7 research outputs found

    Network-level characteristics of spamming: An empirical analysis

    Full text link

    Correlating IPv6 addresses for network situational awareness

    Get PDF
    The advent of the IPv6 protocol on enterprise networks provides fresh challenges to network incident investigators. Unlike the conventional behavior and implementation of its predecessor, the typical deployment of IPv6 presents issues with address generation (host-based autoconfiguration rather than centralized distribution), address multiplicity (multiple addresses per host simultaneously), and address volatility (randomization and frequent rotation of host identifiers). These factors make it difficult for an investigator, when reviewing a log file or packet capture ex post facto, to both identify the origin of a particular log entry/packet and identify all log entries/packets related to a specific network entity (since multiple addresses may have been used). I have demonstrated a system, titled IPv6 Address Correlator (IPAC), that allows incident investigators to match both a specific IPv6 address to a network entity (identified by its MAC address and the physical switch port to which it is attached) and a specific entity to a set of IPv6 addresses in use within an organization\u27s networks at any given point in time. This system relies on the normal operation of the Neighbor Discovery Protocol for IPv6 (NDP) and bridge forwarding table notifications from Ethernet switches to keep a record of IPv6 and MAC address usage over time. With this information, it is possible to pair each IPv6 address to a MAC address and each MAC address to a physical switch port. When the IPAC system is deployed throughout an organization\u27s networks, aggregated IPv6 and MAC addressing timeline information can be used to identify which host caused an entry in a log file or sent/received a captured packet, as well as correlate all packets or log entries related to a given host

    The User Attribution Problem and the Challenge of Persistent Surveillance of User Activity in Complex Networks

    Get PDF
    In the context of telecommunication networks, the user attribution problem refers to the challenge faced in recognizing communication traffic as belonging to a given user when information needed to identify the user is missing. This is analogous to trying to recognize a nameless face in a crowd. This problem worsens as users move across many mobile networks (complex networks) owned and operated by different providers. The traditional approach of using the source IP address, which indicates where a packet comes from, does not work when used to identify mobile users. Recent efforts to address this problem by exclusively relying on web browsing behavior to identify users were limited to a small number of users (28 and 100 users). This was due to the inability of solutions to link up multiple user sessions together when they rely exclusively on the web sites visited by the user. This study has tackled this problem by utilizing behavior based identification while accounting for time and the sequential order of web visits by a user. Hierarchical Temporal Memories (HTM) were used to classify historical navigational patterns for different users. Each layer of an HTM contains variable order Markov chains of connected nodes which represent clusters of web sites visited in time order by the user (user sessions). HTM layers enable inference generalization by linking Markov chains within and across layers and thus allow matching longer sequences of visited web sites (multiple user sessions). This approach enables linking multiple user sessions together without the need for a tracking identifier such as the source IP address. Results are promising. HTMs can provide high levels of accuracy using synthetic data with 99% recall accuracy for up to 500 users and good levels of recall accuracy of 95 % and 87% for 5 and 10 users respectively when using cellular network data. This research confirmed that the presence of long tail web sites (rarely visited) among many repeated destinations can create unique differentiation. What was not anticipated prior to this research was the very high degree of repetitiveness of some web destinations found in real network data

    Security, Privacy and Economics of Online Advertising

    Get PDF
    Online advertising is at the core of today’s Web: it is the main business model, generating large annual revenues expressed in tens of billions of dollars that sponsor most of the online content and services. Online advertising consists of delivering marketing messages, embedded into Web content, to a targeted audience. In this model, entities attract Web traffic by offering the content and services for free and charge advertisers for including advertisements in this traffic (i.e., advertisers pay for users’ attention and interests). Online advertising is a very successful form of advertising as it allows for advertisements (ads) to be targeted to individual users’ interests; especially when advertisements are served on users’ mobile devices, as ads can be targeted to users’ locations and the corresponding context. However, online advertising also introduces a number of problems. Given the high ad revenue at stake, fraudsters have economic incentives to exploit the ad system and generate profit from it. Unfortunately, to achieve this goal, they often compromise users’ online security (e.g., via malware, phishing, etc.). For the purpose of maximizing the revenue by matching ads to users’ interests, a number of techniques are deployed, aimed at tracking and profiling users’ digital footprints, i.e., their behavior in the digital world. These techniques introduce new threats to users’ privacy. Consequently, some users adopt ad-avoidance tools that prevent the download of advertisements and partially thwart user profiling. Such user behavior, as well as exploits of ad systems, have economic implications as they undermine the online advertising business model. Meddling with advertising revenue disrupts the current economic model of the Web, the consequences of which are unclear. Given that today’s Web model relies on online advertising revenue in order for users to have access and consume content and services for “free”, coupled with the fact that there are many threats that could jeopardize this model, in this thesis we address the security, privacy and economic issues stemming from this fundamental element of the Web. In the first part of the thesis, we investigate the vulnerabilities of online advertising systems. We identify how an adversary can exploit the ad system to generate profit for itself, notably by performing inflight modification of ad traffic. We provide a proof-of-concept implementation of the identified threat on Wi-Fi routers. We propose a collaborative approach for securing online advertising and Web browsing against such threats. By investigating how a certificate-based authentication is deployed in practice, we assess the potential of relying on certificate-based authentication as a building block of a solution to protect the ad revenue. We propose a multidisciplinary approach for improving the current state of certificate-based authentication on the Web. In the second part of the thesis, we study the economics of ad systems’ exploits and certain potential countermeasures. We evaluate the potential of different solutions aimed at protecting ad revenue being implemented by the stakeholders (e.g., Internet Service Providers or ad networks) and the conditions under which this is likely to happen. We also study the economic ramifications of ad-avoidance technologies on the monetization of online content. We use game-theory to model the strategic behavior of involved entities and their interactions. In the third part of the thesis, we focus on privacy implications of online advertising. We identify a novel threat to users’ location privacy that enables service providers to geolocate users with high accuracy, which is needed to serve location-targeted ads for local businesses. We draw attention to the large scale of the threat and the potential impact on users’ location privacy

    Proceedings of the ACM SIGCOMM 2009 conference on Data communication

    No full text
    The proceedings contain 27 papers. The topics discussed include: cross-layer wireless bit rate adaptation; SMACK - a SMart ACKnowledgment scheme for broadcast messages in wireless networks; white space networking with Wi-Fi like connectivity; PortLand: a scalable fault-tolerant layer 2 data center network fabric; VL2: : a scalable and flexible data center network; BCube: a high performance, server-centric network architecture for modular data centers; de-anonymizing the Internet using unreliable IDs; SmartRE: an architecture for coordinated network-wide redundancy elimination; practical, distributed channel assignment and routing in dual-radio mesh networks; pathlet routing; cutting the electric bill for Internet-scale systems; Persona: an online social network with user-defined privacy; interference alignment and cancellation; stable and flexible iBGP; LIPSIN: line speed publish/subscribe inter-networking; and PLUG: flexible lookup modules for rapid deployment of new protocols in high-speed routers
    corecore