette méthode, lié à l'utilisation de la théorie des tenseur, est d'utiliser la structure 3D des volumes CBCT. L'algorithme proposé regroupe plusieurs étapes: débruitage base sur la factorisation des tenseurs, déconvolution et super-résolution, avec un faible nombre d'hyperparamètres. Le temps d'exécution est très faible par rapport aux algorithmes existants (deux ordres de magnitude plus petit), pour des performances légèrement supérieures (gain de 1.2 à 1.5 dB en PSNR). La troisième contribution de la thèse est en lien avec la contribution 2 : l'algorithme de SISR basé sur la décomposition canonique polyadique des tenseurs est combiné avec une méthode d'estimation de la PSF, inconnues dans les applications pratiques. L'algorithme résultant effectue les deux tâche de manière alternée, et s'avère précis et rapide sur des données de simulation et expérimentales. La dernière contribution de la thèse a été d'évaluer l'intérêt d'un autre type de décomposition tensorielle, la décomposition de Tucker, dans le cadre d'un algorithme de SISR. Avant la déconvolution, le volume CBCT est débruité en tronquant sa décomposition de Tucker. Comparé à l'algorithme de la contribution 2, cette approche permet de diminuer encore plus le temps de calcul, d'un facteur 10, pour des performances similaires pour des SNR importants et légèrement supérieures pour de faibles SNR. Le lien entre cette méthode et les algorithmes 2D basés sur une SVD facilite le réglage des hyperparamètres comparé à la décomposition canonique polyadique.The resolution of dental cone beam computed tomography (CBCT) images is imited by detector geometry, sensitivity, patient movement, the reconstruction technique and the need to minimize radiation dose. The corresponding image degradation model assumes that the CBCT image is a blurred (with a point spread function, PSF), downsampled, noisy version of a high resolution image. The quality of the image is crucial for precise diagnosis and treatment planning. The methods proposed in this thesis aim to give a solution for the single image super-resolution (SISR) problem. The algorithms were evaluated on dental CBCT and corresponding highresolution (and high radiation-dose) µCT image pairs of extracted teeth. I have designed a deep learning framework for the SISR problem, applied to CBCT slices. I have tested the U-net and subpixel neural networks, which both improved the PSNR by 21-22 dB, and the Dice coe_cient of the canal segmentation by 1-2.2%, more significantly in the medically critical apical region. I have designed an algorithm for the 3D SISR problem, using the canonical polyadic decomposition of tensors. This implementation conserves the 3D structure of the volume, integrating the factorization-based denoising, deblurring with a known PSF, and upsampling of the image in a lightweight algorithm with a low number of parameters. It outperforms the state-of-the-art 3D reconstruction-based algorithms with two orders of magnitude faster run-time and provides similar PSNR (improvement of 1.2-1.5 dB) and segmentation metrics (Dice coe_cient increased on average to 0.89 and 0.90). Thesis II b: I have implemented a joint alternating recovery of the unknown PSF parameters and of the high-resolution 3D image using CPD-SISR. The algorithm was compared to a state-of-the-art 3D reconstruction-based algorithm, combined with the proposed alternating PSF-optimization. The two algorithms have shown similar improvement in PSNR, but CPD-SISR-blind converged roughly 40 times faster, under 6 minutes both in simulation and on experimental dental computed tomography data. I have proposed a solution for the 3D SISR problem using the Tucker decomposition (TD-SISR). The denoising step is realized _rst by TD in order to mitigate the ill-posedness of the subsequent deconvolution. Compared to CPDSISR the algorithm runs ten times faster. Depending on the amount of noise, higher PSNR (0.3 - 3.5 dB), SSI (0.58 - 2.43%) and segmentation values (Dice coefficient, 2% improvement) were measured. The parameters in TD-SISR are familiar from 2D SVD-based algorithms, so their tuning is easier compared to CPD-SISR

    Precision Monitoring for Disease Progression in Patients with Multiple Sclerosis: A Deep Learning Approach

    Get PDF
    Artificial intelligence has tremendous potential in a range of clinical applications. Leveraging recent advances in deep learning, the works in this thesis has generated a range of technologies for patients with Multiple Sclerosis (MS) that facilitate precision monitoring using routine MRI and clinical assessments; and contribute to realising the goal of personalised disease management. MS is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterised by focal demyelinating plaques in the brain and spinal cord; and progressive neurodegeneration. Despite success in cohort studies and clinical trials, the measurement of disease activity using conventional imaging biomarkers in real-world clinical practice is limited to qualitative assessment of lesion activity, which is time consuming and prone to human error. Quantitative measures, such as T2 lesion load, volumetric assessment of lesion activity and brain atrophy, are constrained by challenges associated with handling real-world data variances. In this thesis, DeepBVC was developed for robust brain atrophy assessment through imaging synthesis, while a lesion segmentation model was developed using a novel federated learning framework, Fed-CoT, to leverage large data collaborations. With existing quantitative brain structural analyses, this work has developed an effective deep learning analysis pipeline, which delivers a fully automated suite of MS-specific clinical imaging biomarkers to facilitate the precision monitoring of patients with MS and response to disease modifying therapy. The framework for individualised MRI-guided management in this thesis was complemented by a disease prognosis model, based on a Large Language Model, providing insights into the risks of clinical worsening over the subsequent 3 years. The value and performance of the MS biomarkers in this thesis are underpinned by extensive validation in real-world, multi-centre data from more than 1030 patients
    corecore