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In the context of telecommunication networks, the user attribution problem refers to the 

challenge faced in recognizing communication traffic as belonging to a given user when 

information needed to identify the user is missing. This is analogous to trying to recognize a 

nameless face in a crowd.  This problem worsens as users move across many mobile networks 

(complex networks) owned and operated by different providers. The traditional approach of 

using the source IP address, which indicates where a packet comes from, does not work when 

used to identify mobile users.  

 

Recent efforts to address this problem by exclusively relying on web browsing behavior to 

identify users were limited to a small number of users (28 and 100 users). This was due to the 

inability of solutions to link up multiple user sessions together when they rely exclusively on the 

web sites visited by the user.  

 

This study has tackled this problem by utilizing behavior based identification while accounting 

for time and the sequential order of web visits by a user.  Hierarchical Temporal Memories 

(HTM) were used to classify historical navigational patterns for different users. Each layer of an 

HTM contains variable order Markov chains of connected nodes which represent clusters of web 

sites visited in time order by the user (user sessions). HTM layers enable inference 

“generalization” by linking Markov chains within and across layers and thus allow matching 

longer sequences of visited web sites (multiple user sessions). This approach enables linking 

multiple user sessions together without the need for a tracking identifier such as the source IP 

address.  

 

Results are promising. HTMs can provide high levels of accuracy using synthetic data with 99% 

recall accuracy for up to 500 users and good levels of recall accuracy of 95 % and 87% for 5 and 

10 users respectively when using cellular network data. This research confirmed that the 

presence of long tail web sites (rarely visited) among many repeated destinations can create 



 
 

 
 

unique differentiation. What was not anticipated prior to this research was the very high degree 

of repetitiveness of some web destinations found in real network data. 
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Chapter 1 

 

Introduction 

 

The internet of people is becoming the internet of things and it is going to be mobile. 

Communication devices attached to gas meters, vending machines, fleets of trucks, payment 

kiosks, as well as, android phones enabled as WIFI routers, ipads, and iphones, all seek, 

sometimes without requiring human control, persistent connectivity to different resources via 

complex networks.  In this new and dynamically evolving environment it is becoming 

increasingly difficult to identify these devices and their users. 

Complex networks represent graphs with patterns of connectivity that are neither purely 

regular nor purely random but instead follow a particular mathematical function, known as the 

power law where these graphs expand continuously with the addition of new vertices and new 

vertices tend to attach preferentially to other vertices that are already well connected. The 

hyperlink connectivity of documents in the World Wide Web, the pattern of connectivity of users 

accessing web documents on the web, the nodes that connect the internet as well as mobile 

networks that attach to the internet from multiple locations all share the properties of complex 

networks. 

Traditionally, users are identified via authentication techniques which verify the 

legitimacy of either the user or the device accessing that network. Once properly authenticated 

the user/device can access the resources of that network and potentially other networks for which 

the user had not been authenticated. As mobility is becoming pervasive, users continually move 

across secured and unsecured networks to access resources available across the internet. A key 



2 
 

 
 

question that this study has addressed is: “How can users be identified when accessing resources 

across complex networks when no authentication information is available? The answer to this 

question has important implications to identification of malicious users re-entering the network. 

In particular, the traditional user identification problem which leverages authentication to 

recognize users, morphs into a user attribution problem when user authentication is not possible. 

Clark and Landau (2010) acknowledge the need for stronger forms of personal identification that 

can be observed in the network and define the attribution problem in terms of a question: “Why 

don’t packets have license plates? ”.  Addressing user attribution allows users to be recognized 

among many by attributing a trace of past user activity to a given user. 

While the academic community has recognized this problem and its complexity, few 

solutions have been proposed and none address the user attribution problem that ensues when 

users move across complex networks driven by mobility scenarios that have become a 

mainstream of personal computing. User identification and user attribution have been addressed 

in the context of web usage mining but solutions are strongly coupled to the web page structure 

of specific web sites and cannot be applied in their current form to the more generic user 

identification problem across multiple web sites accessed via complex networks. More recently 

“re-identification” has been proposed as an approach, used in dynamic networks like 

telecommunication networks and the internet, which turns the user identification problem into a 

matching problem that involves comparing the behavior of network entities such as users across 

time periods.  The re-identification approach has been successfully applied to email-alias 

detection, author attribution and identification of fraudulent consumers in telecommunication 

networks, but never in the context of complex networks as defined in this work. 



3 
 

 
 

This study makes a contribution to the field of computer information systems by tackling 

the highly relevant and current problem of user attribution in complex networks. The proposed 

research has made use of hierarchical temporal memories to record and classify historical user 

activity in the form of unique time ordered user web site visits. This classification ensures that 

future user attributions are based on identification of unique patterns of activity that match prior 

activity patterns by a given user. Hierarchical temporal memories represent a new advance in our 

understanding of how the neocortex part of a human brain learns and infers sequence patterns 

over time. 

Problem Statement  

 

This study has addressed the challenge that no effective method exists that can recognize 

the source of communication entering the network or returning to a web site by only utilizing the 

communication traffic of the device or the user. This problem is further exasperated by the fact 

that often no form of explicit (user name/password) or implicit (cookies) authentication is 

available to identify the source of communication.  When user authentication is not available, 

users can no longer be identified, instead, users can be recognized based on past user activities 

and the user identification problem can be restated as a user attribution problem. 

Recognition of the source of communication is especially important in the security field 

where it is necessary to allow users/devices classified as malicious to be blocked or to have their 

communication rate limited when they attempt to re-enter the network irrespective of their new 

credentials or of the new assigned source IP address. For instance, an intrusion detection and 

prevention system can detect and block an active user session that has been classified as 

malicious. However, when the user re-enters the network, especially in mobile networks, that 



4 
 

 
 

user looks like a brand new user and the intrusion detection and prevention system needs to 

quickly rediscover that user as being malicious in order to be able to stop him. An optimal 

solution should recognize the user, by leveraging historical observations of communication 

activity, before any malicious behavior is ever re-started.  

The problem of correctly recognizing users by just leveraging user past communication 

activity (the focus of this study) is generic and not peculiar to the type of network (wireline or 

wireless) being used. The user attribution problem,  when a user accesses a wireline type 

network (cable, dsl), can be easily addressed by leveraging the source IP address assigned to this 

user since it changes very seldom. The user attribution problem becomes difficult to solve when 

users either move across networks or use networks that hide or modify the source IP address as is 

the case in certain type of mobile networks.  

In order to better appreciate the severity of this problem, consider a malicious user or a 

compromised device that has been authenticated by an operator network and then proceeds to 

hack multiple web servers hosted outside the operator network. Imagine then, that this user 

continues to perform malicious activity while moving between secured and unsecured networks. 

How can this user be recognized and stopped? Authentication does not help to identify malicious 

authenticated users if the attack occurs away from the authentication point. In addition, a 

malicious user can hide his tracks and renew his authentication credentials by switching 

periodically between network operators. If user/device authentication cannot effectively be used 

to identify users re-entering the network then what new approach should be used? 

Identification of the source of communication traffic has traditionally relied on the IP 

address associated with the source of the connection, utilizing it as the client or user identifier. 
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This client identification technique has been used to enforce access-control decisions but suffers 

from several shortcomings that can potentially make it ineffective (Casado & Freedman, 2007): 

 A portion of IP addresses are dynamically assigned to clients upon initial connection to 

the network 

 A portion of IP addresses are allocated behind Network Address Translation (NAT) 

boxes which hide the real IP address (typically a private IP address) of the client 

 A portion of IP addresses go through web proxies which cause the client IP address to be 

replaced by a new public IP address  

A consequence of the difficulty of utilizing the source IP address as a way to identify the 

origin of communication is particularly felt in networks where users move as is the case in 

mobile networks. In these networks no effective method exists to identify a mobile device 

location by utilizing only the device communication traffic information. Specifically, the 

properties of mobile devices make IP-based user and device identification, and IP-based geo-

location  (the problem of locating an internet host by using only its IP address) identification 

almost impossible to use in order to find a device and its physical location (Balakrishnan, 

Mohomed, & Ramasubramanian, 2009).   

Balakrishnan et al. (2009) are not sure as to the cause of the problem, yet the answer can 

be found in the way these networks are designed. Mobile networks that serve a large number of 

subscribers leverage wireless gateways to support mobility. These wireless gateways, allocate IP 

addresses to devices that have been authenticated and authorized to access the network, and can 

support mobility for hundreds of thousands of devices across large geographical areas. These 

wireless gateways own large pools of IP addresses that are dynamically assigned to devices 
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potentially dispersed across many states within the continental USA. As a result, even in the best 

of circumstances, where the IP address of a device is traced back to this gateway, it is not 

possible to identify the device relying solely on the IP address alone since a device in San 

Francisco could be assigned an IP address (for the duration of that data session) by a wireless 

gateway deployed in Chicago.  The source IP address can also change when users move across 

wireless gateways (like WIFI access points) that control access to wireless networks that do not 

support mobility as is the case when a student moves across a university campus. 

Traditional security methods that utilize “IP trace back” techniques fail to identify the 

source of communication originating from devices that operate in complex networks due to the 

deployment of these large wireless gateways that control the source of communication (source IP 

addresses) for millions of devices. In addition, identification of the source of communication is 

complicated by the dynamic assignment of source IP addresses to devices by these wireless 

gateways as well as by the presence of large scale NAT and web proxy devices in operator 

networks. It is difficult to determine how long IP addresses remain allocated to a given device 

since IP addresses allocated by wireless gateways, out of very large IP pools, persist for longer 

time periods based on operator configuration (up to 24 hours) than IP addresses modified by 

NATs or web proxy devices, which are allocated out of much smaller ranges of IP addresses and 

change very often, typically for the duration of a TCP connection (Egevang & Francis, 1994). 

Dissertation Goal  

 

A new approach is needed that can recognize a user in the network solely based on prior 

observed communication behavior independently of the IP address assigned to the source or the 

complex networks that are traversed by the communication traffic. The goal of this study has 
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been to address the user attribution problem, in its generic form, independent of the type of 

network.  

Research Questions 

 

Specifically, the following questions have been addressed in this study: 

1. Is it possible to recognize specific users among many in the network by observing 

and classifying their historical communication behavior and be at least as accurate 

in the classification process in terms of better precision, better recall, fewer false 

positives and fewer false negatives as when using comparable classification 

approaches? 

2. Is the solution scalable? That is, can the solution maintain the same level of 

performance in terms of accuracy, as the communication population (number of 

sources and number of destinations contacted by these sources) increases? 

The consequences of dynamically changing or of hidden source of communication (IP 

addresses) has high relevance to the area of network security. This study has addressed the 

problem of user identification and attribution by forgoing use of tracking techniques like cookies, 

logins, source IPs and instead it has only leveraged the historical unique communication traffic 

characteristics of different users. User attribution through behavioral patterns is a new area of 

research with applications in fields as diverse as marketing and security. Yang (2010)  proposes 

behavior based identification in the context of creation of user profiles built on web usage 

patterns. Her paper is among the first to study user behavior patterns in web usage data for the 

purpose of user recognition. She acknowledges that there is currently no research on building 
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user behavioral profiles from web usage data for the purpose of user recognition and she admits 

that very limited research is being done on analyzing web users' behavior for user recognition.   

The contribution of this proposed work is significant and original in that solutions to 

address this very important problem are few and limited. The problem addressed is real, difficult 

to solve, and is important since solutions to this problem can easily be generalized to be 

applicable in several different domains. 

Relevance & Significance 

 

This study addresses the important problem of real time user attribution. A relevant 

property of user attribution is that it is privacy preserving with respect to the real identity of the 

user. Consider the following real-world scenario where the user attribution solution described in 

this paper is deployed in the network (possibly an operator network) and monitors all HTTP 

traffic. As traffic passes through the user attribution solution (UAS), the solution learns to 

recognize users (User 1, User 2, User 3, …., User N) based on the user past communication 

behavior. After the learning stage, the UAS can recognize any user (inference stage) that it has 

seen before as they re-enter the network possibly using a new source IP address and new 

authorization credentials without knowing their specific identity (User1 is Joe Smith). A key 

measure of how successfully the UAS performs is based on the accuracy of user recognition.  

The “user attribution problem” is generic and not necessarily tied to attack scenarios, but 

it can be used to recognize and stop malicious users. Consider a second real-world scenario 

where the UAS is coupled to an intrusion detection and prevention system (IDPS) so that instead 

of using the source IP address to recognize users (due to the unreliability of this source), the 

IDPS uses the user labels (User 1, User 2, User 3…. ,User N) provided by the UAS. The UAS 
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provides user labels to the IDPS after it has completed the learning stage and it has entered the 

inference stage. Assume the IDPS (out of scope for this study) detects anomalous behavior with 

User4 and blocks all HTTP traffic associated with this user. User4, unable to access the internet 

shuts down his device and decides to re-enter the network next day. User4 has a brand new IP 

address assigned and initially is able to access the internet, until the UAS recognizes User4 and 

passes this user label to the IDPS which will again block this user. The key to the user attribution 

problem is the ability to learn past user communication behavior so that a user can be 

recognized.   

Recognizing a user re-entering the network is a problem made difficult by the dynamic 

nature of communication source identifiers, such as source IP addresses, and the limited scope of 

session identifiers such as cookies that are valid only within a specific web-site visit and not 

across multiple web-sites visits. These challenges render ineffective the use of current techniques 

for user identification and user attribution within and across networks. The inability to provide 

timely and correct classification of the source of communication has serious consequences in the 

area of security prevention where it is critical to correctly recognize users that have been labeled 

as malicious so that they can be quickly stopped from re-entering the network.  

Online services often use IP addresses as client identifiers when enforcing access-control 

decisions. Casado and Freedman (2007) in their work acknowledge that the academic 

community has typically eschewed this approach due to the effect that NATs, proxies, and 

dynamic addressing have on a server’s ability to identify individual clients. Casado et al., 

recognize the drawbacks of using IP-based identification in the face of NATs, proxies, and 

dynamic IP renumbering since blacklisting large proxies or NATs can result in legitimate clients 

losing access to desired services, while whitelisting can give access to unwanted clients. The 



10 
 

 
 

authors admit that the actual extent of the problem has remained largely a mystery. They report 

that part of the challenge in uncovering the impact of edge opacity is a lack of practical 

techniques and deployments to “peer through the shroud” of middleboxes in the wild. In their 

study, the authors analyzed data mostly from wireline residential ISPs from nearly 7 million 

clients across 214 countries and their results show that while 74% of clients are behind NATs or 

proxies, most NATs are small and follow an exponential distribution. Dynamic renumbering 

from DHCP generally happens on the order of days with fewer than 2% of the clients that visited 

their servers over a week’s period using more than two IP addresses. Proxies, on the other hand, 

service client populations that may be both larger and geographically diverse. The authors 

conclude that poor access control policies for proxies can have greater negative implications than 

for NATs. 

  

These results seem to indicate that the problem of dynamic changes to source IP is not 

too serious in a typical residence for NATs since only few devices sit behind them and that 

dynamic IP addresses assigned to devices persist for relative long time periods. Only web 

proxies are identified as a problem since these network elements serve a large number of clients. 

Unfortunately, the impact of NATs, proxies and dynamic IP address changes becomes very 

serious when considering the impact of mobility and the use of mobile devices in the context of 

operator networks. On February 3rd 2011, IANA handed out the last blocks of addresses to the 

Regional Internet Registries (RIRs). As a result there are no more IPv4-addresses at the IANA 

level, and the depletion is nearly final. The slow depletion of available public IPv4 addresses has 

encouraged deployment of large scale carrier grade NAT devices in operator networks (Donley, 

Howard, Kuarsingh, Chandrasekaran, & Ganti, 2010; Jiang, Guo, & Carpenter, 2011). These 

network devices serve millions of subscribers for both wireless and wireline operators utilizing a 
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small number of public IP addresses producing the same negative impact that Casado and 

Freedman reported for web proxies.  

 

The dynamic nature of source IP addresses assigned to users is likely to persist for years 

to come. IPv6 promises to address the public IPv4 address shortage and eliminate middleboxes. 

However, source IP addresses will continue to change dynamically even with IPv6, since IP 

addresses are always assigned by the network (the wireless gateway or access point) to the 

devices that attach to it (Nakhjiri & Nakhjiri, 2005). This is because the network must advertise 

reachability of any IP address assigned to a given device in order to ensure that traffic originating 

from a given device will always return to the originating network and be routed back to that 

device (Halabi, 2001).  

The problem of dynamically changing source IP addresses can occur across a variety of 

wireless networks. Consider a laptop connecting to a home wireless router, after traveling to the 

airport it connects to a hot spot provider and then after landing at a new location, this same 

laptop connects to a business network and accesses the internet. On the way back to the airport, 

in a shared cab ride the owner of the laptop connects to the internet thanks to the WIFI hotspot 

functionality provided by an Android phone owned by another rider.  The owner of the Android 

device gets dropped off at his house where his Android phone attaches to the home WIFI 

wireless router to access the internet. In this scenario, each time a device attaches to a new 

network that device will be assigned a new IP address.  Mobility is pervasive and as users start to 

move across complex networks, this problem will only worsen. 

The consequence of being unable to recognize the source of communication has profound 

impacts on security and particularly the area of intrusion prevention since attempts to block 

previously detected malicious devices can back fire. Xie, Yu, and Abadi,(2009) describe the 
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challenges faced by intrusion detection and prevention devices as they attempt to target 

containment to offending IP addresses. Detected anomalies cannot be blocked based on the 

offending source IP address and when an attacker changes its IP address, legitimate activities 

that subsequently use the old IP address will be misclassified as bad, while malicious activities 

from the new IP address will slip through. The use of proxies and NAT devices also imply that 

blacklisting can result in denial of service to many legitimate clients that share IP addresses with 

attackers. 

In the context of mitigating intrusions, one major challenge is the ability to timely and 

correctly identifying sources of an attack (Peng, Leckie, & Ramamohanarao, 2007). Proper 

identification is needed to provide a targeted response to the intrusion that can stop the attackers 

without affecting the rest of the system. This is a difficult problem to address since during an 

intrusion, the reported source of the attack (namely the source IP address) could be spoofed and 

made appear to originate from many different valid subnets.  It is important to realize that 

accuracy of identification of a source of an attack is inversely proportional to the scope of impact 

to the system. Identifying an individual machine or user as the source of an attack allows for a 

targeted response to stop this attack without affecting any other machine or user in the system. 

However, if the source of the attack cannot be confined to an individual machine/s or user/s then 

the scope of the response could expand to the location/s where the intrusion originated from. 

Mitigation in this case, would entail finding locations in a network where the intrusions originate 

from and stopping all traffic originating from these locations. It is not difficult to see that with 

mobility, intrusion mitigation becomes an increasingly complex problem to address. 

Accurate and effective response to a detected intrusion is a critical part of a mitigation 

system. Consider the set of possible actions available to an intrusion response system as 
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described in (Carver, 2002): Terminate User Session, Block IP Address, Warn the intruder, 

Trace the connection, Force Additional Authentication, Restrict user activity. 

How can any of these activities be carried out when the source of the attack cannot be 

recognized? A major limitation of current active intrusion response systems is that they do not 

take into account the collateral damage to legitimate users. These systems can launch immediate 

responses to attacks, however, predictable responses as described above, can be easily 

compromised by an adversary by forcing the triggering of massive denial of service attacks 

against the network by utilizing a large number of spoofed IP addresses (Ghorbani, Lu, & 

Tavallaee, 2010). 

The importance of a reliable source IP address is critical not only in intrusion protection 

but also in detecting port scans (set of connection attempts from a single source to a set of targets 

during some time interval). Gates (2009) in her work on port scan detection, acknowledges this 

important point by indicating that IP addresses are commonly used to represent a source, and as 

it is often difficult to determine if two different IP addresses represent the same source, in her 

paper she used IP addresses to indicate the source, recognizing that she may have done so 

erroneously in some case. 

Definition of Terms 

 

The following key terms are used and are uniquely relevant to this study: 

 Accuracy – Identification precision measured using one of the following 

statistical measures: Recall, Precision, False Positives, False Negatives 
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 Accuracy Scalability – It measures the ability of the solution to maintain 

consistent (possibly high) levels of accuracy when the number of users and/or the 

number of web destinations visited increases. 

 Attribution – Generally means assigning a cause to an action. For this study it 

refers to identifying the agent responsible for the action (Clark  & Landau, 2010) 

 Attribution Problem – David Clark described the attribution problem in terms of 

the following question: “Why don’t packets have license plates?”  

 User-Attribution Problem – The problem of identifying a user based solely on 

network traces of past communication activity without leveraging any 

authentication or tracking techniques like cookies, logins, source IPs.  

 Complex System – Self-organizing systems, which at the end of their evolution 

show an emergent architecture with unexpected properties and regularities 

(Barrat, Barthelemy, & Vespignani, 2008). 

 Complex Network – A complex system structured as a graph that has non-trivial 

topological characteristics that do not match previously studied random graphs 

and has the following properties: self organized dynamic evolution, emergence of 

the “small-world” concept, structurally scale free and showing a power law 

degree distribution (see section “Complex Networks” for more details). 

 Mobile Networks – Networks that share the properties of complex networks. They 

are owned and operated by different providers who enforce different 

administrative policies and can be accessed by mobile devices. 
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 Run-Time Performance Scalability – It measures how well the solution manages 

computing resources to accomplish its task in terms of CPU and memory 

utilization  

 User Classification - The process of matching records of past behaviors that 

belong to the same individual, sometimes when the individual is acting 

anonymously 

 

Summary 

 

Solutions to the user attribution problem, in the context of complex networks, are 

relevant in several technology areas such as web mining and security. Because there is so little 

research in this area, it was critical to limit the scope of this initial work so that comprehensive 

and in depth solutions can be explored and compared to other existing well established 

methodologies. The work carried out in this study attempts to create the foundation upon which 

many critical topics related to the user attribution problem can be addressed via future studies. 

One future study with high applicability to the area of security is the topic of timeliness and 

concept drift as they relate to the recognition of a malicious user.   

The goal of this work has been to provide a solution to the user attribution problem which 

can be measured in terms of its accuracy and the ability to maintain consistently high levels of 

identification precision when the number of users and/or web destinations visited increases. 

Chapter 2 provides more motivations for the existence and impact of the user attribution problem 

in the context of complex networks, while chapter 3 describes in detail the approach used to 

address the user attribution problem using hierarchical temporal memories. 
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Chapter 2 

 

Review of the Literature 

 

Solutions to the problem of correctly recognizing the unique source of communication 

have been proposed in the literature and range from IP Traceback techniques to web usage 

mining approaches. Unfortunately, as will be detailed in the following paragraphs, these 

approaches fall short of effectively addressing the problem. 

One technique that has been proposed to recognize the source of communication is to 

trace the communication traffic back to its origin. Extensive IP traceback research is available 

that attempts to recognize the source of any packet sent over the internet. Traditional IP 

traceback attempts to address this problem in the context of security for DOS and DDOS attacks. 

A large number of IP traceback techniques have been proposed in the literature as reported by 

Santhanam, Kumar, and Agrawal (2006), all of them entail tracing backwards through routes 

taken by packets from the victim node, with trace traffic possibly passing through several ISP 

domains necessitating inter-domain cooperation. Typical challenges faced by IP traceback 

algorithms in recognizing the source of the attack range from having to address potentially 

forged (spoofed) source IP addresses, to attempting to trace attackers hiding behind stepping 

stones. These compromised hosts overwrite their source IP address on the outgoing packet 

headers and also apply header transformation to conceal their true origin. It is important to note 

that network address translation (NAT) devices, similarly to stepping stones, modify the private 

source IP address of packets by replacing it with the public IP address of the egress interface of 

the NAT device together with a potentially new port number. As pointed out by Santhanam et al. 

(2006), most IP traceback schemes are only capable of tracing up to the stepping stone but not 
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beyond and thus IP traceback schemes would be unable to detect sources behind a NAT device. 

Because IP traceback schemes rely on routing, they will not work across firewalls, unless the 

firewalls were to be specifically configured to allow traceback traffic. Individual organizations 

would find it difficult, if not impossible, to successfully utilize IP tracebacks without the 

involvement of the upstream ISP (Belenky & Ansari, 2003). 

 

There are two major ways to trace back IP flows to their source; Reactive and proactive. 

Reactive approaches start tracing after the attack is detected while proactive methods log 

information for tracing while packets are in transit so that when tracing is required, the target of 

the attack can refer to this information to identify the attack source.  

 

The reactive scheme of controlled flooding,  as proposed in Burch and Cheswick (2000), 

is used to trace the source of DOS attacks and relies on the fact that during DOS attacks the links 

of the attack paths should be heavily loaded. By measuring incoming traffic to the attacked 

system and adding more traffic load to the links of the suspected path, attack packets to the target 

are expected to decrease as they are dropped. If this happens the process is repeated for the next 

hop until the source of the attack is detected. 

Stone (2000) proposes a tracing overlay network “CenterTrack” where a tracing router is 

used to tunnel all monitored traffic through itself from edge routers. All traffic is monitored 

using signature-based intrusion detection and when an attack is detected the source is found to be 

only one hop away from the target. Chang et al. (1999) proposed Deciduous (Decentralized 

source identification for network based intrusion), which leverages knowledge of the network 

topology to establish IPSec tunnels between routers and the target. If an attack packet gets 

authenticated via a security association, then the attack originates at a point behind that router, 
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otherwise the attack source originates in the path between the router and the target. The schemes 

described have several limitations in that all require significant ISP cooperation for performing 

the trace back. CenterTrack suffers from scalability limitations based on the centralized 

forwarding approach and likewise IPSec is also not scalable because of the implicit processing 

overhead required to iteratively built security associations to investigate the integrity of links. 

 

Probabilistic packet marking is used in (Savage, Wetherall, Karlin, & Anderson, 2001) 

where routers mark packets picked at random (by using the identification field of the IP packet 

that passes through them) with their own address so that when the target receives enough such 

packets it can reconstruct the addresses of all marking routers along the attack path.  iTrace is 

used in (Bellovin, Leech, & Taylor, 2003), this software uses  ICMP Traceback messages to help 

trace IP packets back to their source. When forwarding packets, routers can generate (with a low 

probability) a traceback message that is sent along to the destination. When enough traceback 

messages from enough routers along the path are available, the traffic source and path can be 

determined. The traceback message contains next and previous hop information together with as 

much of the traced packet as will fit. The attack path back to the source can be reconstructed 

using a time to live field available in the trace back message and the addresses of the routers on 

the attack path that implement iTrace. The Intension-drive iTrace method proposed by Mankin, 

Massey, Wu, Wu, and Zhang,(2001) represents an improvement over the original iTrace scheme 

in terms of reducing the number of iTrace messages that are not applicable to a specific sought 

attack and improving the time to complete trace backs. 

 

Authors in (Snoeren et al., 2002) propose a scheme called source path isolation engine 

(SPIE) where each router, known as a data generation agent (DGA) saves partial information of 
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every packet that passes through that router so that it can be reused in the future to determine if 

that packet had passed through it. The challenge with this scheme is to minimize the amount of 

data that needs to be saved. The authors propose to save the IP header of packets and the first 8 

bytes of the payload by hashing this data to produce several digests which are stored in a space-

efficient data structure called a bloom filter, which considerably reduces storage requirements. 

 

IP traceback schemes rely on routing to trace back the source of communication and thus 

require cooperation among network operators to support the specific tracing scheme 

requirements. When such cooperation is clearly defined, IP traceback schemes can be effective, 

but when such collaboration is not clearly outlined, then it would be difficult to trace users as 

they move across complex networks. 

A different way to tackle the problem of identifying the source of communication is to 

monitor and track information that users access and the way in which they access it. That is, 

utilize past communication data that describes patterns of usage about users visiting a given web 

site, such as IP addresses, page references, date and time of access, in order to uniquely and 

repeatedly identify such users.  

Web Usage mining is the process of applying data mining techniques to the discovery of 

usage patterns from web data, targeted towards various applications (Srivastava, Cooley, 

Deshpande, & Tan, 2000). These web mining techniques are applied mainly in the analysis of 

log based data and entail the following steps: pre-processing, pattern-discovery, and pattern-

analysis. In the context of web usage mining, identifying user sessions is a challenge because of 

the difficulty of obtaining reliable usage data due to the presence of proxy servers, anonymizers, 

dynamic IP addresses, missing references due to caching, and the inability of servers to 

distinguish users during different visits to web sites.  
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Grčar (2004) describes web usage mining as the process of discovering usage profiles 

instead of user profiles. By studying web server logs, he came to the conclusion that sessions are 

easier to identify than users. However, in the worst case, the only user identification information 

included in a log file is the user source IP address. Grčar recognizes that the user’s IP address is a 

poor form of identification since different users can be assigned the same IP address and one user 

can be assigned different IP addresses even during the same session. Other researchers make 

similar claims (Pitkow, 1997; Rosenstein, 2000). A technique proposed by Cooley, Mobasher 

and Srivastava (1999) to distinguish users with the same IP address is to make use of the user 

agent field and the HTTP referrer field. Cookies created by a given web site represent an even 

better form of user identification since 90% of users have cookies enabled (Baldi, Frasconi, & 

Smyth, 2003). Identification of the end of user sessions, as recommended in Cooley, Mobasher 

and Srivastava (1999), is carried out with the assumption that if a given predefined time period is 

exceeded visiting a web site or between two accesses to the same web site, the current session 

ends and a new session starts at that point. Because the sessions can have holes (missing web 

pages) due to the presence of web caches, the missing web pages can be inferred based on the 

site structure. 

Sessions as proposed in (Chen, Park, & Yu, 1996; Cooley, et al., 1999), can be divided or 

joined into transactions. Transactions are made up of auxiliary web pages that are visited as part 

of the navigation toward a desired web page and content web pages that are the ultimate 

destination for users. Transaction identification which creates meaningful groups of references 

(URLs) for each user, is carried out using reference length (time spent by a user viewing a given 

web page) and maximal forward reference (the last page requested by a user before backtracking 

occurs). Grčar (2004)  represents transactions as vectors of weights where each weight for a 
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given web page represents either the amount of time spent on that web page or the number of 

times that page is visited. The author measures similarity among transactions using the cosine 

similarity measure in order to cluster together transactions that belong to the same user.  

Association rules represent a different approach to clustering also based on distance 

measures. The work of Cooley et al.  (1999) shows that association rules utilizing the A-priori 

algorithm can be effective in the area of recommender systems.  Frequent itemsets of visited web 

pages can be discovered which could show that web page-x and web page-y are accessed 

together 20% of the time. Association rules can then be used to show that when web page-x is 

accessed in a transaction, web page-y is also accessed a certain percentage of the time. This 

approach is promising but requires all data processed by the A-priory algorithm to be available, 

thus precluding application of the algorithm to data streams. 

User session reconstruction is important in web mining activities and entails correct 

mapping of activities to different distinct users and the correct separation of activities belonging 

to different visits of the same individual. As users navigate a site, user identification occurs via 

identifiers such as cookies, source IP addresses and user agent fields, while session identification 

either utilizes embedded identifiers if available, or time heuristics or navigation heuristics which 

utilize the referrer field, so that a page must have been reached from a previous page to belong to 

the same session (Liu 2008).  Identifying user sessions is similar to the problem of identifying 

individual users since references to web pages must be grouped into logical units representing 

web transactions or user sessions (Liu & Wu, 2004).   

The authors in (Spiliopoulou, Mobasher, Berendt, & Nakagawa, 2003) tackle the problem 

of evaluating heuristics for session reconstruction and propose two key steps in this process: 
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1. All activities performed by the same physical person should be grouped together 

2. All activities belonging to the same visit to the web site should be placed into the 

same group 

The W3C (W3C Web Usage Characterization Activity 1999), defines (server) session or 

visit as the group of activities performed by a user from the moment he enters the site to the 

moment he leaves it. Since a user may visit a site more than once, the web server log records 

multiple sessions for each user. A user activity log, records the sequence of saved activities 

belonging to the same user. Thus, sessionization is the process of segmenting the user activity 

log of each user into sessions representing a single visit to that web site. Spiliopoulou et al., 

define proactive and reactive sessionization heuristics to perform such segmentation. Use of 

cookie-based identification and user authentication are considered proactive approaches since the 

mapping between the user and a session is guaranteed while (or even before) the user is 

accessing the site. On the other hand, reactive strategies like utilizing a source IP address and 

user agent, would attempt to establish such a mapping from the servers logs after the user has 

accessed the site. The authors conclude that use of cookies, coupled with time based heuristics 

(measuring session or inter user request timeouts) allows correct reconstruction of user sessions 

over 90% of the time. They further report that use of cookies improves the quality of 

reconstructed sessions by 20%. 

Unfortunately, cookies have shortcomings because they cause privacy concerns, they are 

easy to remove from a user browser and they cannot be used across web site visits since each 

cookie is created by a specific origin server to be used only by a specific user. The authors 

(Iváncsy & Juhász, 2007) address the cross-site shortcoming of cookies by using two cookies, 

one (first party cookie) to track a user at one web site and the other (a third party cookie) using a 
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central server controlled by the authors. This third party cookie is created by the central server 

and remains the same across all sites visited during the test. The authors embed in all web pages 

of visited sites a reference to a small 1x1 GIF image residing in the central server, which when 

the web page is accessed, downloads the third party cookie.  This cookie allows correlation of all 

sessions belonging to a given user across web sites. The authors show that their approach 

outperforms, in user identification accuracy, approaches that just use the source IP address. 

While the authors do manage to track user sessions across web sites, their experiment could 

easily fail if cookies were to be deleted by the user. More importantly, this experiment would 

also be difficult to implement in a real world scenario since this solution requires each site to 

embed the small image and deployment of a central server would likely suffer from scalability 

problems as the number of users increases.  

Most often, the objective of user identification is to recognize the user across repeated 

entries to multiple web sites, without implicit identifiers (cookies) or explicit identifiers created 

when users login or register to access sites. Without such identifiers, accurate user identification 

is a challenge and user identification must then be inferred which turns the user identification 

problem into a user attribution one. A new approach is needed that could recognize users 

accessing a multitude of web sites without having to rely on cookies. 

In (Jin, Sharafuddin, & Zhang, 2007) the entropy of the persistence of  IP addresses is 

computed but the objective of this study is to identify the presence of dynamic IP addresses 

rather than profiling single users. User profiling at the granularity of single users was studied in 

(Song, Venable, & Perrig, 1997) for user recognition, by monitoring keystroke latency patterns 

or at the device level, for device recognition by fingerprinting devices via detection of changes in 

clock skews among different devices using the TCP Timestamp option (Kohno, Broido, & 



24 
 

 
 

Claffy, 2005). Kohno et al., believe that their approach can be used to identify the same physical 

device among a large number of devices since there exist variability in the clock skew of 

different physical devices, and it holds that the clock skew for a given device is constant and 

independent of network access technology. The time stamp option defined in (Jacobson, Braden, 

& Borman, 1992) shows promise when present in TCP packets for improving the user session 

identification process. A way to utilize this optional TCP field is utilized in the approach section 

of this idea paper. 

Tracking electronic identities in communication networks can be achieved by using 

“signatures” of node activities (Cormode, Korn, Muthukrishnan, & Wu, 2008). Signatures 

capture the distinctive and discriminating communication behavior of an individual. The authors 

adopt a signature based approach to analyze the patterns of communication exhibited by 

individuals. Using real data the authors measure key signature properties in the form of 

persistence, uniqueness and robustness in order to detect, among several scenarios, label 

masquerading. Label masquerading occurs when a user switches all of his communication from 

one node to another. An example of this, is the repetitive debtor problem (Hill, Agarwal, Bell, & 

Volinsky, 2006), where a consumer switches accounts with no intention of paying for his 

network usage. In their experiments, the authors found that high persistence (signatures remain 

stable across time) and uniqueness (signatures from one user should not match signatures from a 

different user) are key properties needed to correctly identify users that leverage label 

masquerading. 

The idea of profiling and recognizing users based on their communication behavior was 

recently undertaken by (Kumpošt, 2007; Kumpošt & Matyáš, 2009). The authors use real data 

from a university campus network to recognize users based on their IP address and 
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communication profile using SSH, HTTP and HTTPS.  The experiments conducted by these 

authors produced reasonably accurate identification results for SSH type traffic with a 21% rate 

of false alarms; however for HTTP and HTTPS traffic the false alarm rate was high, 70% and 

60% respectively. The authors attributed the poor performance to the fact that students 

connecting to the internet utilized wireless connections from laptops from multiple locations 

across campus and therefore were assigned different IP addresses.  

Similar work on user profiling was also carried out by Yang (2010). Her approach was to 

build user profiles of web browsing behavior from consecutive web sessions of known users and 

use these profiles to predict the owner of future anonymous web sessions (i.e. user 

identification). The experiments conducted by the author show that this approach can be highly 

effective and efficient. However, the solution does not scale well (the experiment could not go 

beyond 100 users) since many users can share the same behavior and her approach cannot 

connect consecutive user sessions, forcing identification to take place over short periods of web 

activities. Yang acknowledges that recognizing web users based solely on their online user 

behavior rather than using tracking techniques is a difficult problem. The problem is made even 

more complicated due to the basic need of recognizing a user when that user identity is not 

known in the first place. This is very important for real life applications where supervised 

learning (assuming the user is known at training time) cannot be applied.  

Herrmann, Gerber, Banse & Federrath (2010) implement web user identification attacks 

by linking web sessions of a given user solely based on the history of his past activities on the 

web and specifically by observing how frequently different host names are visited by users. 

Their experiments are limited to 28 users and show that consecutive sessions can be linked to a 
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given user with a high probability for session durations ranging from 5 minutes to 48 hours. 

Their results show correct user identification for 50% of the users 80% of the time. 

The recent work of both Yang (2010) and Herrmann et al. (2010) shows promise in 

utilizing approaches that leverage user web past activities to identify users. Their experiments 

share limitations that have left open opportunities to perform more research in this area: 

 Both leverage supervised learning and assume that the user is known at training time 

 Both do not address concept drift and are unable to adjust to changes in users’ 

behavioral patterns 

 Both are limited in their ability to identify user sessions. Yang’s approach attempts to 

match sessions learned from user web activities before time T with anonymous 

sessions observed after time T. Moving away from time T increases the difficulty of 

connecting sessions belonging to the same user. The approach used by Herrmann et 

al. (2010) uses a fixed time window (all activity falling within the window belongs to 

the same user) to group sessions belonging to the same user. This solution will 

erroneously distribute contiguous sessions belonging to the same user to a new user. 

 Both solutions do not scale in real world situations as user identification relies 

exclusively on the uniqueness of the web destinations visited by users, as is 

acknowledged by Herrmann et al. (2010) : “…. tracking one user among thousands of 

unknown users will cause a false alarm for the majority of instances…” 

Even more recently, Banse, Herrmann, and  Federrath  (2012) address the challenge of 

tracking internet users (linking a large number of multiple user sessions) without resorting to the 

use of explicit tracking techniques such as cookies or other explicit identifiers. The authors also 
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explicitly address the problem of changing source IP addresses in their solution by assuming that 

addresses can change only within a fixed time period (24 hours), an epoch. In their experiments, 

the input is represented as a triplet: epoch, source IP, destination IP. Session identification is 

accomplished by aggregating all events that share epoch and source IP. The authors verified their 

solution in a real world setting with up to 2000 concurrent active users each day and  report 

being able to correctly link up to 88% of all sessions on a day by day basis. It is important to note 

that the research left as future work by these authors is tackled by the work carried out in this 

study, namely: 

 The authors acknowledge that NAT devices which force the same source IP 

address to be shared among multiple users, is a problem not addressed in their 

solution 

  The authors acknowledge that increasing the number of times that the source IP 

address changes from once a day to every three hours decreases the accuracy of 

their algorithm from 60% to 49% 

 Epochs as defined in this work are tied to a fixed location where user requests are 

issued. In order to address mobility the epoch would need to account for location 

(time zone) 

As this literature review has shown, the problem of recognition of users that get assigned 

different source IP addresses re-entering the network or accessing the network from multiple 

locations is a real issue that needs to be addressed especially in the area of security for intrusion 

response and prevention systems. The research in this topic, which has leveraged trace back, 

tracking and inference techniques, has so far not provided an effective solution to this problem 
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Complex Networks 

 

A system can be complex and complicated at the same time but these are two very 

different concepts. Barrat et al. (2008) explain that the intricate appearance of large-scale graphs 

naturally evokes the idea of complicated systems in which large number of components work 

together to perform a function. The internet is a physical system that is composed of 

independently administered computer networks each of them having its own administration, 

rules and policies. There is no central authority that oversees its growth as new connections and 

nodes are added to it on a daily basis. These attributes make the internet a complicated system, 

much like mobile networks that attach to the internet from a multitude of different locations. Yet, 

the internet and mobile networks also share properties of complex systems where they 

dynamically evolve and self organize in very specific structures that maintain a scale-free 

topology.  

Typically, complex networks are difficult to describe based on their topology. Many of 

them form networks whose vertices are the elements of the system and whose edges represent 

interactions among them. In the case of the World Wide Web, vertices are HTML documents 

connected by links pointing from one page to another, while in the case of the internet vertices 

are routers and computers linked by various physical or wireless links. Because of their large size 

and the intricacy of the interactions, the topology of these networks is largely unknown (Barabasi 

& Albert 1999).  Barrat et al. (2008) believe that complex systems consist of a large number of 

elements capable of interacting with each other and their environment in order to organize in 

specific emergent structures. These authors attribute the characteristics of complex networks to 

the fact that decomposing the system and studying subparts in isolation does not allow an 

understanding of the whole system and its dynamics, since the self organization principles reside 
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mainly in the collective and unsupervised dynamics of the many elements. Mobile networks, in 

the form of WIFI hotspots and cellular networks provide access to the internet and support 

connections to the World Wide Web. Mobile networks add to the intricacy of the topology of the 

internet in many cases with deployments where one wireless network overlaps with another, with 

different operators administering these networks and different standards that define how these 

networks attach to the internet. 

The patterns of connections among elements of complex networks are neither regular nor 

random, instead these networks tend to self organize into a scale free state where the probability 

P(K) that a vertex in the network interacts with other K vertices decays as a power-law, 

following P(K) ~ k
-y

 where y is a constant.  The power law tail characterizing P(K) indicates that 

highly connected (large in-degree) vertices have a large chance of occurring, thus dominating 

connectivity. Barabasi and Albert defined the principle of “preferential attachment” as typical of 

complex networks, where there is a higher probability that a new vertex will be linked to another 

existing vertex that already has a large number of connections. This power law behavior strongly 

contrasts with the Poisson degree distribution of classical random graphs where links are 

randomly created between pairs of existing nodes.  

One key property that is traditionally shared by complex networks is the fact that while 

complex networks are often large in size, in most networks there is a relatively short path 

between any two nodes. This is known as the concept of “small worlds”. Broder et al. (2000) 

found that the average path length between nodes in a 50 million node sample of the World Wide 

Web is 16, while Adamic (1999) found that for 60,000 web root nodes the average path length 

was 3.1 hops, leading him to acknowledge that the World Wide Web is a small world.  Another 

important property of complex networks is the high tendency for nodes to cluster together so that 
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nodes will tend to create tightly knit groups (cliques) characterized by a relatively high density of 

ties. The local clustering coefficient of a vertex (node) in a complex network quantifies how 

close its neighbors are to being a clique (complete graph). Watts and Strogatz (1998) defined this 

coefficient to determine whether a graph is a small-world network.  

As previously described, the degree of a vertex in a network is the number of edges 

connected to that vertex. P(k) was previously defined to represent the fraction of vertices in the 

network that have degree k and it follows a degree distribution that has a power tail. Both the 

World Wide Web and the internet follow two power law degree distributions; Pout(k)  ~ k
-Yout

 that 

describes the probability that a node/document has k outgoing edges/hyperlinks and Pin(k) ~ k
-Yin

  

that describes the probability that k edges/hyperlinks point to a certain node/document. Different 

studies for the World Wide Web show values for Y
out 

ranging from 2.45 for document sizes of 

325729 to 2.72 for document sizes of 2 X 10
8
. 

Of specific interest to this study is the evaluation of the distribution of visitors to web 

sites. Adamic and Huberman (2000a) studied the distribution of users among web sites by 

examining usage logs from America Online covering 120,000 sites. They discovered that the 

distribution of visitors per site follows a universal power law similar to that found by Pareto in 

income distributions. They reasoned that a small number of sites control the traffic of the web 

population, a result typical of winner-take-all markets. The authors agree that the World Wide 

Web gives rise to an asymptotic self similar structure in which there is no natural scale and the 

number of users per site is indeed distributed according to a power law. In another study Adamic 

and Huberman (2000a) find inconsistencies in the conclusions of a study by Barabasi and Albert 

(1999) which states that because of preferential treatment a vertex that acquires more 

connections than another will increase its connectivity at a higher rate so that the connectivity 

http://en.wikipedia.org/wiki/Steven_Strogatz
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between nodes increases in line with the growth of the network. This leads to older vertices 

increasing their connectivity at the expense of younger and leading to the well known “rich-get-

richer” phenomenon for highly connected vertices.   Adamic and Huberman studied web crawls 

of 260,000 sites and concluded that all sites are not created equal since no correlation exists 

between the age of a site and its number of links. They explain that the rate of acquisition of new 

links varies from site to site and is probably proportional to the number of links the site already 

has, because the more links the site already has, the more visible it becomes and the more links it 

will get.   

While there has been agreement in the research community that communication traffic 

has self similar characteristics, until recently it was believed that complex networks are not 

invariant or self-similar under large scale transformations. This belief is rooted in the small 

world property of these networks which would seem to imply that the number of nodes increases 

exponentially with the diameter of the network rather than following the power law relation 

expected for self-similar structures. Song, Havlin and Maske (2005) analyzed real complex 

networks, like the web, utilizing a box counting method as a scale invariant renormalization 

procedure and concluded that, on the contrary, these networks consist of self repeating patterns 

on all length scales that suggest they share common self-organizing properties. 

 What are the implications of addressing the user attribution problem in the context of 

complex networks?  The self similar, small world and clustering properties together with the 

preferential attachment characteristic of complex networks supports the notion that users tend to 

visit a limited number of mostly popular sites with increasing frequencies. How can the approach 

implemented in this study leverage unique and personal patterns to differentiate among users if 
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different users visit mostly the same sites and this research proposes to use web site visits as a 

way to uniquely recognize users? 

This study has leveraged at its fullest the power law properties that characterize web 

traffic of users who visit different web sites. Specifically, the implications of the power law 

distribution support the notion that while it is true that few web sites get visited very often by all 

users, few and unique web sites, in the long tail portion of the power law distribution, get visited 

less often by a variety of users as well. By recording communication patterns of past activity for 

each user it becomes possible to identify unique and differentiating elements that will enable 

isolation among users.  More specifically, the assumption in this study has been that the long tail 

properties of the distribution of user visits to web sites together with the time order of such visits 

create conditions for unique differentiation among user patterns that allows to adequately address 

the user attribution problem. 

In order to leverage the power law properties that characterize users’ web site visits, this 

research created synthetic data for its experiments by implementing a zipf generator that 

simulates user visits to web sites ranging from 1 to N, with web site 1 being the most popular and 

N the least. The zipf distribution is of the form:  

Zipf(n) =  
 

    where C = [∑ (
 

 
) 

   

 

]
  

, N = maximum number of web sites, 

and 0 < θ < 1. The algorithm used to implement this distribution are based on zipf algorithm used 

in (Gray,  Sandaresan, Englert, Baclawski, & Weinberger, 1994) as shown in the Java snippet in 

Figure 1. Next_ZipfRandom returns the next web site in rank order from 1 to n (with 1 being the 

most visited and n the least) following a power law distribution. The algorithm generates web 
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sites that are weight proportional to the Riemann zeta function:  
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+….+ 

 

  

 
.  In the algorithm 

below, θ(theta) controls the skewness such that θ = 1.0 indicates the highest skew (all nodes have 

different popularity) and θ = 0 indicates the lowest skew (all nodes are equally popular). To see 

how the Next_ZipfRandom function is used in the context of the research experiment, refer to 

section “Generation of Synthetic Data for the Simulation”. 

It is important to note that, Hierarchical Temporal Memories are an appropriate tool to 

study complex networks. HTMs perform well when the data they process support a hierarchical 

structure.  Ravasz and Barabasi (2003) show that the scale free and high degree of clustering of 

complex networks like the World Wide Web are the consequence of a hierarchical organization. 

They show that a small group of nodes, such as communities of interest in the WWW, organize 

in a hierarchical manner forming larger groups, while still maintaining a scale free topology. 

This self similar nesting of different groups into other groups forces a hierarchical structure that 

well fits the ability of the HTM to correlate groups that are close in space and time. 
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Figure 1 Simulating user web visits to web sites using Zipf distribution 

 

  

long  Next_ZipfRandom(long n, double theta) 
{ 
  double   alpha      =   1.0 / (1.0 - theta); 
  double   zetan      =   zeta(n,theta);  
  double   eta          =  (1.0 - Math.pow(2.0 / (double)n, 1.0 - theta)) / (1.0 - zeta(theta,2.0)/ zetan); 
  double   u         =  random.nextDouble(seed); 
  double   uz       =  u * zetan; 
 
 if(uz  < 1.0)  return (1); 
 if( uz < 1.0 + Math.pow(0.5,theta)) return (2); 
 return(1 + (long)(n * Math.pow(eta * u - eta + 1.0,alpha))); 
} 
 
long zeta(double n, double  theta) 
{ 
 int i = 0; long ans = 0; 
 
 for(i=1;  i< n; i++) 
 { 
            ans +=  Math.pow(i+1,theta); 
        } 
        return(ans); 
} 
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Chapter 3 

 

Methodology 

 

As humans generate more and more data in their lives, they leave behind massive 

amounts of information that reveal their unique behavioral characteristics. Using this data, it is 

possible to recognize each user. User classification is the process of matching records of past 

behaviors that belong to the same individual, sometimes when the individual is acting 

anonymously. Hills and Nagle (2009) define identification in the context of dynamic networks as 

a matching task that involves comparing network entities across time periods. The authors 

acknowledge as a limitation the theoretical aspect of their work in modeling real user behavior. 

Kumpošt and Matyáš (2009) tackle this limitation by addressing the user attribution problem 

using an identification approach which pinpoints users among others based only on observed 

behavioral characteristics. The approach that has been used in this study to address the user 

attribution problem relies on the premise that users follow patterns of behavior peculiar to them 

and is reflected in a time ordered set of unique destinations visited during communication 

sessions. Specifically, each communication source visits frequently and persistently over time 

unique destinations with respect to other communication sources. These destinations are visited 

in a specific order in the context of user sessions. Observing user sessions over time, together 

with the order of visits to specific web sites, can be leveraged to infer unique users re-entering 

the network.  

There are two important requirements that this solution to the user attribution problem 

has addressed: 
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1. Accurate recognition of users re-entering the network with potentially new source IP 

addresses 

2. The ability to recognize communication patterns belonging to the same user (among 

many different user sessions belonging to many users) by analyzing the sequential 

time ordered nature of web visits, much as is done in web usage mining to predict 

what web page a user clicks next (Liu 2008).  However, as opposed to traditional web 

usage mining, user sessions are be tracked across many different web sites. 

Network signatures, derived from user navigational patterns,  have been shown to be 

effective for targeted marketing and advertising in identifying online users based on their 

browsing behavior (Hill, et al., 2006). In addition, social network signatures have been used for 

author attribution of written documents, where the identities of authors of articles can be inferred 

based on the authors they cite (Hill & Provost, 2003). The applications of re-identification are 

vast, ranging from protecting the privacy of personal records to asymmetric threat detection for 

national security, to detecting subscription fraud in the telecommunication industry. 

Development of reliable methods which forgo use of tracking techniques such as cookies, logins 

and keys and only rely on web usage patterns for identification of users in communication 

networks is an important problem (Yang 2010). 

Hill et al (2006) show that the level of activity in connections among nodes and the 

freshness of such connections can be used to predict node behavior in dynamic networks. The 

authors used communication signatures derived from the levels of activity of nodes and edges in 

graphs to detect repetitive fraud by users re-entering the network with new IDs and to recognize 

users’ repeated access to web servers. The authors represented the evolution of network 

transactions over time among nodes by tracking: (1) Lifetime of node relationships, (2) 
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Frequency of transactions among nodes, (3) Degradation in the relative importance of the 

relationship with the passing of time. 

The experiments conducted by these authors provide the motivation for this study by 

showing that by monitoring the evolution of network transactions, predictive performance of 

user behavior continues to significantly improve for user connectivity to web sites as the number 

of connections increases. They conclude that despite the increase in the number of connections, 

the predictive performance improves, thus allowing a more representative signature to be built 

for each user. It is important to note that while addressing the user identification problem, the 

authors do not explicitly deal with the problem of identifying subscribers re-entering the network 

when the source IP address changes due to dynamic re-assignment or due to the presence of 

NAT or web proxies.  

A solution to the user attribution problem as implemented in this study addresses both the 

spatial and the temporal aspects of the network data used as input.  The spatial aspects are tied to 

the recognition of unique user sessions and unique destinations visited by a user. The temporal 

aspects are tied to the need to observe time ordered visits to different web sites in the context of a 

user session in order to better discriminate among multiple users.  

Hierarchical Temporal Memory (HTM) is a technology which is modeled on the 

algorithms used in the neocortex of the brain (George & Widrow 2008; Hawkins, George, & 

Niemasik, 2009).  Network nodes in an HTM, are organized in a hierarchical way, with each 

node implementing learning and memory functions.  HTMs are unique in stressing the temporal 

aspect of perception, implementing memory for sequences of patterns that facilitate anticipation. 

Each level in the hierarchy is trained separately to memorize spatial-temporal objects (patterns) 

and is able to recognize objects in a bottom-up/top-down process (Duch, Oentaryo, & Pasquier, 
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2008).  The HTM hierarchy also enables efficient representation of relationships among many 

inputs by leveraging reuse of lower level inputs in order to represent higher level concepts at 

higher levels of the hierarchy. HTMs allow sequence learning (concatenation of spatial and then 

temporal learning), which provides the ability to make predictions and can be applied to 

disambiguate input. Only few methods exist that combine spatial and temporal learning in a tight 

way (e.g. recurrent neural networks can do this a well) (Greff, 2010). 

The predictive power of HTMs comes in part from their use of Markov models in the 

context of Bayesian networks used to propagate beliefs across the hierarchy. Markov models as 

proposed by Deshpande and Karypis (2004) are well suited to address the temporal aspect of the 

inference problem and have traditionally been proposed as the underlying modeling machinery 

for web link prediction and web pre-fetching to minimize system latencies. The ability of HTMs 

to infer causes of novel inputs in space and time and to make predictions leveraging the 

hierarchical nature of the input data, makes HTMs good candidates to be used to address the user 

attribution problem. 

HTMs have been successfully used in classification problems in a variety of applications. 

Experiments conducted by Bobier (2007) showed recognition accuracy of 95% by using the 

commercial Numenta’s NuPIC framework to model HTMs in the context of recognition of USPS 

handwritten digits. Besides being applied to image recognition, HTMs have also been applied to 

speech recognition with promising results as reported in the work of Doremalen and Boves 

(2008). HTMs have also been used to model and predict user choices. In (Melis, Chizuwa, & 

Kameyama, 2009), the authors build a mobile phone intention prototype using HTMs and 

Bayesian Networks to predict user intentions while using a mobile phone based on the menu 

choices that the user selects. The authors report that the HTM performs well and is able to easily 
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use information (input) from the real world with little preprocessing and good accuracy. The 

authors conclude that when the structure of the application is reflected into the HTM, even better 

results can be obtained, a theme that is consistent in the literature. 

HTMs have also been used in the area of web analytics. In a talk given for the association 

of computing machinery (ACM), Subutal Ahmad, vice president of engineering at Numenta, 

described results of experiments using Numenta’s HTMs to predict user web click behavior for 

topics and pages of interest to the user. In these experiments web content was partitioned into 

177 different topics. In their experiments random prediction reported 0.56% accuracy. By 

training the HTM with 100,000 user sequences (web pages) and using no temporal context (0
th

 

order prediction) the accuracy reported was 23%, which matches what most web sites can do 

today. By including in the analysis transition probabilities from a given web page to another in 

the form of 1
st
 order prediction, predictive accuracy increased to 28%.  By further leveraging use 

of variable order prediction, accuracy levels jumped to 45%. Variable order prediction allows 

prediction to fully leverage the dynamic “context” (patterns embedded in the sequence of the 

most often visited web pages) of web pages visited by a user.   

The user attribution problem implemented in this work benefits from the use of variable 

Markov models. These models increase (over fixed order Markov models) the predictive power 

of HTMs and are critical in enhancing the accuracy of proactive identification of recurring 

temporal patterns (visits to web sites). This study  has utilized a three node HTM, as shown in 

Figure 2, that was used to classify unique users re-entering the network with the bottom node 

recognizing user navigational patterns and the top nodes recognizing user sessions (higher level 

concepts) for each properly classified user.  
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Figure 2 Three Layer HTM for User Attribution 
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The HTM at layer 1 collects sequence of web destinations and maintains their temporal 

relationships (navigational patterns that are likely to follow each other for a given user) via a 

Markov graph.  These destinations are then be broken up into separate temporal groups based on 

their sequential relationships and the connectivity strength of the connections among the 

destinations.  One can think of these destinations as representing different areas of interest for a 

given user (e.g. soccer and tennis for group 1, high school and universities for group 2 and blogs 

and movies for group 3). However, layer 1 would not deal with the temporal relationships among 

the temporal groups it creates.  Creating temporal relationships among groups created in layer 1 

is the job of layer 2 of the HTM.  

The HTM at layer 2 deals with relationships among higher level concepts received from 

layer 1 in the form of temporal groups. For instance, temporal group 1 from layer 1 (a 

coincidence in layer 2) can be thought of  as representing the higher level category of sports, 

while group 2 from layer 1 could represent education and group 3 could represent entertainment. 

Layer 2 learns navigation patterns among these higher level concepts received from layer 1.  

Layer 3 is similar to layer 2 and learns temporal relationships among the higher level 

concepts received from layer 2. So, for instance, for a given user, layer 3 could have learned that 

the user navigates sports followed by education and then entertainment sites. Each layer of the 

HTM communicates to the layer above the degree to which the input is similar to temporal 

patterns (feed forward beliefs) learned within that layer. Layer 3 is then responsible for 

generating the final output in the form of a belief in how well the input matches learned 

navigation patterns for this user inferred through the three layers of the HTM.  
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The generalization property brought about by the hierarchical structure of HTMs has 

another advantage in that it enhances the ability of HTMs to correctly recognize ordered visits to 

web sites by different users. When users visit web sites and the corresponding ordered site visits 

are stored in a Markov chain, it is critical to be able to distinguish the start and end of a sequence 

of such visits. A predefined amount of time between visits is used to mark the beginning and end 

of such visits. However, if web site visits by a given user fall outside this time window then the 

original sequence is viewed as a set of many smaller sub-sequences, possibly with only one 

element in each. Under these conditions a Markov chain would lose accuracy by not being able 

to operate on a longer sequence. In an HTM, higher layers of the hierarchy are able to recover, to 

a large extent, the original sequence and thus improve the accuracy of the HTM. The hierarchical 

structure of HTMs increases the discrimination power of the model by improving the ability to 

recognize long recurring patterns while at the same time becoming less susceptible (more 

invariant) to the time differences in the arrival of input. Riesenhuber and Poggio (1999) 

originally proposed a model for visual processing in the cortext as a hierarchy of increasingly 

sophisticated representations. This hierarchical model was consistent with physiological data 

from inferotemporal cortex that accounts for the complex visual task and makes testable 

predictions. They obtained invariance in the model (to changes in the position of an optimal 

stimulus) by generalizing simple cell to complex cell relationship by using a maximum operation 

(max) performed on the simple cell inputs to the complex cells, where the strongest input 

determines the cell's output. This preserved feature specificity. The model also alternated layers 

of units combining simple filters into more complex ones to increase pattern selectivity with 

layers based on the max operation. This hierarchy helped to build invariance to position and 
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scale while preserving pattern selectivity. A similar approach has been used in this study to 

combine outputs from different layers of the HTM. 

 

Tremendous and potentially infinite volumes of data streams are often generated by real-

time internet traffic. Unlike traditional data sets, stream data flow in and out of a computer 

system continuously and with varying update rates. They are temporally ordered, fast changing, 

massive, and potentially infinite. For example, the universe corresponding to the set of all pairs 

of IP addresses on the Internet is very large, which makes exact storage intractable (Han & 

Kamber, 2006). This study assumes that data is not collected from data bases or servers (web 

proxies/servers) as traditionally done in web mining; instead it assumes that data is processed 

“off the wire”. This requirement is due to the need to collect the TCP time stamps (the need for 

this parameter is explained later in this paper) from the data stream which is not normally found 

in web server log files.  Hierarchical temporal memories were chosen for this study because of 

their ability to process (learn and infer) streams of data (George & Widrow, 2008). As described 

in the next sections, not all approaches are well suited to deal with stream data. 

Methodologies for stream data processing address the need for infinite amount of storage 

space to store streams and often settle for approximate rather than exact answers. Synopses 

provide summaries of stream data, which typically can be used to return approximate answers to 

queries. Random sampling, sliding windows, histograms, multi resolution methods (e.g., for data 

reduction), sketches (which operate in a single pass), and randomized algorithms are all forms of 

synopses (Han & Kamber, 2006). 

Traditional methods of frequent itemset mining, classification, and clustering tend to scan 

the data multiple times, making them infeasible for stream data. In addition, these techniques 
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ignore the temporal order in which transactions occur (e.g. the order in which web pages are 

visited). Stream-based versions of stream data mining instead try to find approximate answers 

within a user-specified error bound. Examples include the Lossy Counting algorithm for frequent 

itemset stream mining as described in Manku and Motwani (2002), which divides the incoming 

stream of data into buckets, computes the approximate frequency of items accounting for 

maximum frequency error and keeps only items in buckets that are most frequent. This simple 

approach unfortunately suffers from at least two short comings: (1) the frequency list of itemsets 

in each bucket may grow infinitely as the stream goes on; (2) frequent itemsets are scanned many 

times impacting the efficiency of the algorithm. Another example of an algorithm used for 

stream data classification is the Hoeffding tree (Domingos & Hulten, 2000; Hang & Fong, 2010). 

This algorithm which was originally used to track web clickstreams, uses decision tree learning 

and creates nodes incrementally as more data streams in. An advantage of Hoeffding trees is that 

this algorithm does not scan the same data multiple times and can classify data even while the 

tree is being built. A disadvantage of this technique is that it cannot handle concept drift 

(changes in the variables that are being classified) because once a node is created it cannot be 

changed. The implications of implementing concept drift in the HTM via continuous learning 

(learning occurring after training completes) have been explored with initial positive results, 

however, in order to limit the scope of this study continuous learning is left as an area of future 

study. 

The Very Fast Decision Trees (VFDT) makes modifications to the Hoeffding tree 

algorithm to improve both speed and memory utilization but still cannot handle the concept drift 

in data streams (Domingos & Hulten, 2000). The Concept Adapting Very Fast Decision Trees 

(CVFDT)   addresses the concept drift by staying current in spite of continuously changing data 
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by growing an alternate sub-tree whenever an old one becomes questionable and replacing the 

old one with the new one when the new one becomes more accurate (Hulten, Spencer, & 

Domingos, 2001). One of the shortcomings of the previously described techniques is that they 

ignore the temporal ordered (sequential) nature of the data stream, an important aspect of the 

approach chosen for this study that is needed to further improve the accuracy of user recognition.  

Sequential pattern mining is the mining of frequently occurring ordered events or 

subsequences as patterns. Given a sequence database, any sequence that satisfies minimum 

support is frequent and is called a sequential pattern (Han & Kamber, 2006). An example of a 

sequential pattern in the context of web mining is “70% of users who first visit web page A.html 

and then visit web page B.html, in the same session, have also accessed web page C.html”.  

Algorithms for sequential pattern mining include GSP, SPADE, and PrefixSpan, as well as 

CloSpan (which mines closed sequential patterns). The problem of mining sequential patterns 

was first proposed by Agrawal and Srikant (1995). In the Apriori-based GSP algorithm, Srikant 

and Agrawal (1996) generalized their earlier notion to include time constraints, a sliding time 

window, and user-defined taxonomies. Zaki (2001) developed a vertical-format-based sequential 

pattern mining method called SPADE, which is an extension of vertical-format-based frequent 

itemset mining methods. PrefixSpan, a pattern growth approach to sequential pattern mining, and 

its predecessor, FreeSpan, were developed by Pei et al. (2001) and Han et al. (2000). The 

CloSpan algorithm for mining closed sequential patterns was proposed by Yan, Han, and Afshar 

(2003).  

Constraint-based mining of sequential patterns is another approach to mining sequential 

patterns which incorporates user-specified constraints to reduce the search space and derive only 

patterns that are of interest to the user. Constraints may relate to the duration of a sequence, to an 
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event folding window (where events occurring within such a window of time can be viewed as 

occurring together), and to gaps between events. Pattern templates may also be specified as a 

form of constraint using regular expressions (Han & Kamber, 2006). 

Markov models have been proposed as an underlying model for web link prediction as 

well as web pre-fetching to minimize system latencies (Mukund & George, 2004; Sarukkai, 

2000). These models represent web pages as states and transition probabilities represent the 

likelihood that a user will navigate from one state to another. Markov models which include 

Markov chains are especially suited for predictive modeling based on contiguous sequences of 

events. HTMs incorporate Markov models to recognize temporal patterns, as a key element of 

their architecture. 

An important part of the approach utilized in this study hinges on the ability of the 

algorithm to recognize user sessions. That is, identify a set of HTTP requests bound for different 

destinations as a group of messages originating from the same source. The approach used for this 

study during the trainign pahse has utilized the TS value of the TCP timestamp option field of a 

TCP packet carrying an HTTP request as defined in (Jacobson, et al., 1992). The 32 bit TS value 

contains a counter that is driven by the clock of the originating device. This counter on most 

systems resets to a fixed value or to some random value when the device is rebooted. A 

consistent property of this field, needed to compute round time trip delays, is that it continues to 

increase over fixed time periods from some initial value until the device reboots or the TS 

counter wraps around.  In this study, any new HTTP request belonging to a currently tracked 

user session with a TS value that falls outside a predefined positive sliding window is to be 

deemed to belong to a new user session, otherwise the request belongs to the user session 

currently being tracked. This algorithm, by utilizing the TS value, gains in discriminating 
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accuracy since it is able to connect sessions belonging to the same user. Contrast this with the 

work by Yang (2010) which relies on the identifying user sessions exclusively by relying on the 

destinations visited by the known user. Yang’s approach limits the scalability of the solution, as 

acknowledged by the author, since “as the number of users increases user identification based 

on behavioral patterns alone becomes infeasible…there is a need for methods (e.g. IP addresses, 

Cookies) to connect consecutive sessions. In cases where this assumption does not hold, 

identification can only be done on fairly short periods of web activity, which can be quite 

difficult….”.  

In this study the TCP time stamp (TS) is used to identify and track only user sessions 

only during the training phase of experiments. Training of HTMs is completely unsupervised and 

leverages the tracking strength of the TS value to identify consecutive web visits as belonging to 

the same user session. This is different from the supervised training approach used by Yang in 

her experiments where a label (user-id) was used to train her inference model. During training, in 

this study, session identification and user identification are one and the same. During the 

inference stage the assumption that a specific session belongs to a given user no longer holds and 

instead the TS value is only used to identify an anonymous session (a set of consecutive web 

visits belonging to an unknown user). The task of assigning an anonymous session to a specific 

user is carried out by the Markov chains performing inference within the different layers of each 

HTM based on past learned patterns of users’ sessions (web visits). All HTMs attempt to 

recognize each anonymous session as shown in Figure 8 and only one HTM will be able to 

recognize it better that the other HTMs based on its past training.  

The outcome of session identification determines the quality of the input received during 

the training and inference stages. Successful session identification would allow identification of 
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multiple web visits from a single source as belonging to a single unknown user, leaving the task 

of recognizing the actual user to the HTM Markov chain inference engines. On the other hand, 

unsuccessful session identification would either classify multiple web visits from multiple 

sources as belonging to a single unknown user or during training misclassify web visits from a 

single source as belonging to the wrong user. These conditions of course, would compromise the 

training and inference processes, making it impossible to correctly identify this web traffic as 

belonging to the correct user. This is exactly the type of session miss-classification problem 

acknowledged by Yang (2010) in her experiments. 

The TCP time stamp was proposed (Jacobson, et al., 1992) to enable real time round trip 

time measurements between TCP peers and to protect against wrapped TCP sequence numbers 

in very high speed networks that use very large window sizes (greater that 64K bytes in size). In 

this study, the TCP timestamp update rate from a sequence of TCP packets have been used to 

fingerprint a user session. The TCP TS value is not a timer, but it represents an infinite counter 

started on a given device that is incremented typically every millisecond driven by the device 

internal clock and never stops incrementing as long as the device is powered on. Powering off 

the device will restart this infinite counter. This counter is sent in each TCP packet to a specific 

TCP peer that can use it as a synchronization point.   

In this study during training, once an HTM has received the first TCP timestamp, it uses 

it to start its own infinite TS counter using its own internal clock and thus synchronizes with the 

originator of this TCP session. Because both the originator and the HTM use clocks indirectly to 

synchronize, the session identification algorithm utilized in this study needs to account for clock 

skew between the HTM clock and the clock of originator of this TCP session. In this research, a 

fixed window is used to measure possible clock skew. Unfortunately, using a fixed offset from 
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the currently received TCP TS counter to measure clock skew, can potentially either 

underestimate (lose a single tracked user session) the clock skew with a window that is too small 

or overestimate (identify a single user session as belonging to multiple user sessions) the clock 

skew with a window that is too large. A possible way to address this problem is to allow for 

dynamic resynchronization of the HTM TS counter with a tracked source based on how much of 

an offset (within a window) a given new received TCP timestamp is from the existing HTM TS 

counter. This approach would use the new TCP time stamp received as the new TS counter value 

each time the new TS value is within the window but does not match exactly the current HTM 

TS counter. This approach could address the potential increase in clock skew that occurs over 

time between user and HTM overcoming the limitations of a non-resettable HTM TS counter. 

With this approach, it is possible to use a small window size since the algorithm is able to adjust 

to clock skew over time. The merits of this approach as well as determining the best size for this 

window is an area of further research that should be based on the empirical results of studying 

the characteristics of clock skew of mobile devices over real mobile networks. 

Clock skew is not the only way in which communication traffic belonging to a given user 

session can be misclassified. Based on radio frequency (RF) conditions, communication over 

mobile networks can suffer from elevated levels of noise with resulting high levels of data loss. 

The user session classification algorithm proposed in this study would need to account for 

possible invalid or outdated timestamps. For instance, TCP timestamps that fall within windows 

belonging to more than one HTM are obviously invalid and can be discarded. However, 

retransmitted TCP packets belonging to an old (no longer active) user session could potentially 

be misclassified as belonging to another active user.  



50 
 

 
 

This study plans to track multiple users visiting multiple destinations. The advantage of 

using the TCP time stamp field for session identificatin is its ability to track a given device that 

sends multiple HTTP messages to multiple destinations. This benefit is not provided when 

utilizing “cookies”, another user identification method also recommended in the literature for 

HTTP traffic. Cookies are not designed to track users across multiple destinations because they 

are created by each origin server to identify  a given user. Instead, cookies work well when used 

as user identifiers to track multiple users all visiting the same web site.  The referrer field of 

HTTP messages has also been used to track user sessions in web mining applications. This 

HTTP header reports the web page that was visited just prior to the current one and is used to 

create an ordered list of web pages visited at a given web site. The referrer field was not used in 

this study because client or web proxy caching can often result in missing access references due 

to pages or objects that have been cached (Liu 2008). 

In the area of data preparation for web mining, Kumpost (2007) has used both TF-IDF 

and cosine similarity, techniques borrowed from text mining, to build user profiles from network 

traffic log processing. Kumpošt and Matyáš (2009), extended their work and, similarly to this 

study, looked into the issue of profiling and user recognition based exclusively on user past 

activity. The experiments conducted by these authors produced reasonable accurate identification 

results for SSH type traffic with a 21% rate of false alarms; however for HTTP and HTTPS 

traffic the false alarm rate was high, 70% and 60% respectively. The authors attribute the poor 

performance to the fact that students connecting to the internet utilize wireless connections from 

laptops from multiple locations across campus and therefore get assigned different IP addresses. 

The authors dealt with the spatial aspects of the identification problem and relied on a fixed two-

dimensional matrix to represent communication between sources (rows) and destinations 
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(columns) with each row identified by the source IP address. In their approach, the source IP 

address is used to assist in the user attribution process.  

The approach utilized in this study addresses directly the attribution problem in the 

context of changing source IP addresses by forgoing use of the source IP address in the 

attribution algorithm. This study also focuses on the user session identification problem, a 

problem that does not exist if one assumes that the source IP address does not change and thus 

can be used to uniquely recognize a given user. This research extends the work of Kumpošt and 

Matyáš in the area of user attribution in network communication in situations where the source 

IP address assigned to users or devices can change.  

The solution leveraged in this study addresses directly the problem of user recognition by 

going beyond the use of spatial algorithms as proposed in Kumpošt and Matyáš’s work, and 

instead it proposes both spatial and temporal algorithms in the form of HTMs which leverage the 

hierarchical properties of network data in order to anticipate learned user navigational patterns to 

allow more accurate identification of users re-entering the network. 

Approach Introduction 

 

The approach followed in this paper is based on the work of  George and Widrow (2008), 

with the following key extensions: 

1. This implementation deals with sequences of input. Markov graphs are used for both 

training the hierarchical temporal memory (HTM) and for performing inference. In 

the work of George and Widrow (2008), Markov graphs were only used during 

training and during inference a 0
th

 order Markov graph was used instead (each 
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element is considered to be independent of the previous one), which means that 

inference did not rely on the sequential order of input. 

2. This implementation uses variable Markov chains and state cloning as a way to 

improve the learning and inference accuracy of the HTM. 

3. This implementation leverages the idea of “playback” as a way to bootstrap and 

optimize learning across multiple layers of the HTM. This concept is missing in the 

work of George and Widrow (2008). 

The user attribution problem as addressed in this study is really made up of two sub 

problems: 

1. Communication session identification 

2. Communication pattern identification associated with the same user communication 

session  

Communication session identification entails recognizing multiple consecutive web 

destinations as being visited by the same user over time. Session identification is critical during 

the learning stage of the classification process to accurately train the HTM to correctly identify 

web sites visited by a user during the inference stage. The key element that enables identification 

of a source of communication as utilized in this study is the Time Stamp (TSval) value 

representing the timestamp option field of a TCP packet as defined in RFC 1323. 

Beacken et al. (2011) have discovered that the TCP Timestamp field used for iphones 

always starts at the same date/value when the device is restarted but for android devices, the TCP 

timestamp value on device power up is random. They state that this allows one to be able to 

distinguish iphones from android type devices. In this study, the time stamp value, a 32 bit value 
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implementing a virtual clock on each device, is used to uniquely identify unique sessions 

associated with a given user. Each device implements the virtual clock as a 32 bit wrap around 

counter which starts at a fixed or random time (depending on the device) and is incremented at 

each tick time (RFC 1323 recommends the clock frequency to be in 1 ms as this forces a wrap 

around each 24.8 days). For this prototype a resolution of 1 ms was assumed, realizing that the 

actual clock resolution could also be extracted from the communication data itself. The chance of 

two devices having the same TS value is rare; theoretically it is 1/ 2
32

 assuming randomness 

since devices start their virtual clock at different times based on when the device is powered on.  

The prototype built for this study identifies multiple communication sessions during the 

training phase of learning that belong to different users by tracking the unique TS value (TS) of 

each device. All communication input associated with a given <TS> value within a given time 

window was fed to a hierarchical temporal memory (HTM) to identify the communication 

patterns associated with sessions belonging to different users. These communication patterns are 

defined in terms of the destinations (Dest) visited by this user.  The input to the prototype has the 

following form: 

Timestamp <TS, Dest> 

The timestamp has a resolution of 1 millisecond and represents the passage of time with respect 

to the arrival of input to the prototype. The time stamp is specifically needed to distinguish 

multiple <TS,Dest> input pairs immediately following each other with potentially the same TCP 

time stamp values, as either all arriving at the same time or at different times. 
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The algorithm below was used for communication session identification during the learning 

phase of classification and selection of appropriate HTM to perform communication pattern 

identification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  Communication Session Identification Algorithm during Training 

 

Note that each HTMUx once created runs a virtual clock with a 1 ms resolution used to 

track the TS value of sessions associated with this HTM. The allowed TS clock windows was 

computed as follows: Allowed-TS-Clock-Window = [TSv + Clock()]   Clock-Skew-Factor. The 

computation TSv + Clock() needs to account for wrap around at 2
32

. 

IF ( Given input: <TSv,Dest>, TSv is out of range of allowed TS clock skew window for any  HTMUx 

)THEN  

 // New user not identified before  
 

  // Create a new HTM to track communication patterns from this source 

- Create New HTMUx  (Timestamp:<TSv,Dest>) 

ELSE IF (Given input: <TSv,Dest>, TSv is in range of  allowed TS clock skew window for a single 

HTMUx) THEN  

// Existing user already being tracked with existing device type already identified  

- Invoke existing HTMUx  (Timestamp:<TSv,Dest>) 

ELSE  // The TCP timestamp matches more than one HTM  

- Drop the input 

- Update counter:  Unable-to-Distinguish-Session 

ENDIF 
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It is important to note that in this implementation, the same user utilizing two different 

devices would be identified by the prototype as two different users.  

The HTM Implementation 

 

The HTM implementation is shown in Figure 4 and depicts for each layer the different 

stages that the HTM goes through to learn new input patterns and then perform inference on 

them. 

 

Figure 4 HTM Three layer Implementation 
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State transitions are shown in the form of event / set of actions. Specifically, the 

following states are defined: 

 Initial Learning state is entered after the HTM is first created.  Learning occurs in an 

unsupervised manner, starting from the bottom layer of the HTM, one layer at a time. 

Layer 1 learns first. After that, layer 2 learns and once layer 2 is done learning layer 3 

completes learning. Learning entails both spatial and temporal learning. Spatial learning 

at layer 1 covers identification of individual sequences of destinations, while at layer 2 

and 3 it covers identification of individual sequences of coincidences (temporal groups’ 

activation levels from the layer below). Temporal learning entails creating a Markov 

graph which recognizes and can predict combinations of all sequence of destinations or 

coincidences learned at each HTM layer. Initial learning is completed with creation of 

temporal groups (Markov Chains) from the Markov graph. These clusters represent 

destinations or coincidences that are highly temporally correlated based the specific order 

in which they follow each other. 

 Playback state is entered when an HTM at layer Ln completes learning and is used to 

bootstrap learning for the layer above Ln+1 using the already learned sequences at layer 

Ln. Playback improves the time it takes to train the HTM and allows higher layers to learn 

higher level concepts that are consistent with the lower level concepts learned by the 

layers below.  

 Inference state is entered at a given HTM layer when that layer completes training. The 

inference phase covers computation of the feed forward beliefs which define the degree 

of membership of the input at a specific layer against the sequence of patterns learned at 

that same layer adjusted for how rare or frequent that input is. 
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The HTM prototype leverages variable order Markov chains to represent learned 

sequences at each one of the three layers of the prototype. Input received at each layer, is 

matched against learned sequences to find the most persistence longest common subsequence 

learned by this layer of the HTM.  Multiple algorithms are implemented by the HTM to provide 

different ways to measure the similarity between the input received and the learned longest 

common subsequence that best matches this input. The inference algorithms implemented follow 

into two main categories: pattern matching and probability based. 

Pattern Matching algorithms are based on the following similarity formula (which 

measures feed forward beliefs -FFB) applied at each layer of the HTM for a given input 

sequence: 

HTM Layers Pattern Matching Similarity Formulas for FFB 

1 FFB1 = Sequence Similarity  +  Sequence Persistence 

2 FFB2 = (Sequence Similarity  +  Sequence Persistence) * Input 
Activation Level 

3 FFB3= (Sequence Similarity  +  Sequence Persistence) * Input 
Activation Level 

Table 1  Degree of Similarity/Membership Formulas  

Sequence Similarity  =    (LLCS    * weight1) + (LLCSu   * weight2) 

Sequence Persistence = (Persistence    * weight3) , where weight1 + weight2 + weight3 = 
1.0, 
LLCS = Length of the longest common subsequence computed between the input and all 

learned sequences at this layer of the HTM divided by the maximum length between the 

input sequence and the length of longest common subsequence 

LLCSu = Length of the longest common substring between the input and all learned 

sequences at this layer of the HTM divided by the maximum length between the input 

sequence and the length of longest common substring 

 

Persistence = Number of occurrences of the Longest Common Subsequence matching the 

input divided by the number of learned sequences in the Markov graph for that HTM layer 

 

Input Activation Level = Average of all Feed Forward beliefs received at a given layer for 

each input element that makes up the input sequence  
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The longest common subsequence between the input sequence and HTM learned 

sequences at each layer is defined as the longest sequence of characters that appear left-to-right 

(but not necessarily in a contiguous block) in both input and learned sequences. Because the 

longest common subsequence is not always unique among learned sequences, the algorithm 

selects always the one with the highest persistence. The longest common substring accounts for 

consecutive substrings (substrings are consecutive parts of a string, while subsequences need not 

be) thus allowing to recognize as more similar, sequences of destinations that directly follow 

each other. So sequences: 8205 and 4820 are more similar since they share a substring (820) than 

sequences 8205 and 8125 even though they have the same length for longest common 

subsequence (825).  

During inference, the length of the longest common subsequence (needed to compute the 

degree of similarity of input sequences against each sequence that can be generated by a Markov 

chain within an HTM layer) is computed using bottom up dynamic programming. The iterative 

algorithm to compute longest common subsequence length is shown in Figure 5 with an example 

of its use in Table 2. The longest common substring algorithm is not shown as it is standard 

procedure in the literature. 
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Figure 5 Algorithm to Compute Length of Longest Common Subsequence 

 

As an example, consider computing the LLCS for input S1S2S1S6S4S3, against learned 

sequence S2S1S3S2S1S4 which produces an LCS length of 4 as shown in Table 2. The LCS 

sequence itself can be retrieved by working forwards through table “L”. 

 S2 S1 S3 S2 S1 S4  

S1 4 4 3 3 2 1 0 

S2 3 3 3 3 2 1 0 

S1 2 2 2 2 2 1 0 

S6 1 1 1 1 1 1 0 

S4 1 1 1 1 1 1 0 

S3 1 1 1 0 0 0 0 

 0 0 0 0 0 0 0 

Table 2 Table L used to generate Length of Longest Common Subsequence 

 

In the context of the HTM, specific pattern matching algorithms differ in how they 

combine feed forward beliefs belonging to a give observation. The Average method simply 

ComputeLCSL(input, learned-seq) 
- Create a 2 dimensional table “L” with |input| + 1 rows and |learned-seq| + 1 columns 
- Initialize row = |input| + 1 and column = |learned-seq| + 1 to all zeros 
// Compute LCSL 
- m = |input|  
- n =  |learned-seq|  
- For (i=m;  i >=0;  i--) 
- { 
-    For(j=n; j>=0;  j--){ 
-        IF(input[i] == ‘\0’ || learned-seq[j] == ‘\0’) 
-                L[i,j]  = 0;  
-        ELSE IF (input[i] == learned-seq[j]) 
-                L[i,j]  = 1 + L[i+1, j+1]  ; 
-         ELSE 
-               L[i,j]  = max (L[i+1, j], L[i, j+1]); 
-         ENDIF 
-    } 
- } 
- Return( L[0,0] );    // Result  
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averages feed forward beliefs for a given user over a given observation. The Weighted Average 

Method averages the feed forward beliefs belonging to a give observation with respect to the 

proportion of input matched that far. The Weighted Average Method computes the proportion of 

the input matched either a layer 1 of the HTM (BottomUp) or at layer 3 of the HTM (TopTop). 

 

Probability algorithms are based on computation of the path probability (feed forward 

beliefs at each layer of the HTM) of the input against the learned longest common subsequence 

that best matches the input. Specifically, the path probability of the input is computed based on 

the path probability of the learned longest common subsequence in the Markov chain that best 

matches the input, with adjustments (penalties) made for mismatches against the input sequence. 

The algorithm that computes the path probability of the longest common subsequence that best 

matches the input is shown in Figure 6. In Figure 7 the path probability of the longest common 

subsequence is adjusted based on how well this sequence matches the input sequence. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  Algorithm to Compute Path Probability – Part 1 

Computing Path probability of the input at each HTM layer entails two steps: 
1: Learned_LCS_Nodes = ComputeLCSNodesProbability(input) 
2:              ComputePathProbability(input, Learned_LCS_Nodes);  

ComputeLCSNodesProbability(input) 
 // For each layer of HTM, compute the path probability from the Markov graph 
// of the learned longest common subsequence (LCS) that best matches the input as follows 
              Learned_LCS = FindBestMatchingLCSFromMG(input) 

 For each node Vi (representing node i of the learned LCS) that precedes node Vk (representing node  

                                              k of the LCS, Vi 


 Vk ) Do  

- Learned_LCS[i].probability = P(Vk | Vi)  = Vi Vk  / Vi 

EnDo 
 

Where Vi  = Total frequency count of all nodes terminating into node Vi 

                   Vi Vk   = Frequency count for transitions from Vi to Vk  (Vi 


 Vk ) 
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Figure 7 Algorithm to Compute Path Probability – Part 2 

All HTMs at layer 3 produce feed forward beliefs (FFBs) during the inference phase that 

are input to a maximization layer that computes the best FFB among all HTMs based on the 

configured pattern matching or probability based algorithms previously described. 

 

Figure 8 HTM MAX layer used during the inference phase 

  ComputePathProbability(input, Learned_LCS_Nodes) 
  // Compute the path probability of the input from the learned LCS applying appropriate penalties for    
 //  mismatches as follows: 
 Path_prob = 1.0 
 For each element “e” of the input Do 
   IF match is found between “e” and learned_LCS_Nodes[i] at the same relative position “i” 
               THEN 

- Path_prob = Path_prob * learned_LCS_Nodes[i].probability 
 

Else IF “e” does not match learned_LCS_Nodes[i] OR “e” matches an already matched element of 
learned_LCS_Nodes  
THEN 
  // Penalize this input element 
 Path_prob = Path_prob * PENALTY 
 
ELSE IF a match is found between “e” and learned_LCS_Nodes[j] not at the next relative position 
THEN 
 // Elements exist in the learned LCS at a position “j” beyond elements at position “i” 
             // (last matched element) in the learned LCS that are not part of the input  Penalize them 
  

- Path_prob = Path_prob * learned_LCS_Nodes[i].probability * (j - i ) * PENALTY 
EndIF  
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The tables below show a quick summary of the events and actions associated with the 

HTM in Figure 4.  

Events Description 

Done(A) Generated when initial learning completes. This occurs when a preconfigured 

number of observations has been processed. 

 

Done(B) Generated when all learned sequences in the MG have been generated to the upper 

layer 

Generate 

Output 

Layer 3 outputs results of inference. Note that if no match occurs then nothing is 

output. 

Table 3 HTM State Machine Events 

Actions Description 

1 Spatial Pooler creates sequences of destinations from individual input destinations 

1* Spatial Pooler creates sequences of coincidences from individual instances of 

FFBs 

2 Temporal Pooler creates and updates the Markov graph (MG) based on received 

input (sequences of destinations for layer 1 and sequences of coincidences for 

layers 2,3) 

3 Temporal Pooler creates Markov chains (temporal groups) extracted from the  

Markov graph 

4 Find the longest common subsequence that best matches the input sequence. Then: 

 [Pattern Matching] Compute the degree of similarity of the input sequence 

based on the specific inference algorithm (Table 1) 

 [Path Probability] Compute the path probability of the input against the 

longest common subsequence 

4* In the Playback state, because sequences are internally generated, the degree of 

similarity of the input is always 100% 

5 [Pattern Matching only] Adjust the degree of similarity of input (destination or 

coincidence) to learned (historical) persistence of longest common subsequence 

matching that input by computing the LCS persistence (Table 1). 

6 Compute feed forward belief (FFB) and send it to higher layer 

7 Compute the level of activation of coincidence for layer Ln from FFB from layer 

Ln-1 (Table 1). Then: 

 [Pattern Matching] Adjust degree of similarity with level of activation 

 [Path Probability] Adjust path probability with level of activation 

7* In the Playback state of layers 2 and 3 the level of activation of input is always 

assumed to be 100% because the HTM learns the structure of co-occurrences of 

temporal groups from layers below. 

8 Report output in the form of feed forward belief 

9 Generate, in time-order, all sequences belonging to each Markov chain (temporal 

groups) at this layer of the HTM. 

Table 4 HTM State Machine Actions 
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The rest of the section describes in more detail different areas of the HTM 

implementation. The spatial pooler determines the demarcation point for combining time 

stamped input in the form of < TCP Timestamp Value, Navigational Destination> into sequences 

of destinations using the following rules:  

a. Arrival of input destination to spatial pooler falls within a specified inter arrival 

time 

b. Input destination is not already present in the sequence (no duplicate allowed in 

sequence)  

c. Size of sequence does not exceed a specified maximum sequence size 

 

For instance, assuming a max sequence size of 5 with a max allowed inter arrival time of 

3 ms, the following input 1<TS, S1>,  3<TS, S2>,  4<TS, S3>,  5<TS, S4>, 10<TS, S1>,  

12<TS, S2>, 13<TS, S5> would be converted by the spatial pooler into the following sequences: 

S1, S2, S3, S4 and S1,S2,S5. For the rest of the discussion, for illustrative purposes, assume that 

the following sequences of destinations were formed by the spatial pooler based on input 

collected from the network, using the rules presented above. 

 

Example Data Description 

S1,S2,S3,S4 User visits four web destinations which, for the purpose 

of this example, relate to category “S” for “soccer”. 

S1,S2,S5  

S1,S3,S6  

S1,S3,S6  

T1,T2,T3 User visits three web destinations which, for the purpose 

of the example, relate to category “T” for “tennis”. 

T1,T3,T5  

T6,T5,T7  

S3,S7,S6,S1  

H-L1,H-L2 User visits two web destinations, which for the purpose 

of the example, relate to category “H-L” for “High 
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Example Data Description 

School”. 

H-L1  

H-L1,H-L3  

H-L1  

H-L1, H-L2, H-L3  

UL1, UL2, UL3, UL4 User visits four web destinations, which for the purpose 

of the example, relate to category “UL” for 

“University”. 

S2,S6,S5  

Table 5 HTM Sample Input 

 

The temporal pooler creates and updates the Markov graph (MG) for each layer. The MG 

represents the long term memory for each layer. The MG stores representations of sequences as 

they occur over time with nodes defining the elements of a sequence and arcs between nodes 

defining the number of times a node Y follows a node X (X  Y). The MG includes both “start” 

and “final” state nodes for all sequences represented. More formally, the Markov graph is a 

Markov model which is characterized by a set of states {s1, s2, s3, …sn} and a transition 

probability matrix [Pri,j]nxn where Pri,j  represents the probability of a transition from state si to sj. 

The probability of reaching state sj from state si is given by the product of all transition 

probabilities along the non-cyclic path.  

In general, Markov models predict a symbol using some finite number (which determines 

the order of the Markov model) of immediately preceding symbols (history), which is called the 

Markov context. Variable order Markov models always attempt to identify the longest Markov 

context possible. While Markov models are probabilistic models for sequences, their predictive 

power lies in their ability to accurately recognize the Markov context. Markov Chains can do this 

very well because at their core they are a special form of finite state machines. More formally, a 

deterministic finite automaton, DFA, is a five-tuple M = (K, Σ, δ ,s ,F) where K is a finite set of 
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states K={k1,…kn}, Σ is a finite input alphabet Σ={ a1,…an }, s∈K is the initial state, F ⊆ K  is 

the set of final states, and δ is the transition function mapping K x Σ to K where δ (ki,a) that 

represents the state reached when in state ki and  the input symbol a is read. A probabilistic finite 

automaton (PFA) is a finite automaton that has a probability attached to each transition between 

states. A PFA having at most one transition between every two states corresponds to a Markov 

chain (Borges, 2000). 

 

In this study, the Markov graph can be thought of as represented by a two dimensional 

matrix with rows holding the “start” state and all individual elements of learned sequences. 

Columns hold, excluding the “start” state, the same individual elements of learned sequences, 

followed by the “final” state. The temporal pooler updates the MG by adding new rows/columns 

for each new (not seen before) element of a sequence. The temporal pooler also increments the 

transition frequency counts for links between existing elements of a sequence. An actual 

implementation of Markov graphs would not have been able to use a two dimensional matrix as 

just described since the Markov graphs would potentially need to learn and grow continuously, 

instead the Markov graph was implemented using an adjacency list with n vertices consisting of 

n lists. The i
th

 list would have a node for vertex j if and only if the graph contains an edge from 

vertex i to vertex j. This node would contain the relevant values for vertex j (creation time stamp 

and frequency count) . 

Accuracy of Markov Chains and State Cloning 

 

State cloning was first introduced by Cormack and Horspool (1987) to enable Markov 

graphs to better discover correct correlation between states. State cloning is needed to prevent 
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the Markov graph and Markov Chains from either generating or from recognizing incorrect 

sequences (sequences that had never been learned). Ambiguities occur in these graphs when 

multiple sequences pass through shared states, loops are an example of such condition. Consider 

the following Markov Graph which was created with sequences abd and xbc: 

 

Figure 9 The need for State Cloning 

Without knowledge of the input, this graph will recognize and generate one of the 

following four sequences: abd, abc, xdb or xbc. Two of them, abc and  xdb were never added to 

the graph and are thus incorrect. Assuming that sequence abd was added first to the Markov 

Graph and assuming the following single node clone conditions: Clone a state Sx (not a “start” or 

“final” state) iff both conditions are met: 

1. Number of out links leaving Sx, Osx >  1 

2. Number of in links entering Sx, Isx    > 1 

Then cloning node “b” produces the following Markov graph: 

 

Figure 10 An example of State Cloning at the single node level 
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While the process of cloning states helps address the ambiguity problem described, it 

does add more nodes to the graphs and thus does not tend to scale well. The number of clones 

decreases as cloning conditions are relaxed (increase upper limit for Osx and Isx). Unfortunately, 

increasing this upper limit will re-introduce the ambiguities discussed.  

Consider how the defined single node clone conditions can be used when adding a 

transaction Tk,i,j between three Markov graph nodes. Assume transaction Tk,i  has already been 

added to the graph, then we have three different possibilities: 

A. Adding transition Ti,j to nodei could violate the “clone conditions” for nodei.. If the clone 

condition is violated then nodei  needs to be cloned as shown in Figure 11 case A. 

B. Adding transition Ti,j to cloned nodej could violate “clone conditions for nodej. If the 

clone condition is violated then nodej  needs to be cloned as shown in Figure 11 case B. 

C. Adding transition Ti,j to cloned nodej could violate “clone conditions for both nodei. and 

nodej. If the clone condition is violated then both nodei. and  nodej  need to be cloned as 

shown in Figure 11 case C. 
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Figure 11 Cloning States in a Markov Graph 

Another way to determine when the single node cloning condition is violated is to 

determine if the number of different sequences that are shared by a node is greater than 2 as 

shown below. 
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Figure 12 Generalization of Single node cloning 

Is it possible to satisfy the single node clone condition and still produce ambiguity within 

a Markov graph? Yes, consider the Markov graph below where two sequences are added, 5,1,2,3 

and 1,2,3,4 in that order. Note that the single node cloning conditions are satisfied, yet this graph 

produces two sequences that were never learned: 1, 2, 3 and 5, 1, 2, 3, 4. 

 

Figure 13 How Single Node Cloning Falls Short 

The problem occurs at the transitions covered by points a and b. These transitions allow 

the generation through nodes 1 and 3 of more than 2 sequences. Namely: <1, 2, 3, 4>, <1,2,3>, 

<5,1,2,3>, <5,1,2,3,4>. To address this problem the single node cloning condition must be 

extended to cover multiple nodes in a sequence as shown below. 
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Figure 14 Generalization of Sequence Cloning Condition 

The single node clone condition can then be replaced by the following sequence cloning 

condition. The sequence cloning condition is violated iff:  

 When adding a sequence to the Markov graph if the in-degree of a node(x) 

corresponding to sequence element x is going to be > 1 and the out-degree of node(y) (where y ≥ 

x, that is y can be the same node as x or follow x) corresponding to element y is also going to be 

> 1 then one must clone all sequence elements corresponding to nodes between node(x) and 

node(y) that already exist in the Markov graph. Note that sequence cloning is a special case of 

single node cloning where node(x) and node(y) are one and the same. Figure 15 shows how 

sequence cloning can be applied to remedy the shortcoming of single node cloning. 
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Figure 15 Ensuring that the Sequence Cloning Condition is met 

 

Research on State Cloning 

In Hawkins et al. (2009) the authors acknowledge that in order to mimic the operation of 

a sequence memory in the neocortext, a memory mechanism is needed that can learn and 

represent sequences of arbitrary high order. These authors recognize that the amount of memory 

required to keep track of dependencies in long sequences grows exponentially with the order of 

the model. For this reason they propose to use variable order Markov models that can learn long 

and complex sequences with manageable amount of resources. Hawkins et al. (2009) proposed a 

state splitting (cloning) algorithm based on the work of Cormack and Horspool (1987), in order 

to address the problem that Markov graphs can misrepresent learned sequences when a given 

state in a Markov graph participates in more than one unique sequence. Based on this algorithm, 

a state t is split (cloned) when it frequently follows a particular state and it follows other states as 

well. More formally state t is split in two states if the following two conditions exist: 
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Ts,t  ≥ min_cnt1, where Ts,t   is the transition from state s to state t 

Σi,j ≠ s  Ti,t  ≥ min_cnt2, min_cnt1 and min_cnt2 are fixed threshold values 

The concept of state cloning in the context of usage mining was first introduced in 

Levene and Loizou (2003). Based on the state cloning algorithm defined by these authors, given 

a transition Ti,k,j, a state sk  is cloned if there is sufficient evidence that the transition from sk to sj 

is dependent on the transition from state si to sk. More formally: 

Pi,k,j   -  
 

  
   >  γk  ,    Pi,k,j   = wi,k,j  /  wk,j 

Where wi,k,j  is the frequency count from sk to sj given that the previous transition that 

occurred was from si to sk and  0 < γk  < 1. Borges and Levene (2004) proposed a cloning 

algorithm where a state would be cloned when the second order probability differs from the first 

order probability by more than a given threshold based on the following four conditions. A state 

Ax is eligible for cloning iff: 

1. State s has at least two out-links O > 1 

2. State s has at least two in-links I > 1 

3. Wx > V, where V represents the number of visits (Wx)  to a state to ensure the 

reliability of the probabilities associated with the state 

4. In the context of transition Ajxk , there is at least one transition (Aj,Ax) and (Ax,Ak) 

such that |Pj,x,k – Px,k|  ≥ γ, where 0 ≤ γ ≤ 1, Pj,x,k = wj,x,k  /  wj,x and wj,x is 

the number of times that the link from  Aj to Ax was traversed, and wj,x,k  is the 

number of times that sequence AjAx Ak was traversed. 
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The ability of Markov graphs to accurately represent unique learned sequences decreases 

when a state in the Markov graph is shared among more than one sequence. All cloning 

approaches described so far rely on a threshold to mitigate the Markov graph accuracy problem 

by measuring the number of occurrences of certain transitions coming to or leaving certain 

states. Cormack and Horspool (1987) and Borges and Levene (2004) place more importance on 

transitions leading up to the target state (state that can be cloned), while Levene and Loizou 

(2003) put more importance on transactions that follow the target state. The key idea of using a 

threshold that measures the frequency of state transitions is to ensure that if a transition that 

creates ambiguities within a Markov graph occurs with enough persistence then it is worth 

cloning that target state. In contrast, the “sequence cloning” algorithm proposed in this paper 

targets exclusively the structure of the Markov graph and can operate across multiple target 

states that make up a sequence by always assuming that any transition in a Markov graph that 

creates ambiguities will trigger cloning of one or more target states. As a result, none of the 

described cloning approaches would be able to address the ambiguity shown in Figure 13, but the 

“sequence cloning” approach proposed in this paper does. 

Playback and Inference  

 

While the ability to recognize sequences is critical during the inference stage, sequence 

generation is critical in both playback and inference stages. In the playback stage, learned 

sequences at layer n are generated in increasing order of time, so that layer n+1 can correctly 

learn higher level concepts from the layer below. This in effect simulates the HTM been 

retrained on the same input used to train the layer below. In order to generate sequences in 

increasing time order (from oldest to most recent), each node in the Markov graph holds a FIFO 
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queue of timestamps. Each time stamp represents the time when a node was created or modified 

by updating or adding incoming or outgoing links to/from this node. Time ordered sequence 

generation is achieved by traversing the Markov graph at each layer of the HTM, starting from 

the “start” state, while removing from the front of the FIFO queue timestamps associated with 

nodes with the least recent (oldest) timestamp for each transition up to the “final” state. 

Generation of sequences stored in Markov chains is also performed during inference 

when the input sequence produced by the spatial pooler is compared for degree of similarity 

against all learned sequences that can be produced by Markov Chains at that layer. In this case 

sequence generation does not need to be in time order and thus it ignores timestamps held at each 

Markov chain node.  

The temporal pooler creates Markov Chains from the Markov graph (MG). Markov 

chains are also Markov Models which represent clusters of highly connected sequences. Markov 

Chains were implemented as overlays of the Markov graph. Figure 16 shows a Markov graph 

with 6 Markov Chains (g1-g6) based on the sample data input from Table 5. Clone states were 

created as each sequence was added to the Markov graph and links between nodes represent the 

frequency of occurrences of transitions between those two nodes. 
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Figure 16 Layer 1 Markov Graph and Markov Chains (Temporal Groups g1-g6) 
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The algorithm used to create the Markov chains shown in Figure 16 is presented below 

 

 

 

 

 

 

 

 

 

Figure 17 Markov Chains Creation Algorithm 

 

The algorithm shown in Figure 17 guarantees that highly connected nodes that form a 

complete sequence belong to the same Markov chain and that each node (cloned and equivalent 

non cloned nodes are considered to be different unique nodes in a Markov graph) belongs to one 

and only one Markov chain. The merge portion of the algorithm ensures that nodes S2 and S6 

belong to Markov chain g2 since node S5 also belongs to g2. The agglomerative hierarchical 

clustering algorithm used in George and Widrow (2008) could not be used in this study since it 

relies on grouping based on measuring similarity which, in the context of image pixels, makes 

sense but when used with web destinations, has no meaning. George and Jaros (2007) propose a 

simple algorithm to create Markov chains from a Markov graph. This algorithm creates Markov 

chains based on the degree of connectivity of nodes, so that the most highly connected nodes are 

grouped together. In particular, the algorithm finds the next seed as the most connected node (has 

the highest aggregated in-degree frequency value) and groups it with the next Ntop  (fixed value) 

While there are more nodes to be processed from the Markov graph Do 
 

- Pick the next node (seed node) from the Markov graph not yet processed adjacent to the “Start” 
state. This seed node is the first node of a new Markov Chain gi 
 

- Perform a depth first traversal of the Markov graph originating from the seed node and add all 
traversed nodes to Markov Chain gi that have not been processed yet  

 

- Potentially merge this Markov Chain gi with another already processed Markov Chain gx if 
Markov Chain gi has elements in common (same node in the Markov graph) with Markov Chain 
gx. When merging, smaller Markov chains get merged into larger ones. 

 
EnDo 
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nodes (not already in the group) that are most connected (have the highest frequency values) to 

the seed node. The algorithm in Figure 17 accomplishes a similar goal but instead of relying on 

the strength of the connectivity and using an arbitrary value for Ntop, it completely relies on the 

existence of connectivity among the nodes to each other ignoring the strength of the connections. 

In doing so, algorithm in Figure 17 manages to preserve the integrity of sequences learned 

regardless of the number of nodes in the graph and degree of connectivity among these nodes. 

Walking Through an Example 

 

In order to get a better idea of how beliefs propagate up the HTM network layers, the rest 

of the paper shows what happens during playback of input learned in layer 1 of the HTM as 

represented in the Markov graph and Markov chains shown in Figure 16. Input received at layer 

1 by the spatial pooler is organized into sequences with the temporal pooler computing 

corresponding feed forward beliefs as shown in Table 6. 

Sequence Generated Historical Persistence 
Feed Forward Belief 

λ<g1,g2,g3,g4,g5,g6> 

S1,S2,S3,S4 W1234/total # seq in g2 = 1/15= 0.67 λ<0,.67,0,0,0,0> 

S1,S2,S5 W125/total # seq in g2 = 1/15= 0.67 λ<0,.67,0,0,0,0> 

S1,S3,S6 W136/total # seq in g2 = 2/15= 0.13 λ<0,.13,0,0,0,0> 

S1,S3,S6 W136/total # seq in g2 = 2/15= 0.13 λ<0,.13,0,0,0,0> 

T1,T2,T3 W123/total # seq in g5 = 1/15= 0.67 λ<0,0,0,0,.67,0> 

T1,T3,T5 W135/total # seq in g5 = 1/15= 0.67 λ<0,0,0,0,.67,0> 

T6,T5,T7 W657/total # seq in g6 = 1/15= 0.67 λ<0,0,0,0,0,67> 

S3,S7,S6,S1 W3761/total # seq in g3 = 1/15= 0.67 λ<0,0,67,0,0,0> 

H-L1,H-L2 W12/total # seq in g1 = 2/15= 0.13 λ<.13,0,0,0,0,0> 

H-L1 W1/total # seq in g1 = 5/15= 0.33 λ<.33,0,0,0,0,0> 

H-L1,H-L3 W13/total # seq in g1 = 1/15= 0.67 λ<.67,0,0,0,0,0> 

H-L1 W1/total # seq in g1 = 5/15= 0.33 λ<.33,0,0,0,0,0> 

H-L1, H-L2, H-L3 W123/total # seq in g1 = 1/15= 0.67 λ<.67,0,0,0,0,0> 

UL1, UL2, UL3, UL4 W1234/total # seq in g4 = 1/15= 0.67 λ<0,0,0,.67,0,0> 

S2,S6,S5 W265/total # seq in g2= 1/15= 0.67 λ<0,.67,0,0,0,0> 

Table 6 Feed Forward Beliefs generated at Layer 1 during Playback 
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After layer 1 completes initial training, layer 1 starts playback of learned sequences to 

layer 2. The spatial pooler at layer 2 maps feed forward beliefs from layer 1 into sequence of 

coincidences using the rules previously described to combine input into sequences as shown in 

Table 7. 

Feed Forward Belief Coincidence Sequences of Coincidences for Layer2 

λ<0,.67,0,0,0,0> C1 new coincidence C1 

λ<0,.67,0,0,0,0> C1 C1 

λ<0,.13,0,0,0,0> C1 C1 

λ<0,.13,0,0,0,0> C1  

λ<0,0,0,0,.67,0> C2 new coincidence C1, C2 

λ<0,0,0,0,.67,0> C2  

λ<0,0,0,0,0,67> C3 new coincidence  

λ<0,0,67,0,0,0> C4 new coincidence  

λ<.4,0,0,0,0,0> C5 new coincidence C2, C3, C4, C5 

λ<1,0,0,0,0,0> C5 C5 

λ<.2,0,0,0,0,0> C5 C5 

λ<1,0,0,0,0,0> C5 C5 

λ<.2,0,0,0,0,0> C5  

λ<0,0,0,1,0,0> C6 new coincidence  

λ<0,.2,0,0,0,0> C1 C5, C6, C1 

Table 7 Layer 2 Spatial Pooler conversion of layer 1 temporal groups into layer 2 sequence 

of coincidences 

Having completed initial learning, layer 2 then would convert the received coincidences 

into the Markov Graph and Markov chains as shown below in Figure 18. 
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Figure 18 Layer 2 Markov Graph and Markov Chains 

 

Assuming that initial learning is completed at layer 2, layer 2 starts playback in order to 

train layer 3 as shown in Table 8. 

Sequence Generated Historical Persistence 
Feed Forward Belief 

λ<g1,g2,g3> 

C1 W1/total # seq in g1 = 4/9= .44 λ<.44,0,0> 

C1 W1/total # seq in g1 = 4/9= .44 λ<.44,0,0> 

C1 W1/total # seq in g1 = 4/9= .44 λ<.44,0,0> 

C1 C2 W12/total # seq in g1 = 1/9= .11 λ<.11,0,0> 

C2, C3, C4, C5 W2345/total # seq in g2 = 1/9= .11 λ<0,.11,0> 

C5 W5/total # seq in g3= 1/9= .11 λ<0,.11,0> 

C5 W5/total # seq in g3= 1/9= .11 λ<0,.11,0> 

C5 W5/total # seq in g3= 1/9= .11 λ<0,.11,0> 

C5, C6, C1 W561/total # seq in g3 = 1/9= .11 λ<0,0,.11> 

Table 8 Feed Forward Beliefs generated at Layer 2 during Playback 
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Finally, the spatial pooler at layer 3 converts feed forward beliefs received from layer 2 

into sequence of coincidences using the rules previously described to combine coincidences into 

sequences of coincidences as shown in Table 9.  

Feed Forward Belief Coincidence Sequences of Coincidences for Layer3 

λ<.44,0,0> C1 new coincidence C1 

λ<.44,0,0> C1 C1 

λ<.44,0,0> C1 C1 

λ<.11,0,0> C1  

λ<0,.11,0> C2 new coincidence C1, C2 

λ<0,.11,0> C2 C2 

λ<0,.11,0> C2 C2 

λ<0,.11,0> C2  

λ<0,0,.11> C3 new coincidence C2, C3 

Table 9 Layer 3 Spatial Pooler conversion of layer 2 coincidences into layer 3 sequence of 

coincidences 

Figure 19 shows how low level user navigational concepts, represented by different navigational 

patterns, move up the HTM hierarchy and form higher level navigational concepts. 

 

Figure 19 Creation of higher level navigational concepts at higher levels of the HTM 

Figure 20 shows the sequential relationships of higher level (layer 3) navigational patterns for this user. 
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Figure 20 Layer 3 Markov Graph and Markov Chains 

Revisiting Markov Chains Accuracy 

 

In Figure 18, consider coincidence node C5 in temporal group g3 and its cloned 

equivalent C5’ in temporal group g2, this node should represent the start of sequences belonging 

to the same temporal group, g3, but it does not. Single occurrences of C5 will be learned in layer 

2 and forwarded to layer 3 as coincidences belonging to temporal group 2 instead of temporal 

group 3. This observation leads to the requirement that each node in a Markov graph that follows 

the “start” state must be unique. Figure 21 shows the Layer 2 Markov graph and Markov chains 

that address the problem. 
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Figure 21 Addressing Layer 2 Markov Chains Ambiguity with node C5 

 

The condition necessary to address this problem is the following:  

When a cloned node N’ representing the start of a an input sequence is also adjacent to 

the “Start” state (as its equivalent non cloned node) and the out degree of the cloned node N’ is 1, 

then the transition to this cloned node N’ must be moved (updating frequency counts for the 

transition into and out of both the cloned and non cloned nodes)  to the equivalent non cloned 

node N in the Markov graph. As a result, the transition with a frequency of 3 from the “start” 

state to cloned state C5’ shown in Figure 18, is moved in Figure 21  to non cloned state C5. 

Alternative Approaches 
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The objective of this section is to introduce several approaches of which a few were 

chosen as a basis of comparison against which the HTM approach was measured. The ability to 

recognize ordered sequences of web visits by users is critical in order to accurately attribute past 

user communication activity to a specific user. This section explores different techniques used in 

sequence data mining by leveraging the research in this area conducted by Sarawagi, S. (2005), 

more recent research can also be found in (Xing, Pei & Keogh, 2010). These approaches can be 

used with streams of data much like the HTM. 

A sequence is an ordered set of elements s = a1, a2, a3, …,an , where each element ai could 

be numerical, or categorical as is the case for a fixed size alphabet Σ. The length of a sequence is 

not fixed and the order, which can be regular or irregular, is determined by time or position. The 

need to analyze sequences is evident in multiple areas of research: sequence of phonemes in 

speech recognition, sequence of words and delimiters in language analysis, sequence of strokes 

in handwriting, in bioinformatics for gene or protein analysis, in website/ecommerce mining 

where work has been done on modeling a customer as a sequence of page visits/items orders and 

using that to classify customers or predict the next page to be visited. There are several 

operations that can be applied to sequences, from traditional data mining operation like 

classification, clustering, and discovery of repeated patterns, to sequence specific operations like 

partial sequence classification, segmenting a sequence, and predicting the next symbol of a 

sequence.  

Sequence classification assumes the existence of a set of classes C and a number of 

example sequences in each class. The model is trained so that unseen sequences can be identified 

as belonging to a given class. For instance, in intrusion detection, given a sequence of packets, 

the model would label a session as an intrusion or as normal. Two key characteristics make 
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sequence classification unique: sequences are of variable lengths and order does matter. Several 

traditional classifiers can be adapted to be used with sequences: boundary-based, generative, 

distance-based, kernel-based.  

Classification methods such as decision trees, neural networks, linear discriminants are 

boundary-based classification schemes. These schemes all require data to have a fixed set of 

attributes in order to map each instance to a point in a multi-dimensional space. During training 

each class is partitioned into a separate region of the multi-dimensional space, then predicting the 

class label that the given instance x belongs to entails finding the boundaries of the region that x 

belongs to, and mapping it to the associated class determined during training. Several methods 

have been used to embed sequences in a fixed dimensional space. In text mining for instance, 

sequences of words (terms) are cast as a vector where each term represents a dimension and its 

coordinate represents the frequency count (the term and inverse document frequency TF-IDF). 

The similarity between any two documents is measured using a cosine similarity measure. While 

this approach is quite effective in finding frequently used terms and reducing the discriminative 

power of terms that appear frequently in many documents, this approach ignores the order of 

sequence elements (Han & Kamber 2006). Another approach leverages a sliding window 

technique to map subsets of sequences to a fixed dimensional space. The approach uses a k-

window size to create k dimensions corresponding to k-grams of elements of a sequence. The 

number of dimensions is bound by d
k
 where d is the size of the specific domain. This approach 

represents an improvement over the vector approach previously described since it is able to keep 

the order of the elements in the k-gram. Each k-gram represents a segment of k consecutive 

segments and is usually selected as a feature. The sequence is then represented as a vector of the 

presence or absence of k-grams or as a vector of the frequencies of k-gram. The sliding window 
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method has been used to classify sequences of system calls as being representative of intrusions 

or normal application behavior (Lee & Stolfo, 1998). 

Generative classifiers require a generative model of the data for each class since they 

assume that sequences in a class are generated by the underlying model. For each class i, the idea 

is to train a generative model GMi, to maximize the likelihood over all training instances of 

sequences in class i. The prior probability of a class P(ci) is the fraction of training instances of 

sequences in class ci. For predicting the class of an instance s of a sequence, one can assume 

class conditional independence and use naïve Bayesian classification P(s|ci)*P(ci) for each i and 

then select the class i with the largest value of P(s|ci)*P(ci). Generative models differ in how 

much importance they place on dependence on specific parts of the sequence (the context).  

The simplest generative model is the independent model which assumes that the 

probability distribution of an element at position i of a sequence is independent of all elements 

before it, that is P(xi | x1,…xn) = P(xi). Given a set of training sequences T, the probability of a 

subsequence s ∈ T is estimated as a fraction of the number of occurrences of s in T. In a first 

order Markov model the probability of generating the i
th

 element depends on the element 

immediately preceding it. Thus the conditional probability P(xi | x1,…xn) = P(xi| xi-1) and during 

training, the maximum value of P(si | sx) is estimated as the ratio of sx si  occurrences in T  over 

the occurrences of sx. For higher order Markov models the probability of generating an element 

of a sequence at position i depends on a fixed length r of symbols before it. Thus the conditional 

probability P(xi | x1,…,xn) = P(xi| xi-r,…., xi-1) and during training the maximum value of 

conditional probability P(si | sxr,…., sx1) is estimated as the ratio of  sxr,…., sx1 si occurrences in T 

over the number of occurrences in sxr,…., sx1. Markov models have been used in a variety of 

applications including predicting the user browsing behavior, however since these models do not 
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utilize enough history they do not correctly discriminate different observed patterns. On the other 

hand, using higher Markov models has a number of limitations which include high state-space 

complexity, reduced coverage (number of different sequences recognized) and often even worse 

prediction accuracy (Deshpande & Karypis, 2004).  

One way to address the space and accuracy problem of higher order Markov models is to 

train different order Markov models and use them all during the inference phase. This approach 

was proposed by Pitkow and Pirolli, (1999) for an all-K
th

 Markov model. This approach, 

however sacrifices state-space complexity for improved accuracy. The same authors proposed to 

identify patterns of frequent access in the form of longest repeating subsequences  to produce a 

subset of all paths in the model (thus removing low information elements from the model) and 

then use this set of sequences for prediction. This approach does reduce the state-space 

complexity but also reduces prediction accuracy. Deshpande and Karypis (2004) propose an 

approach that has low state complexity, improved prediction while retaining the coverage of an 

all-K
th

 order Markov model. These authors propose three approaches that attempt to eliminate 

superfluous states, by pruning states of an all-K
th

 order Markov model, while attempting to 

maintain overall performance. The authors claim that for many problems they can prune up to 

90% of the states of an all-K
th 

model with improved accuracy by up to 11%. Their tests show that 

as the order of Markov model is increased, accuracy tends to increase in line with space 

requirements (number of states) while coverage decreases.  These authors also discovered that by 

increasing the order of the Markov model the number of states increases which causes the 

number of training instances needed to train the model to also increase. The three approaches 

proposed by Deshpande and Karypis (2004) all start from a K
th

 order Markov model and 

eliminate  (prune) many of states in the model that are expected to have low predication 
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accuracy.  In the first approach, a support pruned Markov model is proposed where low support 

states (with frequency of occurrences below a given threshold) are eliminated without affecting 

the overall accuracy and coverage of the model. In the second approach, a confidence pruned 

Markov model is proposed where if the probability of the most frequently traversed out-link of a 

state is significantly larger than the probability of other out-links emanating from this same state, 

then this state is kept, otherwise the state is pruned as it is unlikely to yield high accuracy. The 

probability for this approach is computed based on confidence intervals built around the 

frequency of state out link traversals. In the third approach, an error pruned Markov model is 

proposed which computes the error at each state to support a pruning decision.  The approach 

runs the model against a known validation set (a data set not used in training) and then computes 

errors based on deviations between the results and the known baseline of the validation set. 

Variable order Markov (VMM) models attempt to learn probabilistic finite state automata 

over a finite alphabet, which can model sequential data of considerable complexity. In contrast to 

N-gram Markov models (0 to N order Markov models) that estimate conditional probabilities of 

the form P(σ | s) where s is the context (one or more symbols) and σ is the symbol appearing  

after the context, Variable order Markov models learn such conditional probabilities where 

context lengths |s| vary in response to available statistics in the training data. Thus VMMs allow 

capturing of both small and large order Markov dependencies based on observed data (Begleiter, 

El-Yaniv & Yona 2004). 

There exist a relation between prediction of finite sequences and lossless compression 

algorithms where in theory, any lossless compression algorithm can be used for prediction and 

vice versa (Feder & Merhav, 1994). The Prediction by Partial Match (PPM) algorithm, originally 

developed by Cleary and Witten (1984) and its variant (PPM-C) developed by Moffat, A. (1990) 
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is considered one of the best lossless compression algorithms.  The idea of PPM is to use the last 

few characters of the input (finite context of K
th 

order, where k represents the number of 

preceding symbols) to predict the upcoming one. For each K value (K = N to K = -1), K order 

probabilities of the occurrence of each symbol are computed. During prediction the algorithm 

starts with the highest order K order model probabilities and if the current input symbol cannot 

be predicted based on the K
th

 context than the escape probability associated with the K
th

 context 

is used and the next input symbol is compared against a lower K context until a match is found 

or eventually stopping at the K-1 context. The probability of an escape event in the PPM-C 

variant of the algorithm is the proportion of symbols learned for the given K context. The escape 

represents the penalty incurred for missed predictions. With this approach it was shown that 

continuing to increase the context length can lead to more accurate predictions but also decreases 

coverage since there is a greater chance of not giving rise to any prediction at all given that 

context lengths are associated with many lower valued escape probabilities. 

 

The desire to model large memories uniformly has motivated the need for variable 

memory models where each element of a sequence is assumed to have a variable number of 

elements on which it depends. Ron, Singer, and Tishby (1996) have proposed a compact, tree 

shaped variant of a probabilistic automata called Probabilistic Suffix Trees which allows storage 

of all substrings of a given string in linear space. A suffix tree representing a sequence s, is a 

rooted tree where each internal node, other than the root has at least two children and each edge 

is labeled with non empty substring of s. A key node property is that no two edges out of a node 

can have edge-labels beginning with the same character.   A key feature of the suffix tree is that 

for any leaf i, the concatenation of the edge labels on the path from the root to the leaf i exactly 
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spells out the suffix of S that starts at position i. The algorithm for building a suffix tree is 

simple: As long as there exists more suffixes of a sequence s, add the next shortest suffix to the 

tree. The authors tested their algorithm by cleaning corrupt text from the bible and showed that 

suffix trees can capture variable context length predictions by using a compact yet accurate 

model. 

The generative Markov models described so far assume that the probability distribution 

of an element i in the sequence depend only on symbols preceding this element. When the 

probability distribution of elements in a sequence depends on other factors than a different model 

must be used. A Markov model where states do not correspond to observed sequence elements 

but are “hidden” addresses this shortcoming. Hidden Markov Models (HMM) define an emission 

probability per state that represents the probability of seeing a given element at that state (the 

emission probability must equal 1 at each state). Computing the probability of generating a 

sequence is more difficult with HMMs than with Markov chains since with Markov chains a 

sequence can only be generated through a single path through the states of the model, in contrast, 

in HMMs a sequence could be generated from an exponential number of paths. This problem 

makes direct computation of the maximum likelihood of generating a training sequence not 

feasible, instead HMMs use expectation maximization algorithms like Baum-Welch to estimate 

the maximum likelihood values needed to generate training sequences. 

Validating the Instrument 

 

The prototype that supports the HTM approach proposed in this paper was implemented 

in Java. This prototype implements the functionality outlined in this chapter.  The following self-

verification functionality was included in the prototype in order to ensure the reliability of this 

instrument for the experiments that were conducted for this study: 
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 Verify the integrity of the connectivity and frequency counts of the Markov graph for 

each layer of the HTM. 

 Verify the integrity of the Markov Chains by verifying that no nodes are shared among 

any two Markov chains for each layer of the HTM. 

 Verify that no ambiguous transitions exist in the Markov graph for each layer of the 

HTM 

 Verify that the clone condition is met for the Markov graphs for each layer of the HTM 

 Verify that the sequences learned within the spatial pooler match the sequences 

represented by the Markov chains since variable order Markov chains can miss-represent 

learned sequences even when using “cloning” techniques 

 

 

Validating the Approach 

 

 The goal of this study is to recognize a user in the network solely based on prior 

observed communication behavior independently of the IP address assigned to the source or the 

complex networks that are traversed by the communication traffic. The following parameters 

were used to measure this goal: Accuracy and Scalability. 

Accuracy was evaluated by: 

 Measuring how well the prototype is able to correlate input in the form of 

individual web destinations to the appropriate session that the input belongs to 

 Measuring how well the prototype is able to match sequences of web destinations 

visited by a specific user  
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 Measuring how well the Markov chains in the prototype are able to faithfully 

represent input received, no more, no less. 

Accuracy scalability was evaluated by: 

 Measuring accuracy as the number of  users added to the experiment increases 

 Measuring accuracy as the number of  destinations visited by users increases  

Experiments were conducted using first synthetic data representative of real network data 

in order to create a baseline of performance, and then real network data was used to further 

validate the ability of the prototype to satisfy the goals of this study. Experiments that measure 

accuracy scalability results can be found in section “Accuracy Scalability”. 

The baseline was created by evaluating two key tasks that are critical for this study: 

session identification and user communication behavior attribution. The use of the TCP 

timestamp option, as proposed in this paper, was used for session identification as a basis of 

comparison against two other techniques: 

1. Time window that predefines a default session duration for each user as proposed 

in Herrmann et el. (2010). All communication that starts and continues within a 

time window of time belongs to a given user. 

2. Source IP address tracking as proposed in Kumpošt and Matyáš (2009). Source 

identified by the source IP address assigned to this user each time he/she attaches 

to a network or each time the address is recycled by the network 

The ability to attribute sequences of destinations visited by different users to a given user 

was accomplished by comparing the HTM approach to traditional generative classification 
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approaches since these are well understood in the literature and thus represent a good baseline. 

The following generative classification approaches were considered as a comparison baseline for 

accuracy against the HTM: 

 First Order Markov Model 

 Third Order Markov Model 

 Finite Context Higher Order Markov Models 

o All-K
th 

Order Markov Model (with K=3) as presented in Pitkow and 

Pirolli (1999) 

o Prediction by partial match (PPM), using method C algorithm as presented 

in Moffat, A. (1990) where K = 3 

The Algorithm for the First Order Markov Graph that was used for comparison purposes 

against the HTM is shown in Figure 22. 
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Figure 22 First Order Markov Graph Algorithm 

 

Table 10 shows an example of a set of web sessions and the representation of the 

transition matrix for a third order Markov graph. As in the first order Markov graph the rows of 

matrix “M” represent the K-order context of the graph. The “M” matrix in Table 10 represents 

transitions of the form VK1-3 -> VJ4 . The Algorithm for the third order Markov graph that was 

used for comparison purposes against the HTM is shown in Figure 23. This algorithm computes the 

maximum likelihood value of parameter P(Vi | Vi-k  ….. Vi-1) with K=3 as the ratio of Vi-k  ….. Vi-1 Vi 

occurrences in matrix “M” over the number of Vi-k  …..Vi-1  occurrences which are computed by 

summing the frequencies in the Vi-k  …..Vi-1  row. Note that the sum of the in degree frequencies of 

node/set of nodes is the same as the sum of the out degree frequencies of that same node/set of 

nodes except when that node is the last on in the input, in which case the out degree frequency 

will be one greater than the in degree frequency for that node. 

- Given input stream I, a sequence of web destinations represented as integers, visited by userx 

- Build a Matrix “M”, initialized with all zeros, where the size of each side is |Σws|  

(Σws = domain of all web sites visited by any user) that represents the 1st order Markov Graph for  

userx such that M[row, column] represents the transition from web site Vrow to web site Vcolumn;  
i.e. Vrow 


 Vcolumn 

        -    During training read the next 2 web sites (Vrow, Vcolumn) from the input stream I and update the  
             Markov chain probability P(Vcolumn  | Vrow) = Vrow Vcolumn / Vrow for Markov chain entry M[Vrow, Vcolumn] 

- During inference compute the path probability of the input that makes up this observation as 
follows: 

o Path_probability = 1.0 
o Read next web sites VK, VJ from input stream 
o While there is more input for this observation Do 

      If M[VK, VJ] == 0 Then 
 Path_probability = Path_probability * PENALTY 

Else 
 Path_probability = Path_probability * (M[VK, VJ]  / SumColumns(VK) ) 
EndIF 

      VK = VJ 

      Read the next input web site VJ 

-      Where SumColumns(VK)  adds up all the rows at column VK and PENALTY = 1/ (|Σws|*|Σws|) 



94 
 

 
 

 

Web Sessions: 

{S1,S2,S3,S4, 

 S2,S3,S1,S4, 

 S4,S3,S1,S2, 

 S1,S2,S3,S4, 

 S1,S4,S3,S2, 

 S3,S2,S4,S1, 

 S1,S3,S2,S4} 

M[VK1-3, VJ4] S1 S2 S3 S4 

S1S2S3 0 0 0 2 

S2S3S4 1 1 0 0 

S3S4S2 0 0 1 0 

S4S2S3 1 0 0 0 

S2S3S1 0 0 0 1 

S3S1S4 0 0 0 1 

S1S4S4 0 0 1 0 

S4S4S3 1 0 0 0 

S4S3S1 0 1 0 0 

S3S1S2 1 0 0 0 

S1S2S1 0 1 0 0 

S2S1S2 0 0 1 0 

S4S1S4 0 0 1 0 

S1S4S3 0 1 0 0 

S4S3S2 0 0 1 0 

S3S2S3 0 1 0 0 

S2S3S2 0 0 0 1 

S3S2S4 1 0 0 0 

S2S4S1 1 0 0 0 

S4S1S1 0 0 1 0 

S1S1S3 0 1 0 0 

S1S3S2 0 0 0 1 
 

  

Table 10 Example of Transition Matrix M for a Third Order Markov Graph  

 

Figure 24 shows the algorithm for the All-K
th

 Order Markov Graph algorithm with K=3, 

which combines different context lengths (1-3) in order to improve accuracy. Figure 27 shows 

the implementation of the Prediction by Partial Match (PPM) algorithm which leverages method 

“C”. The first and third order Markov models were chosen because they represent well 

understood generative classification algorithms for sequence mining and thus provide a good 

baseline for comparison purposes with the HTM approach. On the other hand, both the All K
th 
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Order Markov algorithm and the PPM algorithm were chosen because as generative 

classification algorithms they provide explicit logic on how to compare input and learned 

sequences but also detail what to do in cases of a mismatch. In case of mismatch, both of these 

methods seek shorter prefixes (substrings) of the learned sequences to match the input, whereas 

the HTM seeks to find the longest common subsequence of learned sequences to match the input. 

The longest common subsequence is a more forgiving measure of similarity than using a 

substring. It was important to measure the performance accuracy of these algorithms against the 

HTM since these algorithms have been successfully used in fields such as data compression and 

web mining. 
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Figure 23 Third Order Markov Graph Algorithm 

 

 

 

 

 

 

 

 

 

Figure 24 All-K
th

 Order Markov Algorithm, where K = 3 

- Given input stream I, a sequence of web destinations represented as integers, visited by userx 

- Build a Matrix “M”, initialized with all zeros, where the columns side is |Σws| and the row side 

|Σ3ws| (Σws domain of all web sites visited by any user and Σ3ws  domain of all 3 consecutive web 

sites visited by userx) that represents the 3rd  order Markov Graph for userx such that M[row, 
column] represents the transition from web sites Vrow 1-3to web site Vcolumn4; i.e. Vrow1-3 


 Vcolumn4 

        -    During training read the next 4 web sites (Vrow1-3, Vcolumn4) from the input stream I and update the  
             Markov frequency counts M[Vrow1-3, Vcolumn4]  

- During inference compute the path probability (P(Vcolumn4  | Vrow1-3) = Vrow 1-3Vcolumn 4/ Vrow1-3  ) of the 
input that makes up this observation as follows: 

o Path_probability = 1.0 
o Read next 4 web sites VK1-3 (VK1, VK2, VK3), VJ4 from input stream 
o While there is more input for this observation Do 
             If M[VK1-3, VJ4] == 0 Then 

 Path_probability = Path_probability * PENALTY 
Else 
 Path_probability = Path_probability * (M[VKk1-3, VJ4]  / SumRow(VK1-3) ) 
EndIF 

      VK 1-3= Vk2-3 VJ4 

      Read the next input web site VJ4 

-      Where SumRow(VK1-3)  adds up row VK1-3 of matrix M  
       (see example in Table 10) and PENALTY = 1/ (|Σws|*|Σ3ws|) 
 

- Build a 1st order Markov graph M1 as shown in Figure 22  
- Build a 2nd and 3rd order Markov graph M2, M3 as shown in  Figure 23 
- During training read input and update frequencies in all three Markov graphs (M1, M2, M3) 
- During inference try and match input against the following states of each Markov graph from 

the highest order (M3) to the lowest order (M1) until a match is found for: 
1. M3: VK1-3 (state representing the third order context for this Markov graph) 
2. M2: VK1-2 (state representing the second order context for this Markov graph) 
3. M1: VK (state representing the first order context for this Markov graph) 

- As soon as a match is found for a given state in the Markov graph, compute the path probability 
of the input sequence just read based on the logic specific to the order of the matched graph 
using Figure 23 if the input matched a state in M2 or  M3, otherwise using Figure 22 if the input 
matched a state in M1 
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In addition, algorithms operating at a layer 1 of the HTM were compared to algorithms 

operating at layers 2 and 3 of the HTM in order to explore the merits of the hierarchical structure 

of HTM. Accuracy and scalability were assessed for all experiments conducted against the 

baseline.  

Scalability in this study represents the ability of the solution to provide consistent levels 

of accuracy during training and inference as the number of users increases while keeping 

constant the number of destinations and vice versa increasing the number of destinations as the 

number of users remains constant. The ability to be accurate and scalable in the solution to the 

user attribution problem has been achieved in a very limited fashion by the work of Herrmann, et 

al. (2010) who used a set of 28 users from a real world data set. These authors explain that the 

rigid time window used to identify sessions belonging to the same user prevents their solution 

from scaling to a higher number of users since their approach will erroneously distribute 

contiguous requests across two sessions when these sessions cross time boundaries. Yang (2010), 

leveraged a maximum of 100 users in her experiments and also acknowledges the limitations of 

being able to identify consecutive user sessions being forced to use short periods of user web 

activity to track sessions. Banse et al. (2012) are able to scale their solution to much higher 

numbers, 2100 concurrent users on average, while still using a fixed time window. Their solution 

scales better due to the tracking strength of source IP addresses, not assumed to change within a 

fixed time window, assigned to a given user. The authors acknowledge the scalability limitations 

of their solution when source IP addresses change often as is the case when a user moves across 

mobile networks.  
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In this study, scalability was assessed by increasing the number of users from 5, 20, 50, 

100, up to 500 and by increasing the number of web sites from 1000, 5000, up to 10,000 (for 

experiment results which measure scalability based on these parameters see the “Results” chapter 

with specific emphasis on section “Results of experiments to verify user attribution accuracy 

without concept drift using synthetic data”) . The range of the number of users and web sites 

utilized was enough to show how accuracy improves, remains constant or deteriorates when both 

the number of users and/or web sites increases. Experiments were also conducted with 150, 250, 

350 and 450 users as reported in section “Accuracy Scalability”, utilizing the best performing 

HTM algorithms at layers 1 and 3, in order to provide even more insight into accuracy scalability 

as it specifically pertains to increasing number of users when the number of destinations remains 

fixed. 

The limit of 500 as the maximum number of users is the result of the challenge that these 

experiments encounter in the computer run time and memory needed to complete the training 

and inference stages for all experiments since there are seven algorithms supported by the HTM, 

plus four alternate approaches, all of which need to be verified against the different combination 

of number of users and web sites described above using appropriately sized training and test data 

sets.  
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Figure 25 Training Algorithm for Prediction By Partial Match (PPM) using Method C  

Figure 26 Training Algorithm for Prediction By Partial Match (PPM) using Method C  

 

  

-During Training for each context of size K=3 down to K=1 Do 
 - J = K 

  - Get |K| + 1 input symbols: ij-2ij-1ij ij+1,   where  1 ≤ j ≤ N, N = number of symbols in input 
- Record K input symbols ij-2ij-1ij into context Ck,j = { ij-2ij-1ij} 

  - While there is more input to be read Do 
   - Record input symbol ij+1 following the |K| symbols as transaction Ck,j  ij+1 

   - Update the frequency count FCkj,ij+1for transaction Ck ,j ij+1 

   - Update context Ck,j by sliding the context to the right of the input by one symbol 
      Ck,j = { ij-1ij ij+1} 

- j = j + 1 
- Get  the next input symbol ij+1 

   EnDo 
     For each recorded transaction Ck ,j ij+1 Do 

 -Add an escape symbol ϵ to the set of symbols following context Ck 

     with a frequency count FCk,jϵ = M, where M = Number of symbols 
                                                                                                 that follow context Ck,j 

-Compute P(ij+1 | Ck,j)   =   FCkj,ij+1 /  ∑   
 Ckj,ij+1) + FCk,jϵ 

   -Compute P(Ck,jϵ)  = FCk,jϵ /  ∑   
 Ckj,ij+1) + FCk,jϵ 

    EnDo 
  EnDo 
              During training when K=0, Ck = { } and Ck  iΣ  ,where each iΣ is a unique input symbol in the input Σ  
                                                                                                  Alphabet 

-Add an escape symbol ϵ to the set of symbols following context Ck 

  with a frequency count FCkϵ = M 
-Compute FCk,iΣ  as the number of times iΣ occurs in the input 

  -Compute P(iΣ) = FCk,iΣ  /( ∑   
 Ck,iΣ)  + FCkϵ 

  -Compute P(Ckϵ)  = FCkϵ /( ∑   
 Ck,iΣ ) + FCkϵ 

 
 EnDo 
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Figure 27 Inference Algorithm for Prediction By Partial Match (PPM) using Method C  

  

- Initialization: Match not Found; K = 3; i = 1; J = K; path_probability = 1.0; 

 - Get |K| + 1 input symbols: ii..j ,  ij+1 

 - While there is more input to be read Do 
  -While Match not Found AND k >= 0 Do  

  IF i ≤ j AND input symbols ii..j  match any context symbols in Ck  

                                             AND ij+1 matches symbol following Ck,j   (Ck,j


 ij+1) 
  THEN  // Compute the probability of the symbol following matched context 

             //  When K = 0, P(ij+1 | Ck,j) = P(ij+1) 
  path_probability = path_probability * P(ij+1 | Ck,j) 
  Match Found 

  ELSE IF ( i ≤ j AND input symbols ij..i  match any context symbols in Ck   

                    AND ij+1 Does NOT match symbol following Ck,j   (Ck,j


 ij+1)) 
   OR (i >  j AND ij+1 Does NOT match symbol following Ck,j   (Ck,j


 ij+1) )  

  THEN 
// No match for symbol following context  use escape probability  
// and match shorter prefix of the context (lower k order context) 

path_probability = path_probability * P(Ck,jϵ)   
k = k – 1 
i = i + 1 

ELSE  // Input does not match context  match a lower K order context 
k = k – 1 
i = i + 1  

                                        ENDIF 
       EnDo 

- IF Match not Found  
THEN 
          // K = -1 , Input did not match any prefix of context or learned single symbol 
     path_probability = path_probability * (1/|Σ|) 
ENDIF 
// Drop leftmost input symbol from input, keeping input size  = k and read next symbol  

- i = i + 1 
- j = j + 1 

- Read next input symbol ij+1 

EnDo 



101 
 

 
 

It is important to note that a prediction by partial match (PPM) can also be implemented 

by using an All-K algorithm (the implementation chosen for this study) and representing escape 

frequencies for each k order context (K > 0) as an additional column in each K Markov graph as 

shown in Table 11.  

Web Sessions: 

{S1,S2,S3,S4, 

 S2,S3,S1,S4, 

 S4,S3,S1,S2, 

 S1,S2,S3,S4, 

 S1,S4,S3,S2, 

 S3,S2,S4,S1, 

 S1,S3,S2,S4} 

K=3 Context S1 S2 S3 S4 Esc 

S1S2S3 0 0 0 2 1 

S2S3S4 1 1 0 0 2 

S3S4S2 0 0 1 0 1 

S4S2S3 1 0 0 0 1 

S2S3S1 0 0 0 1 1 

S3S1S4 0 0 0 1 1 

S1S4S4 0 0 1 0 1 

S4S4S3 1 0 0 0 1 

S4S3S1 0 1 0 0 1 

S3S1S2 1 0 0 0 1 

S1S2S1 0 1 0 0 1 

S2S1S2 0 0 1 0 1 

S4S1S4 0 0 1 0 1 

S1S4S3 0 1 0 0 1 

S4S3S2 0 0 1 0 1 

S3S2S3 0 1 0 0 1 

S2S3S2 0 0 0 1 1 

S3S2S4 1 0 0 0 1 

S2S4S1 1 0 0 0 1 

S4S1S1 0 0 1 0 1 

S1S1S3 0 1 0 0 1 

S1S3S2 0 0 0 1 1 
 

 

 

 

Table 11  All-K Implementation of PPM 

Each escape frequency equals the number of non-zero columns for a given k context. The 

escape frequency for a K=0 context equals the number of contexts in a given Markov graph (21 

for the Markov graph in Table 11). The SumRow in Figure 23 would also need to be adjusted to 
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account for escape frequencies. Finally, the All-K algorithm which normally represents K > 0 

order Markov graphs would now need to also support a K=0 Markov graph. 

Generation of Synthetic Data for the Simulation 

 

Training and test data was produced based on two different HTM verification 

approaches: 

 The HTM was verified against synthetic data that mimics user web visits found in real 

world scenarios as shown in Figure 28, using the algorithm presented in Figure 29 and 

Figure 30 

 The HTM was verified against other approaches as presented in the “Validating the 

Approach” section. These approaches, as opposed to the HTM, do not leverage any 

timing information. For these tests the same synthetic data generated by the algorithm in 

Figure 29 was used to generate input for all these alternate approaches but all timing 

information (time stamp and TS values) was removed so that only sequences of 

destinations are left to be processed. Training and inference for these alternate 

approaches took place based on “observations”. Each observation simulated a user web 

session worth of input and consisted of a predetermined number (50) of web sites visited. 

During inference all approaches, including the HTM approach, output the specific 

inferred user on a per observation basis. 

Simulation was performed by using input data that is as representative of real user 

network traffic as possible. The input to the HTM prototype has the following form:         

Timestamp<TS, Dest>, where: 
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 Generation of the Timestamp input field was accomplished by modeling devices 

entering (random distribution arrival times) and leaving (random distribution for 

service times) the network.  

 Generation of the TCP TS value was accomplished by using a 50/50 ratio of TS 

values started at a fixed value (iphones) and random values (android phones).  

 Generation of destinations (ranked in order of popularity) visited  by all users in the 

simulation followed a power law distribution (Zipf)  

 

Figure 28 Synthetic Input Data for User Attribution Simulation 

Figure 28 shows the input framework within which the simulation was run. A Java 

application was developed separate from the prototype, which produced, for each user, the 

synthetic input data as shown in Figure 28. The data simulated devices associated with users 

entering the network at random times and initiating multiple communication sessions until the 
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devices are turned off. The table below shows the various random parameters that were used in 

the simulation.  

Random Simulation 

Parameters 

Statistical 

Distributions 

Boundaries of 

Distributions 

Explanations 

Power On Time Random Uniform 0 – 3 hours Simulates users powering on their 

devices and entering the network in the 

morning hours, between 6:00 AM and 

9:00 AM 

Intra Session Time 

(IRA) 

Random Uniform 0 – 5 seconds Time between HTTP requests for a given 

user within the same user 

communication session. User 

communication sessions form clusters of 

web destinations visited by a user that 

follow each other close in time. 

Inter Session Time 

(IRT) 

Random Uniform 1 – 5 minutes Time between the end of a user 

communication session and the 

beginning of the next user 

communication session for that same 

user. 

Service Time Random Uniform Power Off Time  -  

Power On Time 

Amount of time a device once powered 

on remains on in the network. 

Power Off Time Random Uniform 0 – 21 hours Simulates time when users power off  

their devices and exit the network. 

Web Destinations Zipf 1 – 10,000 web 

destinations  

Simulates web destinations ranked in 

order of importance (1 most visited to 

10000 as the least visited) visited by 

users.  

Number of Web 

Destinations per user 

session 

Random Uniform 1- 10 destination 

per session 

For each user session a user is allowed 

between 1 to 10 web visits chosen at 

random. 

TCP Timestamp 

(TS) 

Random Uniform 0 - 2
32

 50 % of devices entering the network 

will have a random starting value while 

the other 50% will have a fixed starting 

value of 0. 

Table 12 Simulation Parameters 

The input generation application creates an input file for each simulated user where the 

number of simulation runs is a configurable parameter of the application and determines the 

number of power on/off cycles that each device is allowed for a given simulation. 
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Figure 29 Algorithm to generate synthetic random train input for a single user 

 

The above algorithm creates 5 simulation days’ worth of synthetic data for user Ux. The 

simulation code in Figure 29 generates synthetic data for training purposes for both HTM and 

Ux_Max-Simulation_Days = 5        // Defines max number of Train or Test days for the simulations 
 
// Create one input file per user Ux in simulation 
For Each user Ux in simulation Do  

- Generate_Input_For_User(Ux, Ux_Max_Simulation_Days) 
EnDo 
 
Generate_Input_For_User(Ux, Ux_Max_Simulation_Days) 

TimeStamp = 0 
While (Ux_Max_Simulation_Days   > 0 ) Do 

DevicePowerOnTime =  TimeStamp   + Uniform Random(0, 3Hrs) 
DevicePowerOffTime =  DevicePowerOnTime      + Uniform Random(0, 21Hrs) 
TS    =  Generate TCP TimeStamp-TS 
TimeStamp  =   DevicePowerOnTime 

  

  While (TimeStamp  <  DevicePowerOffTime) Do 
   NumberDestinationsPerSessions =  Uniform Random(1,10) 
   While (NumberDestinationsPerSessions  > 0 AND TimeStamp  <  DevicePowerOffTime) Do 
     
    Dest  =  Next_ZipfRandom (1000,theta) 
    Output TimeStamp<TS,Dest> to Ux file name 
    NumberDestinationsPerSessions = NumberDestinationsPerSessions – 1 
    IF (NumberDestinationsPerSessions > 0) THEN 
     IntraSessionTime-IRA  =  UniformRandom(0,5secs) 
     TimeStamp  =  IntraSessionTime-IRA 

TS                                    =           TS + IntraSessionTime 
    EndIF 
   EnDO 
   InterSessionTime-IRT = UniformRandom(1,40mins) 
   TimeStamp  = InterSessionTime-IRT 
                                        TS                                    = TS  + InterSessionTime 
  EnDO 
  
  Ux_Max_Simulation_Runs = Ux_Max_Simulation_Runs – 1 
 EnDO  
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alternate approaches. Each simulation day contains a random number of user sessions bounded 

by random intersession times. Each user session for the HTM is made up of a random number of 

input tokens of the form: Timestamp<TS, Dest>.  Within a user session, the intra session time 

randomly spaces occurrences of the input tokens.  Destinations are selected based on the Zipf 

distribution, a power law based distribution, with the most popular destinations having the 

highest probability of being selected over less popular destinations.  Only web destinations are 

recorded for alternate approaches since they do not rely on time. 

The synthetic data created by the input generator for each user was merged in order to 

simulate a real world scenario where many users enter and exit the network concurrently as 

shown below. 

 

 

 

 

Figure 30 Algorithm to generate synthetic random input for multiple users 

 

Why do we need to append the file name (Timestamp<TS, Dest> fnameUx) to the input? 

 

The fnameUx is completely ignored by the prototype during all phases of learning and 

inference. The fnameUx is used only to validate the accuracy of the HTMUX in recognizing users. 

Each time the HTM is fed an input token such as Timestamp<TS, Dest>fnameUx, the HTM 

saves the received input in an HTMUX specific output file. After the simulation is run, a scan of 

the HTMUX specific output file allows determination of false positives (mistaken users) since all 

// Merge user files in timestamp order in to a single file which includes input from all users 
// Each user input user file produced by algorithm in Figure 29 is stored in a fnameUx 
For Each user file fnameUx in simulation Do 
 Read and Save the next time stamped input Timestamp<TS, Dest> from file fnameUx 

EnDO 

  
Sort saved time stamped inputs in ascending order of TimeStamp 
Output sorted time stamped input Timestamp<TS, Dest> and append to input  filename  fnameUx 
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input tokens in the HTMUX output file produced by the HTM for user x should contain 

Timestamp<TS, Dest>fnameUx where fnameUx is user x. On the other hand, running the diff 

utility between fnameUx and the HTMUX files allows identification of false negatives (users that 

were missed; i.e. not recognized by the HTMUX). 

Test Data needs to be created using a different approach since it must be similar to the 

train data but also maintain a certain level of independence from train data. Three methods are 

used for generation of synthetic data for the test phase of experiments. All three algorithms walk 

a first order Markov chain of learned destinations which were generated by the input generator 

based on the algorithm in Figure 29. 

 Random Walk –The next destination Vj, for transitions of the form Vi   Vj, is chosen 

randomly in proportion to the in-degree of the node Vj. That is, in proportion to the 

access frequencies of the neighbors (Vj1,… Vjn) of the current node (Vi). If no such 

neighbor Vj exists then the walk proceeds with a new node Vi with at least one neighbor, 

selected from the learned destinations based on a zipf distribution. Selection of the next 

destination Vj  is based on the work of Price (1976) who proposed a model of networks 

formation that gives rise to power-law degree distributions. Price was interested in the 

power law distribution of citation networks. Specifically, his model showed that a newly 

appearing paper cites previous ones chosen at random with a probability proportional to 

the number of citations that those previous papers already have. This property is critical 

in creating a relationship between train data generated for a given user with test data for 

that same user. While a relationship must exist between the train and test data sets it must 

also maintain a certain level of independence between the two sets which is provided by 

the randomness of the selection of already visited nodes. While the Price model has been 
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applied to simulation of networks traversed by many users, in this study this model is 

adjusted to simulate web visits by a single user. As a result the emphasis was not placed 

exclusively on in-degree or out-degree of network nodes but instead on the frequencies of 

edges emanating from or terminating to nodes representing web visits to web sites. The 

algorithm is presented below: 

o Follow with connectivity probability 1 -   
  

     
   > r (0 ≤   r  ≤  1) a learned path 

proportional to the frequency of the in-degree of web sites along the path. 

Otherwise start a new path. r is a random number that follows a uniform 

distribution. 

o Ci = Sum of traversal frequencies of all edges emanating from Vi (Vi  Vj1-n) 

o Oi = is the out degree of Vi 

 

As would happen in real life the algorithm favors learned path patterns, but does also 

produce variations that simulate "concept drift”. 

 

 Walk Only - Selects Vj randomly in proportion to access frequencies of all of Vi's 

neighbors as long as Vi  has at least one neighbor. Note that this algorithm minimizes any 

concept drift since it always follows a learned path as long as one exists, as opposed to 

the Random Walk algorithm that is constrained by the connectivity probability and the 

random value of r. 

 Context Drift – Selects Vj using the Walk Only algorithm except for 20% of the Vj 

destinations that are selected as new ones outside of the learned train set. In addition, 

10% of the Vi  Vj transitions selected during the walk are new (not existing in the train 

set).  
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Figure 31 shows the entire process used to generate synthetic train and test data for 

simulations. CSV files are coma delimited files that just record web destinations. They are used 

for two purposes. For alternate algorithms, CSV files represent train and test input files. In 

addition, CSV files are also used to match the output of the HTM and the output of alternate 

algorithms against the original test files generated for each experiment. 

 
Figure 31 Synthetic Data Generation Process 
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Generating Malicious Data for the Experiments 

 

Simulation of malicious data was used in this study to measure how well the HTM can 

recognize malicious users reentering the network. Two types of malicious attacks were simulated 

for these experiments: Phishing and Denial of Service attacks.  

 Phishing attacks were modeled by simulating few malicious phishing web sites dedicated 

to download of software that performed the phishing attack, as well as, web sites that 

actually carry out the actual phishing attack (e.g. as for a commercial on-line bank). The 

simulation data would contain few users that participate in the phishing attack with the 

rest of the users being non malicious. A small portion of the non malicious users would 

accidently visit the web sites that actually carry out the actual phishing attack. 

 DOS attacks were modeled as a small group of users that visit the same site with high 

persistence within a short period of time. 

The attack data produced for these experiments by a given malicious user or 

compromised device was embedded within normal usage data for these users.  

Resource Requirements 

 

All experiments that use synthetic data utilized a standard laptop computer for building 

the prototype and for building the algorithms to produce the synthetic data. All experiments that 

utilize real network data required access to operator network subscriber data via a carrier grade 

network traffic collector. The operator used for these experiments is U.S. Cellular and with their 

permission the Wireless Network Guardian (manufactured by Alcatel Lucent) traffic collector 

was used to collect live traffic data that was used for the experiments.  
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Chapter 4 

 

Results 

 

 

Results of experiments to verify user attribution accuracy without concept drift using 

synthetic data 

 

A main objective of this study is to address the user attribution problem as accurately as 

possible in terms of the ability of the HTM to be able to correctly identify sequences of web 

destinations visited by users over time. Test results were recorded in terms of recall (number of 

correctly matched destinations for this user as a fraction of all possible correct observations for 

this user), precision (number of correctly matched destinations as a fraction of all destinations 

matched for this user during the experiment) false positives and false negatives. So, if the HTM 

matched 80 observations for user-x such that 80 observations for user-x are correctly matched 

out of a total of 80 possibly correct observations for this user then recall and precision equal 

100%. However, if the HTM matched 100 observations for user-x such that 80 observations for 

user-x are correctly matched out of 80 possibly correct observations for this user then recall is 

100% but precision is 80%. In this chapter recall is used to report accuracy keeping in mind that 

Appendix A through Appendix H contain the rest of the statistics collected (recall, precision, false 

positives and false negatives). 

Tests were conducted that measured the ability of the HTM and alternative approaches to 

scale accuracy by maintaining high levels of recall and precision as the number of users and the 

number of destinations increased.  



112 
 

 
 

Thirty sets of experiments each run with 11 different algorithms, 7 HTM algorithms 

(Simple Average, BottomUp, Path Probability for layers 1 and 3 and TopTop for layer 3) and 4 

Alternate algorithms (1
st
 and 3

rd
 order Markov chains, All-K with K=3 and Partial Prefix Match)  

were conducted as shown in Table 13. Each square in Table 13 represents execution of 11 

experiments using synthetic data with parameters based on different combinations of web 

destinations (1000, 5000, 10000) and users (5, 20, 50, 100, 500). Synthetic data was generated 

for both train and test data sets based on the algorithms described in “Generation of Synthetic 

Data for the Simulation”. Train data sets were limited to 5 train days’ worth of data while the test 

data set ranged from 1 day worth of test data, to 3 observations (150 web destinations) worth of 

test data. Squares with a red cross indicate experiments that were not executed. For a full 

description of the results of these experiments see Appendix A. The rest of the discussion in this 

section only reports a key subset of the overall results from Appendix A in order to determine 

how well the goals of this study were met. 

Number 
Destinations  

5 Users 20 Users 50 Users 100 Users 500 Users 

1000 5/1, 
Walk_Only, 

No CD 

5/1, 
Walk_Only, 

No CD 

5/1, 
Walk_Only, 

No CD 

5/1, 
Walk_Only, 

No CD 

 
3 obs, 

Walk_Only, 
No CD, HTM 
Layer1 only 

3 obs, 
Walk_Only, 
No CD, HTM 
Layer1 only 

3 obs, 
Walk_Only, 
No CD, HTM 
Layer1 only 

3 obs, 
Walk_Only, 
No CD, HTM 
Layer1 only 

3 obs, Walk_Only, 
No CD, HTM Layer1 only 

5000 5/1, 
Walk_Only, 

No CD 

5/1, 
Walk_Only, 

No CD 

5/1, 
Walk_Only, 

No CD 

5/1, 
Walk_Only, 

No CD 

 
3 obs, 

Walk_Only, 
No CD, HTM 
Layer1 only 

3 obs, 
Walk_Only, 
No CD, HTM 
Layer1 only 

3 obs, 
Walk_Only, 
No CD, HTM 
Layer1 only 

3 obs, 
Walk_Only, 
No CD, HTM 
Layer1 only 

3 obs, Walk_Only, 
No CD, HTM Layer1 only 

10,000 5/1, 
Walk_Only, 

No CD 

5/1, 
Walk_Only, 

No CD 

5/1, 
Walk_Only, 

No CD 

5/1, 
Walk_Only, 

No CD 
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Number 
Destinations  

5 Users 20 Users 50 Users 100 Users 500 Users 

3 obs, 
Walk_Only, 
No CD, HTM 
Layer1 only 

3 obs, 
Walk_Only, 
No CD, HTM 
Layer1 only 

3 obs, 
Walk_Only, 
No CD, HTM 
Layer1 only 

3 obs, 
Walk_Only, 
No CD, HTM 
Layer1 only 

3 obs, Walk_Only, 
No CD, HTM Layer1 only 

Table 13 Accuracy tests completed using Synthetic data with no concept drift 

The experiments results in Figure 32 used synthetic data, (without any concept drift) and 

simulated user web visits over time periods of 5 train days and 1 test day for 1000 web 

destinations with a range of users from, 5, 20, 50, and 100. For the purpose of the following 

discussions only the recall measurement are reported (the rest of the measurements and 

experiments can be found in Appendix A) to compare accuracy results. 

 

Figure 32 Experiment 5-100 users, 1000 Destinations, 5 Train Days and 1 Test Day 
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The graph above shows the following: 

 Alternate algorithms (1
st
 and 3

rd
 Order  Markov Chain, All-K and PPM) perform 

very poorly in terms of accuracy compared to HTM algorithms 

 Accuracy for alternate algorithms scales poorly as the number of users increases 

in the experiment 

 HTM algorithms are considerably more accurate than alternate algorithms 

 Recall accuracy for HTM algorithms scales better than for alternate algorithms 

 Recall accuracy reported by HTM algorithms at layers 1 and 3 is comparable 

 HTM algorithms Bottom Up and TopTop perform the best among all HTM 

algorithms 

 HTM path probability at layer 3 is the least accurate of the HTM algorithms 

 Algorithm 3
rd

 Order Markov Chain is the least accurate of the Alternate 

algorithms 

Consider what happens when the number of web destinations visited increases from 

1000, as in the previous experiment, to 5000 and then 10,000 respectively as shown below in 

Figure 33 and Figure 34. The accuracy of all HTM algorithms increases in line with scalability, 

while no improvement can be seen for the alternate algorithms. Specifically, for 100 users HTM 

algorithms Bottom up and TopTop perform in the range from 97% to 99% accuracy a big 

improvement when compared with 86% accuracy reported by the same algorithms for 

experiments with 1000 destinations. 
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Figure 33 Experiment 5-100 users, 5000 Destinations, 5 Train Days and 1 Test Day 
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Figure 34 Experiment 5-100 users, 10,000 Destinations, 5 Train Days and 1 Test Day 

 

Why are the accuracy results for alternate algorithms so poor? Is it possible that these 

algorithms were not correctly implemented? To answer these questions it is important to note 

that all algorithms used for the experiments were calibrated. That is, each algorithm was trained 

with a given data set and then it was fed that same data set as test data. The expected behavior is 

that correctly implemented algorithms can recognize their own learned input. For alternate 

algorithms Table 14 shows perfect accuracy for all algorithms as a result of calibration using 

synthetic input data. Calibration on all HTM algorithms for synthetic data with the same input 
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show similar results (see Appendix H). From these experiments the following can be stated about 

the calibration process: 

1. A well calibrated algorithm works as intended as is capable of recognizing its own 

trained input from other input 

2. A well calibrated algorithm will not necessarily perform well when inferring from test 

input that differs from the training input 

3. In this study, calibration is used to baseline an algorithm as being implemented correctly 

with respect to its abilities to appropriately train and infer its own input.  

 

Users Alternate Approaches 
% Accuracy 

 1
st

 Order Markov 
User-1 100% 
User-2 100% 
User-3 100% 
User-4 100% 
User-5 100% 
 3

rd
 Order Markov 

User-1 100% 
User-2 100% 
User-3 100% 
User-4 100% 
User-5 100% 
  
 All K Order Markov (K=3) 
User-1 100% 
User-2 100% 
User-3 100% 
User-4 100% 
User-5 100% 
  
 PPM 
User-1 100% 
User-2 100% 
User-3 100% 
User-4 100% 
User-5 100% 

  

Table 14 Alternate Algorithms Calibration results for 5 users, 5 Train Days and 2 Test days 
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The accuracy reported for HTM algorithms in these experiments is quite high, is it 

possible that the synthetic train and test data sets created by the input generator are very similar 

to each other and would thus allow the HTM algorithms to perform at very high levels of 

accuracy? 

All synthetic input generated always reports the following similarity statistics, derived 

from the work of Kumar, Krishna, and Raju (2010), between train and test data sets generated 

based on all observations processed. 

 

Sequence Similarity =  

∑
                                          

                        
            
 

         
⁄

 

Substring Similarity =  

∑   
                                            

                        
            
 

         
⁄  

Set Similarity = 

                                       

                         
 

 

Total Similarity = (.33) Sequence Similarity + (.33) Substring Similarity + (.33) Set Similarity 

LCSL is the length of the longest common subsequence between train and test 

observations, whereas LCSSL is the length of the longest common substring between train and 

test observations. As can be seen from Figure 35 overall similarity between train and test 

synthetic data sets is 50% with set similarity (observations in train and test data sets containing 

the same destinations but not in the same order) being as high as 83%. Sequence and substring 

similarity measure how alike sequences of destinations are between train and test data sets. The 
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real network data measurements (line in red in Figure 35) for  an equivalent data set ( 5 users, 5 

train days, and 1 test days) collected from a real network show that synthetic data similarity 

measurements are in line with real data but show less similarity than real data between train and 

test sets.  

 

Figure 35 Similarity Stats for synthetic data for 5 users, 5 Train Days and 1 Test Day 

 

These results indicate that synthetic test data is relevant enough to the train data set while 

maintaining enough independence from the test data set to support realistic experiments. 

The next set of experiments uses synthetic data but extends the number of users to 500 

and limits the number of observations (each containing 50 destinations) in the test data set to 3. 

The reason for limiting the test data set to only three observations was due to two key reasons: 
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1. In security scenarios user attribution needs to be performed as quickly as possible, using 

as few observations as possible. This is different from the previous experiment where an 

entire day worth of observations was used for the test data set. 

2. The time to complete experiments using the HTM increases dramatically (as high a 5 and 

a half hours for a single HTM algorithm run) as the number of user reaches 500.  

Figure 36 shows the results of running the experiment with 3 test observations with 1000 

destinations. While accuracy continues to be better for the HTM versus alternate algorithms, the 

overall HTM accuracy is poor especially for 500 users. These tests also show that the HTM does 

not scale well moving from 100 to 500 users.   

 

Figure 36 Experiments for 5 Train days, 3 Observations for test data, 1000 destinations 

Figure 37 shows the same experiments but this time the number of destinations in the 

train and test data sets is increased from 1000 to 5000. These results are quite different from the 
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previous results using 1000 destinations and are more in line with the results obtained for the 

experiments using a 1 day worth of test data observations with 5000 destinations. HTM 

algorithm Bottom up and TopTop continue to outperform all other algorithms. HTM algorithms 

scale well even for 500 users with accuracy as high as 99% for the TopTop algorithm. Alternate 

algorithms continue to underperform HTM algorithms. 

 

 

Figure 37 Experiments for 5 Train days, 3 Observations for test data, 5000 destinations 

 

Figure 39 shows the results of further extending the number of web destinations allowed 

in the train and test data sets to 10000. The same conclusions can be drawn for these results as 

for the previous ones with experiments conducted using 5000 destinations. 
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While HTM algorithms are more accurate, they take longer to provide results than the 

alternate algorithms. Why? The HTM performs an exhaustive search of all Markov chains when 

presented with an input and finds the best matching longest common subsequence and substring 

that was observed most often during training. In contrast all alternate algorithms are based on 

extensions of a 1
st
 order Markov graph which matches the input completely based on the on the 

very first destination in the sequence.  Alternate approaches find this first destination in constant 

time and then match the rest of the input from that point in the graph onward. The accuracy 

superiority of HTM algorithms is due to the extensive search across all Markov graphs learned 

during train time at each layer of the HTM which allows HTM algorithms to find the best match 

for the input in contrast to the alternate algorithms which only search a very small subset of the 

train data set resulting in a lot of mismatches.  

 

Figure 38 PPM Matches and Miss Matches per K-Order = 3 

 

Figure 38 shows the PPM statistics for the experiment run in Figure 37. The percentage 

of hits and misses were computed for all k orders across all users. The PPM algorithm starts at 
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the highest k order (k=3) and each time the context (input) of size k of the input is not matched 

the algorithm scales down to a lower k order (matches a shorter portion of the input).  Figure 38 

shows that the PPM algorithm operates at k order = 0 about 80% of the time. This means that 

80% of the time the PPM algorithm fails to match its input, applies a penalty to the path 

probability for the input and moves down to a lower k order Markov graph until it reaches k 

order = 0. This explains the poor performance of PPM and other higher K order algorithms (3
rd

 

Order MC, All-K). 

Alternate algorithms have much better run times since discovery of the start of the input 

sequence is determined in constant time and matching of the sequence occurs in time 

proportional to the size of the input. HTM algorithms on the other hand have search run times 

that are proportional to the size of the entire input learned at training time as well as the size of 

the input sequence. 
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Figure 39 Experiments for 5 Train days, 3 Observations for test data, 10,000 destinations 

 

Accuracy Scalability 

 

Accuracy scalability, in this study, represents the ability of the solution to provide 

consistent levels of accuracy during training and inference when the number of users increases 

while keeping constant the number of destinations and vice versa increasing the number of 
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destinations as the number of users remains constant. It is important to distinguish accuracy 

scalability from run time performance scalability which instead deals with how well the solution 

manages computing resources (CPU and Memory utilization) to accomplish its task.  

The experiments in the previous section report substantial accuracy improvements when 

the number of visited web destinations rises from 1000 to 5000. Further increasing the number of 

visited web destinations from 5000 to 10,000 brings only marginal accuracy improvements. 

Many experiments were run to support this conclusion (see Table 13).   

A separate set of experiments was also conducted and reported in this section to explore 

more in depth the explicit accuracy scalability of the HTM from a user point of view. In order to 

address the gap in number of users from Table 13 between 100 and 500 users, experiments were 

run utilizing synthetic data which tested only the two best performing algorithms for each layer 

of the HTM: BottomUp Layer 1 and TopTop layer3. These experiments were run with 5000 web 

destinations using 5 days of training and 3 test observations for the following number of users: 

150, 250, 350 and 450.  

Figure 40 shows that overall accuracy, measured in terms of recall and precision, is good 

with accuracy values remaining at or above 95% as the number of user increases up to 500 users. 

The HTM TopTop layer3 algorithm provides the most consistent accuracy performance with 

values of 99% for both recall and precision as the number of users under test increases. 
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Figure 40 Accuracy Scalability 150 to 500 users using synthetic data 

 

Figure 41 shows a different way to look at accuracy scalability by measuring the 

percentage change in recall and precision results when the number of users increases. When the 

number of users increases from 11% to 67%, the overall recall and precision percentage change 

values never go above 1.5%. Positive recall and precision percentage change values indicate a 

loss of accuracy when the number of users increases, while a negative recall and precision 

percentage change value indicates a gain of accuracy as the number of users increases. These 

results confirm that when measured against synthetic data, HTM accuracy performance for users 

scales well.  
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Figure 41 Recall and Precision percentage changes for accuracy scalability measurements 

 

Results of experiments to verify user attribution accuracy with concept drift 

 

The next set of experiments tries to measure how accuracy for the HTM and alternate 

algorithms is impacted by potential changes in the behavior of the user over time (concept drift). 

These changes are reflected in the synthetic data set and take one of two forms: 

 Random Walk where the next destination Vj, for transitions of the form Vi   Vj, is 

chosen randomly in proportion to the in-degree of the current node Vj. Details for this 

algorithm can be found in section “Generation of Synthetic Data for the Simulation”. 

 Context Drift in the form of either 20% new connections to already existing learned 

nodes or 10% new connections to new nodes not learned before. 

Table 15 shows all 8 sets of experiments that were conducted using synthetic data with 

different forms of concept drift. The experiments were run against both HTM and alternate 
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algorithms so that each square in Table 15 represents 11 experiments. For these experiments the 

number of users and the number of destinations remained constant with the following parameters 

changing: 

 Train Days: 5, 10, 15, 20 and Test Days: 2, 3, 4, 5 

 Level of concept drift: None=Walk Only, Concept drift via: Random Walk, New 

Connectivity (20%) and New nodes (10%) 

Number 
Destinations/

Number of 
users 

5 Training Days/2 test 
Days 

10 Training Days/3 test 
Days 

15 Training Days/4 
test Days 

20 Training Days/5 test Days 

1000/5 
(Baseline) 

Walk_Only, 
No CD 

Walk_Only, 
No CD 

Walk_Only, 
No CD 

Walk_Only, 
No CD 

1000/5 Random Walk, 
No CD 

Random Walk, 
No CD 

Random Walk, 
No CD 

Random Walk, 
No CD 

1000/5 Walk_Only, 20% 
Connectivity,10% New 

Nodes 

Walk_Only, 20% 
Connectivity,10% New 

Nodes 

Walk_Only, 20% 
Connectivity,10% 

New Nodes 

Walk_Only, 20% 
Connectivity,10% New Nodes 

Table 15 Accuracy tests completed using Synthetic data with concept drift 

 

The results all experiments shown in Table 15 are reported in Appendix B. The rest of the 

discussion in this section only reports a key subset of the overall results from Appendix B in order 

to determine how well the goals of this study were met. 

Figure 42 shows the impact of applying the random walk and concept drift algorithms to 

a base line implemented using the walk only algorithm for 1000 destinations, 5 users with 5 days 

of training and 2 days’ worth of test data. 

 



129 
 

 
 

 

Figure 42 5 Users, 5 Train Days, 2 Test days using concept drift 

 

The random walk algorithm applied to synthetic data impacts accuracy the most for HTM 

algorithms but not as much for alternate algorithms. Figure 43 represents the same data set used 

in Figure 42 and shows the difference from the base line for both random walk and concept drift 

algorithms. The further away from the zero baseline recall readings fall, the more that algorithm 

implementing a form of concept drift impacts the accuracy of the HTM. Appendix B shows the 

rest of the graphs and tables for different number of train and test days. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=5,Test=2, Walk Only, No
CD,             Average Recall

5Users-1000Dest
Train=5,Test=2,CD=None,Rando
m Walk,             Average Recall

5Users-1000Dest
Train=5,Test=2, Walk Only,
CD=20% conectivity,10%New
nodes,                    Average
Recall



130 
 

 
 

 

Figure 43 Difference in recall from the baseline of the “Walk Only” HTM Algorithm 

The higher negative impact of the random walk algorithm might not be an obvious result, 

but it makes sense once one understands that an important property of the random walk 

algorithm is that it tends to terminate existing sequences and start new sequences any time the 

connectivity probability of the current node Vi does not exceed a random uniformly distributed 

value r. Connectivity probability represents the strength of connectivity of node Vi  (measured 

based on frequency of access to other neighbor nodes) proportional to the number of connections 

emanating from node Vi . The concept drift algorithm on the other hand tends to add new 

connections or new nodes to existing sequences and does not split them. This means that the 

concept drift algorithm as run for these experiments preserves 80-90% of first part of a sequence, 

modifying the last 10-20%. The random walk algorithm starts new sequences where the first 

element of the new sequence is not selected from the trained data set but from a zipf distribution. 

This condition occurs more for nodes that are visited less often during the training session. The 
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results of experiments conducted for different train and test day combinations (shown in 

Appendix B) show similar results. 

Results of experiments using real network data from a cellular data network 

 

The next set of experiments used real network data collected from a CDMA cellular data 

network in North America over a period of approximately a month from 12-17-2012 to 1-18-

2013. The data collected includes real timestamps and real destinations. TCP timestamps were 

not collected since they were not included in the retrieved traces and instead they were 

synthetically generated to support the HTM training phase of the experiments. Experiments were 

conducted against the HTM using the following parameters in order to provide a basis of 

comparison with experiments conducted with synthetic data: 5 and 10 users, 5000 destinations, 5 

train days and 1 test day, 5 train days and 2 test days, 10 train days and 3 test days. The actual 

number of different web destinations visited by all users over the month was about 5200. 

Figure 44 shows the results of the experiment using real network data for 5 users, 5 train 

days and 1 test day. As can be seen the HTM algorithms performed poorly when using real 

network train and test data compared to equivalent synthetic data. 
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Figure 44 Real Data HTM1, 5000 destinations, 5 users, Train 5 days, Test Days = 1, 

Average Recall 

 

When the HTM prototype was calibrated using real network data, as shown in Table 16, 

it was discovered that not only the calibration was no longer perfect (100% as was the case for 

synthetic data) but for some HTM algorithm the accuracy was extremely low. 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM1 Real Data,  5 Users-5000
Dest Train=5,Test=1      Average
Recall

HTM1 Synthetic Data, 5 Users-
5000 Dest Train=5,Test=1,
Average Recall



133 
 

 
 

 

Users Layer 1 HTM Algorithms 
% Accuracy 

Layer 3 HTM 
Algorithm 
% Accuracy 

 Simple Average Simple Average 
User-1 100% 100% 
User-2 99% (1 error) 99% (1 error) 
User-3 100% 100% 
User-4 100% 100% 
User-5 100% 100% 
 Average Bottom Up Average Bottom Up 
User-1 78% (48 errors ) 79% (46 errors ) 
User-2 82% (53 errors) 85% (44 errors ) 
User-3 81% (22 errors) 81% (21 errors )  
User-4 74% (38 errors) 76% (35 errors) 
User-5 71% (4 errors) 79% (3 errors) 
  Average Top-Top 
User-1  100% 
User-2  99% (1 error) 
User-3  100% 
User-4  100% 
User-5  100% 
 Path Probability Path Probability 
User-1 6% (206 errors) 4% (215 errors ) 
User-2 27% (221 errors) 22% (236 errors) 
User-3 61% (44 errors) 57% (48 errors) 
User-4 41% (86 errors) 32% (100 errors) 
User-5 36% (9 errors)   36% (9 errors) 

   

Table 16 HTM1 Calibration results with Real Network Data for 5 users, 5 Train Days and 

2 Test days 

Why is the HTM performing so poorly with real network data?  

Visual observation of both train and test real network data showed a high recurrence of 

repeating patterns of a single destination as in: 48 48 48 48 48 48 48. This can be attributed to 

two main reasons: 

1. Multiple visits to the same web sites occur with the same time stamp. This occurs when 

an individual user’s web page retrieves multiple images from the same visited web site 

2. Multiple visits to the same web sites occur with different time stamps showing that 

indeed users tend to visit the same web site repeatedly 
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This repeated continuous pattern is not handled well by the HTM. This is because the 

HTM breaks up repetitive patterns. So pattern, 1,2,3 1,2,3 1,2,3 is sees as pattern 1,2,3 occurring 

3 times (which is good), but sequence 2,2,2,2,2,2,2,2 is seen as a single destination 2 visited 8 

times. This means that a user who seldom visits destination 2 and another who visits it in a 

sequence will produce analogous similarity statistics since for a single repeating continuous 

destination, the HTM does not see a sequence of destinations but only a single element.  

How did calibration of alternate algorithms perform with real network data? 

Table 17 shows the results of calibration test runs for all alternate algorithms. The results 

of calibrations of alternate algorithms are better than equivalent results using the same data set 

for HTM algorithms. 

Users Alternate Approaches 
% Accuracy 

 1
st

 Order Markov 
User-1 100% 
User-2 99% (1 error) 
User-3 100% 
User-4 100% 
User-5  
 3

rd
 Order Markov 

User-1 100% 
User-2 100% 
User-3 100% 
User-4 100% 
User-5 100% 
  
 All K Order Markov (K=3) 
User-1 100% 
User-2 99% (1 error) 
User-3 99% (1 error) 
User-4 100% 
User-5 100% 
  
 PPM 
User-1 100% 
User-2 99% (1 error) 
User-3 100% 
User-4 100% 
User-5  

  

Table 17 Calibration results for Alternate Approaches using real network data for 5 users, 

5 Train Days and 2 Test days 
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It is important to note that the performance of alternate algorithms continued to be poor 

against real network data in a non-calibration scenarios with a train data set of 5 days and a test 

data set of 2 days, as shown in Figure 45. This leads to another observation regarding the 

calibration process. Good calibration results, while important to qualify algorithms for 

experiments, do not necessarily guarantee good results with test data that differs from the train 

data set.  

 

Figure 45 HTM1 Real Network Data comparison with Alternate Algorithms 

 

The original HTM (HTM1) was modified into a new version HTM2 which accounted for 

multiple repeated destinations at layer 1. HTM2 was calibrated and reported the accuracy shown 

in Table 18. The accuracy reported is still below the 100% level of performance achieved with 
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synthetic data but performance improved from the previous calibration results for bottom up and 

path probability algorithms. 

Users Layer 1 HTM Algorithms 
% Accuracy 

Layer 3 HTM 
Algorithm 

% Accuracy 

 Simple Average Simple Average 
User-1 100% 100% 
User-2 99% (1 error) 100% 
User-3 100% 99% (1 error) 
User-4 100% 100% 
User-5 100% 100% 

 Average Bottom Up Average Bottom Up 
User-1 99% (1 error) 99% (1 error) 
User-2 99% (1 error) 99% (1 error) 
User-3 98% (2 errors) 98% (2 errors) 
User-4 100% 100% 
User-5 100% 100% 

  Average Top-Top 
User-1  100% 
User-2  99% (1 error) 
User-3  100% 
User-4  100% 
User-5  100% 

 Path Probability Path Probability 
User-1 100% 93% (14 errors) 
User-2 99% (3 errors) 96% (12 errors) 
User-3 100% 99% (1 error) 

User-4 100% 97% (4 errors) 
User-5 100% 100% 

   

Table 18 HTM2 Calibration results with Real Network Data for 5 users, 5 Train Days and 

2 Test days 

Figure 46 shows the results of running HTM2 against the original synthetic data set 

(baseline) and the real network data sets. The performance of HTM2 improved over the previous 

version HTM1 for all algorithms, yet it still lags behind the performance of the baseline synthetic 

data. 
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Figure 46 Real Data HTM2, 5000 destinations, 5 users, Train 5 days, Test days = 1, 

Average Recall 

 

The repetitiveness of the certain destinations within observations was believed to impact 

the performance accuracy of the HTM. In order to better understand how this property of real 

network data impacts the experiments, an intra-observation repetitiveness statistic (see Appendix 

C for the MATLAB script) was created and applied to the real network data set for 5 users,  5 

train days and 2 test days. Intra-observation repetitiveness statistic measures uniqueness of 

destinations within an observation. For instance, a 75% value for this statistic given input [ 3 3 3 

3] means that three in four destination in the input repeat. If the input was [ 1 1 2 2 3] then intra-

observation repetitiveness would be 40% or two in five observations repeat. Figure 47 shows that 

intra-observation repetitiveness is very high for train real network data and high for test real 
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network. For synthetic data intra-observation repetitiveness is fairly high for the train data set but 

low for the test data set. 

 

Figure 47 Intra Observation Repetitiveness statistics for real network data 

In order to gain more insight into the intra observation repetitiveness results the third 

observation for user 3 from the real test dataset was extracted and is shown below: 

48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,52,48,48,48,4

8,48,48,48,48,48,48,48,48,48,48,48,48,48,499,48,48 

The intra-observation repetitiveness for this observation is 94 % with 47 repeating 

destinations out of 50. If indeed the high level of repeated destinations within observations in the 

data sets contributes to lower accuracy performance then reducing it should provide measurable 

improvements. The next set of experiments, were designed to address this question by reducing 

repeated destinations within observations and removing from the real network datasets any 
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repeated destinations that occurred at the exact same time, as measured in the real network data 

by the value of time stamps. This change does not impact the validity of the results since what is 

being removed from the data set includes repeated retrievals of objects like pictures belonging to 

a given web page. The reduction was applied to all train and test data files and accounted for a 

total reduction in repeated destinations of about 35%. Figure 48 shows the results running the 

HTM algorithm for 5 users, 5 train days 1 test day over a real network data set with reduced 

repeated destinations. The results show a definite improvement (HTM2++ represents the HTM 

runs where destination repetitiveness was reduced) but the results are still below the accuracy 

results of the synthetic baseline. 

 

Figure 48 Accuracy comparisons of all HTM versions including removal of same time 

destinations 1 Test day 
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In order better understand the impact of the 35% repetitiveness reduction impact, the 

experiment was run again against 5 users, 5 train days and this time 2 test days. Figure 49 shows 

that while an improvement is achieved (see HTM2++) over not applying the 35% reduction, 

results do not go above 90% accuracy.  

 

Figure 49 Accuracy comparisons of all HTM versions including removal of same time 

destinations 2 Test days 

How did this 35% reduction in repeated destinations impact the composition of train and test 

data sets? 
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As shown, the observation composition of repeated web destinations was only very 

slightly reduced thus accounting for the improved accuracy reported by the HTM (HTM2++).  

The measure of inter observation repetitiveness was also implemented (see Appendix D for the 

MATLAB algorithm) to measure repetitiveness across observations. Figure 50 shows both intra 

and inter observation repetitiveness for synthetic, real network data and real network data filtered 

for repeated destinations within the same timestamp value. The metrics reported in this graph are 

averages across 5 users, with data sets of 5 train days and 2 test days. Figure 50 brings to bear an 

interesting inverse relationship between intra and inter observation repetitiveness, such that intra 

observation repetitiveness is highest for real network data and lowest for synthetic data. On the 

other hand, inter observation repetitiveness is highest for synthetic data and lowest for real 

network data, albeit the difference for inter observation repetitiveness between synthetic and real 

data is smaller than the difference for intra observation repetitiveness between the same data sets. 

 

Figure 50 Comparison of Inter and Intra repetitiveness statistics for 5 users 
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Figure 51 and Figure 52 show accuracy results after running HTM2 on data sets with 

reduced repeated same time destinations. The experiments were conducted for 5 and 10 users 

respectively over 5 training days and 1, 2 3 test days. Accuracy performance worsens as the 

number of users increases from 5 to 10. Improving HTM accuracy performance for real network 

data that displays such extreme levels of intra observation repetitiveness is a very important topic 

for further study. 

 

Figure 51  HTM2++ accuracy performance with real network data for 5 Users for 1, 2, 3 

test days 
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Figure 52  HTM2++ accuracy performance with real network data for 10 Users for 1, 2, 3 

test days 

 

For a complete set of statistics on HTM2 experiments using real network data see Appendix G. 

 

Results of experiments simulating DOS Attacks 

 

Another set of experiments run against the HTM was conducted by simulating denial of 

service attacks where the attack is initiated from individual devices during the test phase to a 

number of destinations (5, 10, 20) learned at train time. The destinations are attacked repeatedly 

over time (within a time interval of  5, 10, 20 ms and spaced by a fixed time interval of 5 ms). 

The idea is to determine how well the HTM can continue to identify users before and after the 
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attack. In these experiments 10 users are used and 4 of them are assumed to be infected and start 

DOS attacks during the test phase. Table 19 shows all DOS attack experiments run against 

HTM2 (HTM version2) algorithms with all results reported in Appendix E. 

 

Number 
Users/Number  
infected/Data 

Source 

Number 
Destinations/Unit of 
time, Repeats every 

Number 
Destinations/Unit of 
time, Repeats every 

Number Destinations/Unit of time, 
Repeats every 

10/4/Synthetic 
 

5/5ms,5ms 10/10ms,5ms 20/20ms,5ms 

10/4/Real 
Network 

5/5ms,5ms 10/10ms,5ms 20/20ms,5ms 

Table 19 Accuracy tests which simulated DOS attacks 

 

Figure 53 shows the difference in accuracy between the recall values after and before an 

attack. A negative difference between the two values indicates that the HTM2 recall decreased 

by that value after the attack. As expected most recall differences values are negative with the 

difference value increasing as the number of destinations attacked increases. The BottomUp and 

TopTop HTM algorithm are the least impacted by the DOS attacks while continuing to 

outperform other algorithms (see Appendix E for more statistics on DOS attacks). Also note that 

while path probability is not as impacted by the DOS attacks, its performance continues to be the 

worst among the HTM algorithms (see Appendix E). 
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Figure 53 DOS Attack using Synthetic data against 10 users with 4 infected users 

 

 

The same DOS attack experiment was also conducted with real network data as shown in 

Figure 54. HTM (V2) algorithms are minimally impacted (about 8%) by DOS attacks with the 

exception of the path probability algorithm at layer 3. In the experiments run with synthetic data 

(Figure 53) the maximum impact of DOS attacks did not exceed 11%. 
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Figure 54 DOS Attack using real network data against 10 users with 4 infected users 

 

Results of experiments simulating Phish Attacks 

 

Another set of experiments simulates phishing attacks. For these experiments attacks are 

initiated from individual devices during the test phase where unique destinations (1, 3, 5) are 

randomly selected from outside the device training data set (to simulate access to never visited 

before web phish sites) and attacked within a time interval (1ms, 3ms, 5ms) spaced by a random 

time intervals [1 minute – 1 hour]. Table 20 shows all Phish attack experiments run against 

HTM2 algorithms with all results reported in Appendix E. 
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Number 
Users/Number  
infected/Data 

Source 

Number 
Destinations/Unit of 
time, Repeats every 

Number Destinations/Unit 
of time, Repeats every 

Number Destinations/Unit of time, 
Repeats every 

10/4/Synthetic 
 

1/1ms,[1min – 1 
hour] 

3/3ms, [1min – 1 hour] 5/5ms ,[1min – 1 hour] 

10/4/Real 
Network 

1/1ms,[1min – 1 
hour] 

3/3ms, [1min – 1 hour] 5/5ms,[1min – 1 hour] 

Table 20 Accuracy tests which simulated Phish attacks 

 

 

Figure 55 and Figure 56 both show that the accuracy of HTM (V2) is minimally impacted 

by Phish attacks, even less than for DOS attacks since accuracy drops by no more than 5% after 

these attacks. 

 

Figure 55 Phish Attack using Synthetic data against 10 users with 4 infected users 
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Figure 56 Phish Attack using real network data against 10 users with 4 infected users 
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instead inference relied entirely on the variable Markov graphs/chains at each layer of the HTM 

leveraging different HTM algorithms to combine degree of membership results across 

observations. The idea of these experiments is to determine how much different session 

identification approaches applied during HTM training impact the ability of the HTM to infer 

accurately (when used under conditions that emulate real life scenarios specific to each session 

identification algorithm). 

Session Identification experiments were performed by creating training data sets for the 

HTM that use one of three session identification algorithms: (1) Source IP, (2) Sliding Window, 

(3) TCP Timestamp. The train data set to be modified by the session identification algorithms is 

based on real network data. The experiments include a preliminary step which runs the session 

identification algorithms against real network data to produce a train data set that is altered based 

on the bias introduce by each session identification algorithm. The experiment would then train 

the HTM with this altered train data set and use the original real network data as the test data set. 

The session identification algorithms are: 

 Source IP: All input with the same source IP address belongs to the same user 

 Sliding Time Window:  Select the first  (oldest) HTTP request in a time window based 

on the source IP address and assign it to user-x, then all subsequent HTTP  requests within 

the time window for that source IP address, belong to the same user-x. As long as data is 

available for user-x within the window over time, then that session belongs to user-x 

otherwise a new user (source IP address) is selected at random based on users who have data 

falling within the sliding time window. 

 TCP Timestamp: Uses the TCP Time stamp value within a clock skew window to track 

different users 
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 The source IP and TCP Time stamps leveraged real life scenarios to alter the original train data 

set in the form of: 

 Source IP: Source IP recycling of the same source IP address among users as done by 

NATs and Proxies devices 

 Source IP: Re-attach of a device with new source IP as done when users move across 

networks  

 TCP Timestamp: Data loss simulate creation of holes in the data stream 

 TCP Timestamp: Device power on/off simulates resetting the TCP Timestamp 

Note that the sliding window approach presented in other related literature (Banse, 

Herrmann, &  Federrath  (2012) and Yang (2010) ) only specified that requests occurring 

together in time belong to the same session. No other detail was given as to how a specific 

session was identified among others occurring at similar times. Thus, the use of the oldest source 

IP in a given time window as the seed for identifying a given user is proposed in this paper in 

support of this approach. It is important to note that under perfect conditions of no noise or 

device resets, no clock skew, no forced change of source IP addresses then both source IP 

address and TCP Timestamps are “perfect” tracking algorithms. On the other hand, the sliding 

window approach is not perfect even though it actually extends the source IP address algorithm. 

This is due to the fact that each time data for user-x within a sliding window runs out, a new 

random user is picked. For this reason no noise is added to experiments tied to the sliding 

window algorithm. 

The number of users in these experiments is 5 and 10 with the following additional experiment 

parameters: 
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 Source IP:  10% recycle source IP address and 10% access network re-attaches 

 Sliding Window: Sliding window size in seconds (1, 3, 5, 60) 

 TCP Timestamp: 10% data loss and 10% device power on/off 

The experiments for 5 users were run 3 times with HTM (V2) and averages over the runs 

computed as shown in Figure 57. The sliding window algorithm maintains the best performance 

even when up to 35% of the original train data set is lost as shown in Figure 58. 

 

Figure 57 Accuracy of different session identification algorithms for 5 users 
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Figure 58 Percentage change for 5 users to train files resulting by use of window algorithm 

For 10 users the sliding window algorithm continues to outperform the other session 

identification algorithms as shown in Figure 59. Figure 60 shows that even with a window size 

of one minute and a 57% of the original train data set lost, accuracy is still quite good at 94%. 

 

Figure 59 Accuracy of different session identification algorithms for 10 users 
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Figure 60 Percentage change for 10 users to train files resulting with window algorithm 

 

Summary of Results 

 

A total of 614 experiments were conducted for this study as reported below: 

 330 experiments using synthetic data without context drift 

 132 experiments using synthetic data simulating context drift 

 42  experiments using network data from a real cellular network 

 42  experiments simulating DOS attacks 

 42  experiments simulating Phish attacks 

 18 experiments simulating different session identification approaches  

 8  experiments covering user accuracy scalability 
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algorithms always outperform in terms of accuracy alternate algorithms (1
st
 and 3

rd
 Order 

Markov chains, All-K, PPM). More specifically, for experiments conducted with synthetic data 

0

0.1

0.2

0.3

0.4

0.5

0.6

Window Size = 1
sec

Window Size = 3
secs

Window Size = 5
secs

Window Size =
60 secs

Train Files Change 

Train Files Change



154 
 

 
 

which used no context drift, the difference in accuracy performance between HTM algorithms 

and alternate algorithms is substantial. Alternate algorithms with one day worth of test data never 

produced recall statistics above 42% (see Figure 32,Figure 33, Figure 34) and when the test data 

set consisted of 3 observations, these algorithms never produced recall statistics over 66%. In 

contrast, HTM algorithms produced accuracy statistics (recall statistics) as high as 99% for a 

sample of 100 users as shown in Figure 33. 

The accuracy of HTM algorithms improves as the number of web destinations visited 

increases beyond 1000 to 5000 and 10,000. Recall results for experiments conducted with 

synthetic data without introducing simulated context drift, produced recall values of 99% for 500 

users as shown in Figure 37 and Figure 39. 

Overall the best performing HTM algorithms in terms of accuracy and scalability are the 

Bottom Up for HTM layers 1 and 3 and the TopTop algorithms (see section “Accuracy 

Scalability” for more details). For alternate algorithms the 3
rd

 Markov chain always tends to 

perform more poorly than the other algorithms.  

Experiments conducted with synthetic data which simulated concept drift show that the 

HTM accuracy is mostly impacted by concept drift in test data (reducing accuracy by as much as 

25%)  that tends to split sequences of destinations often as shown when the “random walk” 

algorithm is utilized to apply concept drift. On the other hand concepts drift that tends to 

preserve a portion of the original sequence of destinations but adds new connections to existing 

destinations or new destinations to existing connections, has much smaller of an impact on the 

HTM accuracy (reducing accuracy by no more than 11%) . 
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Several experiments were conducted with real network data collected from a CDMA 

cellular operator’s network. The data collected showed very large number of repeated 

destinations within observations making it difficult for the HTM to infer unique patterns. The 

intra observation repetitiveness reported for some users is as high as 94% (see Figure 47) 

meaning that on average only 3 web destinations in 50 are unique within an observation. 

Accuracy as reported by the HTM1 (version 1) was as low as 32% and the highest accuracy 

reached was 81%, as shown in Figure 44, but most HTM algorithms performed poorly. 

A new version of the HTM, (HTM2) was created which accounted for these repeated 

patterns. In addition, the real data set used for experiments was modified to remove multiple 

repeated destinations that occurred with the exact same timestamp. Results improved for all 

HTM algorithms, by raising the worst accuracy recorded to 61% as shown in Figure 52 and 

reaching recall values as high as 95% as shown in Figure 51. However, the HTM is still 

underperforming with respect to the accuracy performance measured against the synthetic 

baseline. 

Experiments which simulated DOS and Phish attacks were also conducted. These 

experiments showed that the HTM algorithms are minimally impacted by these attacks. Most 

HTM algorithms keep accuracy from decreasing by more than 11% after a DOS attack and 5% 

after a Phish attack. 

The last set of experiments conducted in this study considered the impact of using 

different session identification algorithms to train the HTM. These experiments showed that the 

sliding window session identification algorithm when measured against “perfect” tracking 

algorithms such as source IP address and TCP timestamp that are exposed to simulated real life 



156 
 

 
 

conditions which introduce noise in the data set can outperform both of these algorithms. To put 

things in perspective, a window size of 1 minute, produces a change in the test file (loss of web 

destinations) from the original train file of 57% yet recall is reported at 92%, compared to the 

best performing TCP timestamp (with 10% data loss and 10% device resets) which reports a 

recall value of 83% as shown in Figure 59. 

The results reported by these experiments clearly support the goals of this study by 

showing that a hierarchical temporal memory produces better accuracy results than alternative 

traditional Markov based approaches. HTM results consistently outperformed alternate 

algorithms regardless of the algorithm chosen and the data set used (synthetic or real network 

data).  Accuracy scalability, that is the ability of the solution to maintain accuracy as number of 

users/destinations increases, was also shown to be superior for the HTM over alternative Markov 

based approaches (see section “Results of experiments to verify user attribution accuracy without 

concept drift using synthetic data” for more details).  
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Chapter 5 

 

Conclusions, Implications, Recommendations, and Summary 

 

This study has set out to address the user attribution problem which attempts to identify 

communication traffic that belongs to a user, as the user possibly moves across networks, when 

the information needed to identify those users is missing. The experiments conducted in this 

study have shown that the hierarchical temporal memory (HTM) is quite accurate in correctly 

identifying time based patterns that represent user navigational patterns. Test results have shown 

that the HTM can provide reliable user attribution in scenarios where malicious users attempt to 

access network resources by performing simulated Phish and DOS attacks. The effects and 

impacts of mobility so critical in the user attribution problem, was tested against different session 

identification algorithms.  

The results of the experiments conducted for this study are promising. A recurring theme 

in this study shows that alternate algorithms based on the traditional implementation of Markov 

chains consistently underperformed HTM algorithms pretty much in all experiments. The 

experiments conducted in this study bring to bear very good accuracy and accuracy scalability 

results with synthetic data and good results with real network data thus satisfying the original 

goals of this research.  There is a strong belief that even better accuracy results can be achieved 

when processing real network data with specialized algorithms built within the HTM designed to 

address specifically extremely repetitive patterns in observations. Experiments also show that the 

HTM tolerates quite well noise in test data in the form of either concept drift or DOS and Phish 

attacks. The lack of real network TCP timestamps limited session identification experiments to 

utilizing synthetically created TCP timestamps however the experiment did show the merits of 
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the sliding window algorithm as an accurate session identification algorithm. It would be a topic 

of further study to determine how well the sliding window, source IP address and TCP 

timestamp algorithms correctly identify sessions with real network data. The experiments also 

brought to bear the fact that the HTM run-time performance scalability, as the number of users 

and the amount of test data increase, is not good and represents an area of further investigation.   

In this study synthetic data as produced by the input generator algorithm described in 

section “Generation of Synthetic Data for the Simulation” represented a reasonable data set to run 

experiments since similarity statistics between train and test data sets showed that the test data 

generated for a given user is relevant to the train data and yet independent enough to simulate 

realistic experiments.  

All experiments run with synthetic or real data, which compare HTM algorithms and 

alternate algorithms (implemented based on traditional Markov chains), show the HTM 

outperforming alternate algorithms as was described in Chapter 4. It is important to note that all 

7 HTM algorithms implemented for this study share the same degree of membership calculation 

of longest common subsequence, longest common substring and sequence persistence to 

determine the similarity of input against learned sequences. These HTM algorithms differ in how 

they combine and process the results of multiple degrees of membership calculations within and 

across HTM layers for multiple observations. 

Accuracy reported by HTM algorithms also scales better with increasing number of users 

and web destinations than the accuracy reported by alternate algorithms as shown in Figure 61.  
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Figure 61 Recall Accuracy Scaling for up to 100 users for 1 test day 

 

Figure 61 shows the difference in recall accuracy between experiments run for 5 to 100 

users over 5 train days and 1 test day using synthetic data. The high and low recall values of all 

HTM algorithms (excluding path probability for layer 3 shown as an outlier) and alternate 

algorithms was recorded and the difference between values for 5 and 100 users was tabulated in  

Figure 61. It can be seen that excluding the layer 3 path probability algorithm, HTM algorithms 

scale better than alternate algorithms with a maximum of 13% loss in accuracy when tracking 

1000 web destinations and moving from 5 to 100 users compared to 41% loss in accuracy for 

alternate algorithms. For 5000 and 10,000 web destinations the scale factor for the HTM 

algorithm is as low as 1% for high recall values. 

The HTM scales well also in experiments where the number of users grows to 500 using 

5 days of synthetic train data and 3 observations for test data. Figure 62 and Figure 63 show that 

the recall difference between high and low recall values moving from 5 users to 100 users and 

then to 500 users for 5000 and 10,000 web destinations is about the same and stays below 10%. 
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For high recall values the scale factor for 5000 and 10,00 web destinations shows perfect scaling 

with a scale factor value as low as 0%. Results of experiments run with synthetic data show high 

levels of accuracy for ranges of web destinations above 5000. This range of destinations visited 

by users matches the range found in the real network data set used in the experiments of 5200 

web destinations. 

 

Figure 62 Recall Accuracy Scaling for up to 100 users with 3 observations 

 

Figure 63 Recall Accuracy Scaling for up to 500 users with 3 observations 
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More targeted experiments were also conducted with synthetic data to measure accuracy 

scalability specifically from a user point of view using a fixed optimal number of web 

destinations (5000) and leveraging the two best HTM algorithms (BottomUp layer 1 TopTop 

layer 3). For these experiments the number of users was: 150, 250, 350 and 450. Results show 

that increases in the percentage of the number of users from 11% (from 450 to 500) to 67% 

(from 150 to 250) result in accuracy (for both recall and precision) percentage change values that 

stay within the very small range of 1.5% to -0.5% while producing consistently high accuracy 

values in the range of 95% to 99% (see section “Accuracy Scalability” for more details). 

One of the biggest challenges faced when running experiments with 500 users was the 

need to reduce the experiment run times. All experiments were executed on a Quad i7-3820QM 

2.7-3.7 GHz with 16Gig RAM laptop. Threading (one thread per HTM) and caching (of already 

computed results derived by performing inference traversal of the Markov Graph within each 

layer of the HTM) were two techniques that considerably improved the inference performance of 

the HTM allowing completing the experiments for 500 users in reasonable times. When first 

implemented threads improved performance by almost 100% so that running the HTM 

algorithms for 2 users would take about 30 minutes to complete in single threaded mode but 

using multiple threads the experiment would complete in 16 minutes. By adding caching, 

performance dropped from 16 minutes to 6 minutes for the same set of experiments. Further 

optimizations in how threads were used (limiting the number of concurrent threads to 8) and 

other enhancements in the cache algorithms to maximize cache hits and minimize collisions 

resulted in the run times reported below in Figure 64 and Figure 65. It can be seen that as the 
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number of users in conjunction with the test input size increase the run-times do increase 

dramatically. 

 

Figure 64 HTM Run-Times for 1 Test Day 

 

Figure 65 HTM Run-Times with 3 observations 

 

The amount of RAM main memory used by the HTM also proved to be a limiting factor 
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Output layer (as shown in Figure 8) to receive one observation’s worth of feed forward beliefs 

from each HTM before being able to decide which HTM has the “best”  feed forward belief. 

Increasing the number of users increases the number of HTMs which also increases the amount 

of RAM main memory needed to run the experiment.  When the Java JVM starts to run out of 

the allocated RAM memory and starts to use hard drive virtual memory run-time performance 

deteriorates dramatically eventually coming to a near halt. 

The performance recall accuracy of the HTM as reported by experiments with real 

network data is good as shown in Figure 66 which reports high and low recall values for these 

experiments. However, performance still falls short of what has been reported for similar 

experiments with synthetic data where observations do not show extreme levels of repeated 

destinations. 

 

Figure 66 HTM2++ Recall Accuracy with real network data 

5 usersHigh
Recall

10 usersHigh
Recall

5Users Low
Recall

10Users Low
Recall

5Train,1Test 0.95 0.87 0.75 0.64

5Train,2Test 0.9 0.79 0.78 0.61

10Train,3Test 0.86 0.81 0.72 0.64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

ca
ll 

HTM2++ Accuracy with Real Network Data 



164 
 

 
 

 

Further study is needed to explore new HTM algorithms that specifically address the high 

levels of repeated destinations found in real network data. In text mining, a similar problem 

exists with commonly occurring words like “the”, which impact negatively the accuracy of text 

inference algorithms. To address this problem inverse document frequency is utilized which 

diminishes the weight of terms that occur very frequently in the document set and increases the 

weight of terms that occur rarely. As an area of further research, a new HTM algorithm could be 

developed that could leverage a similar concept. 

Experiments also show that the HTM handles concept drift well in test data which 

modifies the last portion of a sequence of learned destinations to the point where often it tends to 

increase accuracy as shown in Figure 67. 

 

Figure 67 HTM Recall Accuracy in the presence of concept drift above base line 
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over the baseline which used no concept drift. Because this type of concept drift tends to change 

the last portion of an existing learned sequence it is possible that an existing sequence in the train 

data set is made even more unique by the changes affected by this form of concept drift. In 

contrast, concept drift that tends to split sequences of learned destinations, as done by the 

random walk algorithm, has a consistently negative impact on HTM accuracy performance with 

recall loss of up to 25% compared to the baseline (see Figure 43). 

 

The accuracy performance of the HTM does also relatively well in experiments which 

simulate DOS attacks with synthetic and real data as shown in the figure below never exceeding 

a 10% recall impact recorded after the attack. 

 

Figure 68 Recall Accuracy Impact of a DOS Attack 

Experiments which simulated Phish attacks against the HTM show even less of an impact 

than for DOS attacks, except for layer 3 path probability, after the attack as shown in Figure 69. 

HTM-
Layer1-
Simple

Average

HTM-
Layer1-
Bottom

Up
Average

HTM-
Layer1-

Path
Probabil

ity

HTM-
Layer3-
Simple

Average

HTM-
Layer3-
Bottom
UpAver

age

HTM-
Layer3-
TopTop
Average

HTM-
Layer3-

Path
Probabil

ity

Average Difference Synthetic
Data

-0.08733 -0.029 -0.068666 -0.08933 -0.029 -0.038333 -0.017

Average Difference Real
Network Data

-0.054 -0.06566 -0.026 -0.059 -0.065 -0.068 -0.096333

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

R
e

ca
ll 

D
if

fe
re

n
ce

 

Recall Impact of DOS Attacks 



166 
 

 
 

 

Figure 69 Recall Accuracy Impact of Phish Attacks 
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Figure 70 Session Identification Recall Accuracy Results 
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window algorithm. 
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 This study implemented sequence inference using a novel technique which combines 

traditional variable order Markov chains with the use of longest common subsequence and 

longest common substring coupled with the persistence of learned sequences to support a 

variety of HTM inference algorithms.  

 This study identified the limitations of traditional state cloning and proposed “sequence 

cloning” as a technique to address its shortcomings and improve inference accuracy 

 This study introduces the concept of “playback” to distribute accurately learned 

sequences from lower to higher layers of the HTM to reduce learning times and improve 

inference accuracy  

Another area of this study that deserves a more in depth analysis is the way the HTM 

splits sequences during both learning and inference phases. Experiments that introduce concept 

drift using the random walk algorithm have shown that the HTM accuracy degrades substantially 

when sequences of web destinations learned from the train data set are split in the test data set. 

The current implementation of the HTM terminates a sequence and starts another under the 

following conditions: 

1. A fixed maximum input size has been processed 

2. A maximum learned inter destinations arrival rate is exceeded 

3. The same destination is already present in the sequence (HTM version 1). HTM version 2 

also uses condition (3) to split a sequence but continues to process repeated destinations 

already in the sequence until a new destination not already in the sequence is encountered or 

one of conditions (1) or (2) are met. 
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Manipulation of these conditions or the parameters used by these conditions impacts 

HTM accuracy performance as was shown for version 2 of the HTM. In addition, preliminary 

experiments conducted by disabling and enabling learning for inter destination arrival time 

showed improvements (e.g. 5% accuracy improvement for the TopTop HTM algorithm when 

inter destination arrival rate learning is enabled versus disabling it and relying on a fixed inter 

destination arrival time). Learning for inter destination arrival time was implemented using a K 

means clustering algorithm to learn inter destination arrival rates. 

A limitation of this study is the restricted number of users (10) that was utilized with real 

network data experiments. Fifty users were tracked over a period of one month, but due to of 

large periods of traffic inactivity only 14 users provided enough data to support realistic 

experiments. It would be beneficial to run experiments with larger number of users as part of 

future research that addresses the high levels of repeated destinations found in real network data. 

Known Limitations of Proposed Approach 

 

Each time a device is recycled (powered on and then powered off), that device looks like 

a new device entering the network even if the device has been previously recognized by the 

prototype. This is because the TCP time stamp value of a given device is always reset to either a 

given fixed value or a random value and thus it will not match the TCP time stamp value 

associated with existing HTMs. These HTMs have their TCP time stamps continuously updated 

with the passage of time from the time the user of the device first powered on the device and 

entered the network. A device that having being powered on and having entered the network, 

powers off and then powers back on and reenters the network will cause the session 

identification algorithm to mistake this as a new user session (not seen before) and will create 
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duplicate instances of an HTM for the same user. This occurs only if a user recycles his/her 

device after having entered the network. This problem is similar to the situation where the same 

user makes use of two different devices to access the network. Even if the user never powers off 

both devices, at least 2 HTM instances are created for the same user. A solution to address this 

limitation is proposed below as research to be conducted in a further study. 

When devices get recycled (powered on and off and then on again) the source 

identification algorithm used during training mistakes a known device (source) for a new one and 

will mistakenly create multiple instances of HTMs for the same user. A solution to address this 

problem, shown in Figure 71, leverages the idea that HTMs representing the same user, when 

presented with the same input, are likely to generate similar inference at layer 3 which helps 

identify duplicate HTMs representing the same user. 
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Figure 71  Detecting Duplicate HTMs 

 

The high level algorithm below depicts how duplicate HTMs are detected. This algorithm 

removes HTMs likely to belong to the same user and keeps the oldest HTM which is likely to 

belong to the original user and have his/her longest and most representative behavioral history. 
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Figure 72 Algorithm to detect duplicate HTMs 

 

Summary 

 

The problem of tracking the behavior of users without explicit identifiers is very relevant 

and “challenging” because many ISPs assign customers dynamic IP addresses that change 

periodically as reported by Hermann, Banse and  Federrath  (2013). The authors acknowledge 

that user behavior tracking is feasible. Their experiments show accuracy results with up to 85% 

recall for large number of users (over 3000). However, the authors concede that recall accuracy 

degrades when the source IP address changes frequently. For instance, when the source IP 

address changes every 3 hours recall accuracy drops to 65%, when it changes each hour recall 

accuracy drops to 54% and when it changes each 30 minutes recall accuracy drops to 42%. 

WHEN a given number of HTMs in the Prime HTM Pool have reached the “inference” stage since 

the last HTM cloning procedure THEN 

 - Start the HTM Cloning Procedure: 
- Flush the HTM Clone Pool 
- Clone all HTMs in “inference” state from the Prime HTM pool 
- Disable learning for all of the HTMs in the HTM Clone Pool so that these HTMs 

only operate in inference mode 
 
-Feed any single input received by the prototype to all HTMs in the HTM Clone Pool 
-Collect the output (feed forward beliefs) of all HTMs from the all HTMs in the HTM Clone 
Pool into clusters based on similarity of feed forward beliefs outputs 
-For Each cluster select k clone HTMs with the most similar feed forward beliefs readings 
 - Of the k clone HTMs select all of k-1 HTMs but the oldest cloned HTM 
  - Delete from the Prime HTM Pool the equivalent (twins/clones) HTMs identified  
     From the cloned HTM Pool in the previous step 
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This study has addressed the same basic problem as proposed by Herrmann et al. but 

from the perspective of user attribution in the context of user mobility across complex networks. 

It is when users move within and across networks that the problem described by Herrmann et al. 

becomes more difficult to tackle since reliance on explicit identifiers such as source IP address 

become ineffective as the source IP address changes periodically within mobile networks (as is 

the case for cellular networks) and across networks, each time a user attaches to a new network 

(e.g. WIFI hotspots or cellular network). 

This study confirmed with synthetic and real network data that past user communication 

behavior can be used as a predictor of future user communication behavior even when user 

behavior changes over time due to natural concept drift. This study confirmed the power law 

distribution of real network data with few web sites being visited often. This research also 

confirmed that the presence of long tail web sites (rarely visited) among many repeated 

destinations can create unique differentiation. Synthetic data generated using a modified version 

of Price’s model (1976) for networks creation enabled generation of test data that was relevant to 

a corresponding train data set and independent enough to support realistic experiments. What 

was not anticipated prior to the experiments was the high degree of repetitiveness of some web 

destinations found in real network data. 

The experiments conducted in this study have shown that a hierarchical temporal memory 

(HTM) which learns and infers sequences of web destinations leveraging multiple layers (to 

learn and infer even longer sequences) has proven to be an effective framework for developing 

user attribution inference algorithms. Experiments have shown that the HTM can provide high 

levels of accuracy using synthetic data with 99% recall accuracy for 100 and 500 users and good 

levels of recall accuracy of 95 % and 87% for 5 users and 10 users respectively when using real 
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network data. Experiments results show that HTM weighted average algorithms in the form of 

Bottom-Up and TopTop tend to outperform all other HTM algorithms for both synthetic and real 

network data.  In addition, the fact that TopTop is an HTM layer-3 only algorithm brings to bear 

the improved accuracy that can be achieved when using multiple HTM layers. While accuracy 

results were positive for most experiments, run-time performance with increasing test data set 

sizes beyond 150 destinations for more than 500 users proved to be poor and represent an area of 

future research. 

Experiment results consistently showed that HTM algorithms outperformed alternate 

traditional Markov chain based algorithms in all experiments. However, when running 

calibration tests for real network data alternate algorithms outperformed HTM based algorithms 

as shown in Table 17. A possible reason for this result can be attributed to the fact that all 

alternate algorithms perform exact or partial “matches” of the context preceding the current input 

(sequence of web destinations). A partial match is based on exact matching of a shorter substring 

of the original context. HTM algorithms instead seek the best longest common subsequence 

within learned web destinations and leverage the concept of “similarity” where the input need 

not match exactly the context or be an exact substring of it, instead the input needs to just contain 

some of the same destinations in the same order as was previously learned by the HTM. 

Experiments have also shown that the HTM does not need much data (as little as 150 web 

destinations) to accurately identify users even when the number of user is as high as 500. This 

can have important implications in the area of network communication security where malicious 

users need to be quickly identified in order to be stopped using as little data as possible. It is 

important to note that using identifiers like cookies and source IP addresses to solve the user 

attribution problem can expose privacy concerns. This occurs when these identifiers are used to 
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discover the real identity of the user who just logged into the web site that assigned the cookie to 

the user or to discover the user who was authorized access to the cellular network after being 

assigned a specific source IP address. Because the HTM forgoes use of identifiers to address the 

user attribution problem it can recognize users over time without revealing their true identity and 

thus be able to maintain high levels of privacy. 

The HTM showed to be fairly resistant to noise in the form of concept drift, denial of 

service (DOS) and Phish attacks. Specifically, experiments conducted with synthetic data which 

simulated concept drift show that the HTM accuracy is mostly impacted by concept drift in test 

data (reducing accuracy by as much as 25%)  that tends to split sequences of destinations often 

as shown when the “random walk” algorithm is utilized to apply concept drift. On the other hand 

concepts drift that tends to preserve a portion of the original sequence of destinations but adds 

new connections to existing destinations or to new destinations, has much smaller of an impact 

on the HTM accuracy (reducing accuracy by no more than 11%) . Experiments which simulated 

DOS and Phish attacks were also conducted. These experiments showed that the HTM 

algorithms are minimally impacted by these attacks. Most HTM algorithms keep accuracy from 

decreasing by more than 11% after a DOS attack and 5% after a Phish attack. These results show 

promise for possible utilization of the HTM in a network security environment as part of an 

intrusion detection and prevention solution. 

How credible are these results? The HTM prototype (version V1 and V2) and the 

alternate approaches are completely written from scratch in Java. What was done to minimize the 

risk of introducing errors into the logic of the model and code which could bias the results of the 

experiments conducted in this study?  
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1. Extensive self-verification code was implemented within the HTM (e.g. code to 

verify the integrity of Markov graphs and Markov chains at each layer of the 

HTM) as outlined in section “Validating the Instrument” 

2. “Calibration” which verifies that the HTM and alternate algorithms can always 

recognize the input they were trained with. Each version of the HTM (versions V1 

and V2) and alternate algorithms were qualified against calibration tests before 

being run against real test scenarios as shown in Appendix H. A prerequisite for 

running the HTM against different experiments was to achieve 100% recall 

accuracy for experiments that used synthetic network data for all HTM algorithms 

both at layers 1 and 3 and for alternate algorithms. For real network data it was 

not possible to achieve 100% recall accuracy due to the high levels of 

repetitiveness of the input, as a result using HTM version V2 qualification was 

established with  recall values as low as 98% for HTM algorithms at layer 1 and 

93% for HTM algorithms at layer 3 (see Appendix H for more details). 

The ability to learn and infer when using streaming network data has been an objective of 

this study. To this end the HTM leveraged unsupervised learning by utilizing TCP timestamps 

embedded in the input stream. Due to the lack of TCP timestamps in real network data traces, 

synthetic timestamps were successfully utilized for this research. Further experiments utilizing 

different session identification algorithms run against synthetic data were also performed with a 

new sliding window algorithm showing promising results. Session identification experiments 

would benefit from further study which would utilize real network data especially due to the 

critical nature that session identification plays in the user attribution problem as reported by 

several authors in the literature. Yang (2010) acknowledges that her results cannot scale to large 
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number of users due to the inability of her session identification algorithm to link up multiple 

sessions belonging to the same user. Herrmann et al. (2013) also reports substantial decrease in 

accuracy when the source IP address used to identify users in a session changes often. 

In order to appreciate the relevance of this work one needs to consider that the internet of 

people is becoming the internet of things where mobility is one of the driving forces. METIS
1
, 

Mobile and wireless communications Enablers for the Twenty-twenty (2020) Information 

Society is a large EU co-funded research project created in 2012. The project objective was to 

respond to societal challenges for the year 2020 and beyond by laying the foundation for the next 

generation of the mobile and wireless communications system. METIS is a consortium of 29 

partners spanning telecommunications manufacturers, network operators, the automotive 

industry and academia. METIS has defined 5G networks of the future as possessing the 

following key features:  

 Massive machine communication  

 Moving networks not just moving users and moving devices 

 Ultra dense networks which utilize a variety of access technologies (e.g. WIFI, Cellular, 

Bluetooth, etc.) 

A key take away from this view is that mobility will dominate our future and as the 

internet of people becomes the internet of things, the user attribution problem will eventually 

morph into a device/user attribution problem. This research represents an encouraging first step 

towards addressing the user attribution problem in a mobile environment that covers multiple 

complex networks. 

                                                           
1
 This definition comes from METIS Fact sheet available at www.metis2020.com 
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Appendix A 

 

HTM1 User Attribution Test Results Using Synthetic Data with no Concept 

Drift 

 

 

Five train days, one test day and one thousand destinations 

 

The next graph supports precision statistics for 5 train days, 1 test day and 1000 

destinations. 

 

Figure 73 Appendix A Synthetic Data Precision Results for 5 Train, 1 Test, 1000 

Destinations 
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The next graphs report false negative and false positive statistics for 5 train days, 1 test 

day and 1000 destinations. 

 

Figure 74 Appendix A  Synthetic Data False Negatives Results for 5 Train, 1 Test, 1000 

Destinations 
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Figure 75 Appendix A  Synthetic Data False Positives Results for 5 Train, 1 Test, 1000 

Destinations 
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Five train days, one test day and five thousand destinations  

 

The graph below supports the precision statistics for 5 train days, 1 test day and 5000 

destinations. 

 

Figure 76 Appendix A  Synthetic Data Precision Results for 5 Train, 1 Test, 5000 

Destinations 
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The next graphs report false negative and false positive statistics for 5 train days, 1 test 

day and 5000 destinations. 

 

Figure 77 Appendix A  Synthetic Data False Negatives Results for 5 Train, 1 Test, 5000 

Destinations 
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Figure 78 Appendix A  Synthetic Data False Positives Results for 5 Train, 1 Test, 5000 

Destinations 
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Five Train days one test day and ten thousand destinations 

 

The graph below supports the precision statistics for 5 train days, 1 test day and 10,000 

destinations. 

 

Figure 79 Appendix A  Synthetic Data Precision Results for 5 Train, 1 Test, 10,000 

Destinations 
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The next graphs report false negative and false positive statistics for 5 train days, 1 test 

day and 10,000 destinations. 

 

Figure 80 Appendix A  Synthetic Data False Negatives Results for 5 Train, 1 Test, 10,000 

Destinations 
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Figure 81 Appendix A  Synthetic Data False Positives Results for 5 Train, 1 Test, 10,000 

Destinations 
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Five train days, three observations and one thousand destinations 

 

The graph below supports the precision statistics for 5 train days, three observations and 

1000 destinations. 

 

Figure 82 Appendix A  Synthetic Data Precision Results for 5 Train, 3 Observations, 1000 

Destinations 
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The next graphs report false negative and false positive statistics for 5 train days, 3 

observations, and 1000 destinations. 

 

Figure 83 Appendix A  Synthetic Data False Negatives Results for 5 Train, 3 Observations, 

1000 Destinations 
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Figure 84 Appendix A  Synthetic Data False Positives Results for 5 Train, 3 Observations, 

1000 Destinations 
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Five train days, three observations and five thousand destinations 

 

The graph below supports the precision statistics for 5 train days, three observations and 

5000 destinations. 

 

Figure 85 Appendix A  Synthetic Data Precision Results for 5 Train, 3 Observations, 5000 

Destinations 
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The next graphs report false negative and false positive statistics for 5 train days, 3 

observations, and 5000 destinations. 

 

Figure 86 Appendix A  Synthetic Data False Negatives Results for 5 Train, 3 Observations, 

5000 Destinations 
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Figure 87 Appendix A  Synthetic Data False Positives Results for 5 Train, 3 Observations, 

5000 Destinations   
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Five train days, three observations and ten thousand destinations 

 

The graph below supports the precision statistics for 5 train days, three observations and 

10,000 destinations. 

 

Figure 88 Appendix A  Synthetic Data Precision Results for 5 Train, 3 Observations, 10,000 

Destinations 
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The next graphs report false negative and false positive statistics for 5 train days, 3 

observations, and 10,000 destinations. 

 

Figure 89 Appendix A  Synthetic Data False Negative Results for 5 Train, 3 Observations, 

10,000 Destinations 
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Figure 90 Appendix A  Synthetic Data False Positives Results for 5 Train, 3 Observations, 

10,000 Destinations 
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Appendix B 

 

User Attribution Test Results Using Synthetic Data with Concept Drift 

 

 

Five train days, two test day, one thousand destinations and five users 

 

The graph below supports the precision statistics for 5 train days, two test days and 1000 

destinations. 

 

Figure 91  Appendix B Synthetic Data Precision Results with Concept Drift 5 Train, 2 Test, 

1000 Destinations 
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The next graphs report false negative and false positive statistics for 5 train days, 2 test 

days, and 1000 destinations.  

 

Figure 92 Appendix B Synthetic Data False Negatives Results with Concept Drift 5 Train, 2 

Test, 1000 Destinations 
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Figure 93 Appendix B Synthetic Data False Positives Results with Concept Drift 5 Train, 2 

Test, 1000 Destinations 
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Ten train days, three test day, one thousand destinations and five users 

 

The graph below supports the recall statistics for 10 train days, three test days and 1000 

destinations. 

 

Figure 94 Appendix B Synthetic Data Recall Results with Concept Drift 10 Train, 3 Test, 

1000 Destinations 
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The graph below supports the precision statistics for 10 train days, three test days and 

1000 destinations. 

 

Figure 95 Appendix B Synthetic Data Precision Results with Concept Drift 10 Train, 3 

Test, 1000 Destinations 
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The next graphs report false negative and false positive statistics for 10 train days, 3 test 

days, and 1000 destinations. 

 

Figure 96 Appendix B Synthetic Data False Negatives Results with Concept Drift 10 Train, 

3 Test, 1000 Destinations 
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Figure 97 Appendix B Synthetic Data False Positives Results with Concept Drift 10 Train, 3 

Test, 1000 Destinations 
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Recall difference between the baseline (at zero) and the random walk and context drift 

algorithms. 

 

Figure 98  Appendix B Recall difference between baseline and Concept Drift for 10 Train, 3 

Test, 1000 Destinations   
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Fifteen train days, four test day, one thousand destinations and five users 

 

The graph below supports the recall statistics for 15 train days, 4 test days and 1000 

destinations. 

 

Figure 99 Appendix B Synthetic Data Recall Results with Concept Drift 15 Train, 4 Test, 

1000 Destinations 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=15,Test=4, Walk Only, No
CD,             Average Recall

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=Random Walk,
Average Recall

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=20% conectivity,10%New
nodes,                    Average
Recall



205 
 

 
 

The graph below supports the precision statistics for 15 train days, 4 test days and 1000 

destinations. 

 

Figure 100 Appendix B Synthetic Data Precision Results with Concept Drift 15 Train, 4 

Test, 1000 Destinations 
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Figure 101 Appendix B Synthetic Data False Negatives Results with Concept Drift 15 

Train, 4 Test, 1000 Destinations 
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Figure 102 Appendix B Synthetic Data False Positives Results with Concept Drift 15 Train, 

4 Test, 1000 Destinations 

 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=15,Test=4, Walk Only, No
CD,             Average False
Positive

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=Random Walk,
Average False Positive

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=20% conectivity,10%New
nodes,                   Average False
Positive



208 
 

 
 

Recall difference between the baseline (at zero) and the random walk and context drift 

algorithms. 

 

Figure 103 Appendix B Recall difference between baseline and Concept Drift for 15 Train, 

4 Test, 1000 Destinations 
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Twenty train days, five test day, one thousand destinations and five users 

 

The graph below supports the recall statistics for 20 train days, 5 test days and 1000 

destinations. 

 

Figure 104 Appendix B Synthetic Data Recall Results with Concept Drift 20 Train, 5 Test, 

1000 Destinations 
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The graph below supports the precision statistics for 20 train days, 5 test days and 1000 

destinations. 

 

Figure 105 Appendix B Synthetic Data Precision Results with Concept Drift 20 Train, 5 

Test, 1000 Destinations 
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The next graphs report false negative and false positive statistics for 20 train days, 5 test 

days, and 1000 destinations. 

 

Figure 106 Appendix B Synthetic Data False Negatives Results with Concept Drift 20 

Train, 5 Test, 1000 Destinations 
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Figure 107 Appendix B Synthetic Data False Positives Results with Concept Drift 20 Train, 

5 Test, 1000 Destinations 
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Recall difference between the baseline (at zero) and the random walk and context drift 

algorithms. 

 

 

Figure 108 Appendix B Recall difference between baseline and Concept Drift for 20 Train, 

5 Test, 1000 Destinations 
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Appendix C 

 

Intra Observation Repetitiveness MATLAB Algorithm 

 

 

% Computes the result as Intra Observation percentage of 

repeated elemenst over size of observation. 

% Note that a result of 75% over an observation of size 4 means 

that 75% of 

 elements in the observation repeat, that is 3 in 4, as in input 

= [3 3 3 3] 

input = data; 

observation_size = length(input); 

range = length(input(:,1)); 

result = []; 

for i=1:range 

    unique_over_input = 

numel(unique(input(i,:)))/observation_size; 

    repeated = 1 - unique_over_input; 

    result = [result repeated]; 

end 

mean(result) 
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Appendix D 

 

Inter Observation Repetitiveness MATLAB Algorithm 

 

 

input = data; 

range = length(input(:,1)); 

result = []; 

for i=1:range 

    mode_val = mode(input(i,:)); 

    if length(unique(input(i,:))) ==  length(input(i,:)) 

        out = 'At least one observation is completely unique' 

    end 

    result = [result mode_val]; 

end 

  

 unique_across_input = numel(unique(result))/length(result); 

 repeated = 1 - unique_across_input; 

 ;result 

 ;hist(result,100);figure(gcf); 

 repeated    
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Appendix E 

 

User Attribution Test Results when simulating DOS attacks 

 

 

Experiments using synthetic data for ten users and four infected users  

 

The next graph presents before and after recall and precision statistics for DOS attacks 

against 5 destinations sent within 5 milliseconds spaced by 5 milliseconds. 

 

Figure 109 Appendix E  5-5-5 DOS Attack Recall & Precision results before and after 

Attack using Synthetic Data 
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The next graph presents before and after recall and precision statistics for DOS attacks 

against 10 destinations sent within 10 milliseconds spaced by 5 milliseconds. 

 

Figure 110 Appendix E  10-10-5 DOS Attack Recall & Precision results before and after 

Attack using Synthetic Data   
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The next graph presents before and after recall and precision statistics for DOS attacks 

against 20 destinations sent within 20 milliseconds spaced by 5 milliseconds. 

 

Figure 111 Appendix E  20-20-5 DOS Attack Recall & Precision results before and after 

Attack using Synthetic Data 
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Experiments using real network data for ten users and four infected users  

 

The next graph presents before and after recall and precision statistics for DOS attacks 

against 5 destinations sent within 5 milliseconds spaced by 5 milliseconds. 

 

Figure 112 Appendix E  5-5-5 DOS Attack Recall & Precision results before and after 

Attack using Real Data 
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The next graph presents before and after recall and precision statistics for DOS attacks 

against 10 destinations sent within 10 milliseconds spaced by 5 milliseconds. 

 

Figure 113 Appendix E  10-10-5 DOS Attack Recall & Precision results before and after 

Attack using Real Data 
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The next graph presents before and after recall and precision statistics for DOS attacks 

against 20 destinations sent within 20 milliseconds spaced by 5 milliseconds. 

 

Figure 114 Appendix E  20-20-5 DOS Attack Recall & Precision results before and after 

Attack using Real Data 
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Appendix F 

 

User Attribution Test Results when simulating Phish attacks 

 

 

Experiments using synthetic data for ten users and four infected users  

 

The next graph presents before and after recall and precision statistics for Phish attacks 

against 1 destination sent within 1 millisecond spaced by a random uniform time between 1 

millisecond and 1 hour. 

 

Figure 115 Appendix F  1-1-1 Phish Attacks Recall & Precision results before and after 

Attack using Synthetic Data 
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The next graph presents before and after recall and precision statistics for Phish attacks 

against 3 destinations sent within 3 milliseconds spaced by a random uniform time between 1 

millisecond and 1 hour. 

 

 

Figure 116 Appendix F 3-3-1 Phish Attacks Recall & Precision results before and after 

Attack using Synthetic Data 
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The next graph presents before and after recall and precision statistics for Phish attacks 

against 5 destinations sent within 5 milliseconds spaced by a random uniform time between 1 

millisecond and 1 hour. 

 

Figure 117 Appendix F  5-5-1 Phish Attacks Recall & Precision results before and after 

Attack using Synthetic Data 
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Experiments using real network data for ten users and four infected users  

 

The next graph presents before and after recall and precision statistics for Phish attacks 

against 1 destination sent within 1 millisecond spaced by a random uniform time between 1 

millisecond and 1 hour. 

 

Figure 118 Appendix F  1-1-1 Phish Attacks Recall & Precision results before and after 

Attack using Real Data 
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The next graph presents before and after recall and precision statistics for Phish attacks 

against 3 destinations sent within 3 milliseconds spaced by a random uniform time between 1 

millisecond and 1 hour. 

 

Figure 119 Appendix F  3-3-1 Phish Attacks Recall & Precision results before and after 

Attack using Real Data 
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The next graph presents before and after recall and precision statistics for Phish attacks 

against 5 destinations sent within 5 milliseconds spaced by a random uniform time between 1 

millisecond and 1 hour. 

 

Figure 120 Appendix F  5-5-1 Phish Attacks Recall & Precision results before and after 

Attack using Real Data   
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Appendix G 

 

HTM2 (++) User Attribution Test Results Using Real Data 

 

 

Five Users for five train days, one test day and over five thousand destinations 

 

The graphs below compare recall and precision statistics for HTM1, HTM2 and 

HTM2++ (HTM2 run on real network data where same time destinations are removed) run 

against real network data against a baseline of synthetic data (5 train days, 1 test day, 5000 

destinations) run against HTM2.  

 

Figure 121 Appendix G  HTM1, HTM2, HTM2++ Real Network Data Recall & Precision 

Results for 5 users, 5 Train, 1 Test  
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Five users for five train days, two test days and over five thousand destinations  

 

The graphs below compare recall and precision statistics for HTM1, HTM2 and 

HTM2++ (HTM2 run on real network data where same time destinations are removed) run 

against real network data against a baseline of synthetic data (5 train days, 2 test days, 5000 

destinations) run against HTM2. 

 

Figure 122 Appendix G  HTM1, HTM2, HTM2++ Real Network Data Recall & Precision 

Results for 5 users, 5 Train, 2 Test  
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Five users for ten train days, three test days and over five thousand destinations  

 

The graphs below compare recall and precision statistics for HTM1, HTM2 and 

HTM2++ (HTM2 run on real network data where same time destinations are removed) run 

against real network data against a baseline of synthetic data (10 train days, 3 test days, 5000 

destinations) run against HTM2. 

 

Figure 123 Appendix G  HTM1, HTM2, HTM2++ Real Network Data Recall & Precision 

Results for 5 users, 5 Train, 3 Test 
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Ten Users for five train days, one test day and over five thousand destinations 

 

The graphs below compare recall and precision statistics for HTM1, HTM2 and 

HTM2++ (HTM2 run on real network data where same time destinations are removed) run 

against real network data against a baseline of synthetic data (5 train days, 1 test day, 5000 

destinations) run against HTM2. 

 

Figure 124 Appendix G  HTM1, HTM2, HTM2++ Real Network Data Recall & Precision 

Results for 10 users, 5 Train, 1 Test 
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Ten users for five train days, two test days and over five thousand destinations 

 

The graphs below compare recall and precision statistics for HTM1, HTM2 and 

HTM2++ (HTM2 run on real network data where same time destinations are removed) run 

against real network data against a baseline of synthetic data (5 train days, 2 test days, 5000 

destinations) run against HTM2. 

 

Figure 125 Appendix G  HTM1, HTM2, HTM2++ Real Network Data Recall & Precision 

Results for 10 users, 5 Train, 2 Test 
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Ten users for ten train days, three test days and over five thousand destinations  

 

The graphs below compare recall and precision statistics for HTM1, HTM2 and 

HTM2++ (HTM2 run on real network data where same time destinations are removed) run 

against real network data against a baseline of synthetic data (10 train days, 3 test days, 5000 

destinations) run against HTM2. 

 

Figure 126 Appendix G  HTM1, HTM2, HTM2++ Real Network Data Recall & Precision 

Results for 10 users, 10 Train, 3 Test 
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Appendix H 

 

Calibration Results for qualification of HTM V1, HTM V2 and Alternate 

Algorithms 

 

 

Calibration runs for qualifying HTM V1 with Synthetic Data 

 

Users Layer 1 HTM 
Algorithms 
% Recall Accuracy 

Layer 3 HTM 
Algorithm 
% Recall Accuracy 

 Simple Average Simple Average 
User-1 100% 100% 
User-2 100% 100% 
User-3 100% 100% 
User-4 100% 100% 
User-5 100% 100% 
 Average Bottom Up Average Bottom Up 
User-1 100% 100% 
User-2 100% 100% 
User-3 100% 100% 
User-4 100% 100% 
User-5 100% 100% 
  Average Top-Top 
User-1  100% 
User-2  100% 
User-3  100% 
User-4  100% 
User-5  100% 
 Path Probability Path Probability 
User-1 100% 100% 
User-2 100% 100% 
User-3 100% 100% 
User-4 100% 100% 
User-5 100% 100% 

   

Table 21 Appendix H – Calibrations HTMV1 with Synthetic Data 
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Calibration runs which failed to qualify HTM V1 with Real Network Data 

 

Users Layer 1 HTM 
Algorithms 
% Recall Accuracy 

Layer 3 HTM 
Algorithm 
% Recall Accuracy 

 Simple Average Simple Average 
User-1 100% 100% 
User-2 99% (1 error) 99% (1 error) 
User-3 100% 100% 
User-4 100% 100% 
User-5 100% 100% 
 Average Bottom Up Average Bottom Up 
User-1 78% (48 errors ) 79% (46 errors ) 
User-2 82% (53 errors) 85% (44 errors ) 
User-3 81% (22 errors) 81% (21 errors )  
User-4 74% (38 errors) 76% (35 errors) 
User-5 71% (4 errors) 79% (3 errors) 
  Average Top-Top 
User-1  100% 
User-2  99% (1 error) 
User-3  100% 
User-4  100% 
User-5  100% 
 Path Probability Path Probability 
User-1 6% (206 errors) 4% (215 errors ) 
User-2 27% (221 errors) 22% (236 errors) 
User-3 61% (44 errors) 57% (48 errors) 
User-4 41% (86 errors) 32% (100 errors) 
User-5 36% (9 errors)   36% (9 errors) 

   
 

Table 22 Appendix H – Calibrations HTMV1 with Real Network Data 
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Calibration runs for qualifying HTM V2 with Synthetic Data 

 

The HTM version 2 was calibrated accounting for continuous repeated destinations at all layers 

(1-3) of the HTM during the learning phase. During the inference phase continuous processing of 

the same destination was limited to layer 1 only. This configuration was used for calibration of 

HTM version 2 and for all experiments conducted with this version of the HTM as this 

configuration produced the best results. 

Users Layer 1 HTM 
Algorithms 
% Recall Accuracy 

Layer 3 HTM 
Algorithm 
% Recall Accuracy 

 Simple Average Simple Average 
User-1 100% 100% 
User-2 100% 100% 
User-3 100% 100% 
User-4 100% 100% 
User-5 100% 100% 
 Average Bottom Up Average Bottom Up 
User-1 100% 100% 
User-2 100% 100% 
User-3 100% 100% 
User-4 100% 100% 
User-5 100% 100% 
  Average Top-Top 
User-1  100% 
User-2  100% 
User-3  100% 
User-4  100% 
User-5  100% 
 Path Probability Path Probability 
User-1 100% 100% 
User-2 100% 100% 
User-3 100% 100% 
User-4 100% 100% 
User-5 100% 100% 

   

 

Table 23 Appendix H – Calibrations HTMV2 with Synthetic Data 
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Calibration runs for qualifying HTM V2 with Real Network Data 

 

Users Layer 1 HTM 
Algorithms 
% Recall Accuracy 

Layer 3 HTM 
Algorithm 
% Recall Accuracy 

 Simple Average Simple Average 
User-1 100% 100% 
User-2 99% (1 error) 100% 
User-3 100% 99% (1 error) 
User-4 100% 100% 
User-5 100% 100% 
 Average Bottom Up Average Bottom Up 
User-1 99% (1 error) 99% (1 error) 
User-2 99% (1 error) 99% (1 error) 
User-3 98% (2 errors)  98% (2 errors) 
User-4 100% 100% 
User-5 100% 100% 
  Average Top-Top 
User-1  100% 
User-2  99% (1 error) 
User-3  100% 
User-4  100% 
User-5  100% 
 Path Probability Path Probability 
User-1 100% 93% (14 errors) 
User-2 99% (3 errors) 96% (12 errors) 
User-3 100% 99% (1 error) 
User-4 100% 97% (4 errors) 
User-5 100%   100% 

   

 

Table 24 Appendix H – Calibrations HTMV2 with Real Network Data 
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Calibration runs for qualifying Alternate Approaches with Synthetic Data 

 

Users Alternate Approaches 
% Accuracy 

 1st Order Markov 
User-1 100% 
User-2 100% 
User-3 100% 
User-4 100% 
User-5  
 3rd Order Markov 
User-1 100% 
User-2 100% 
User-3 100% 
User-4 100% 
User-5 100% 
  
 All K Order Markov (K=3) 
User-1 100% 
User-2 100% 
User-3 100% 
User-4 100% 
User-5 100% 
  
 PPM 
User-1 100% 
User-2 100% 
User-3 100% 
User-4 100% 
User-5 100% 

  
 

Table 25 Appendix H – Calibrations Alternate Markov Based Approaches with Synthetic 

Data 
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Calibration runs for qualifying Alternate Approaches with Real Network Data 

 

Users Alternate Approaches 
% Accuracy 

 1st Order Markov 
User-1 100% 
User-2 99% (1 error) 
User-3 100% 
User-4 100% 
User-5  
 3rd Order Markov 
User-1 100% 
User-2 100% 
User-3 100% 
User-4 100% 
User-5 100% 
  
 All K Order Markov (K=3) 
User-1 100% 
User-2 99% (1 error) 
User-3 99% (1 error) 
User-4 100% 
User-5 100% 
  
 PPM 
User-1 100% 
User-2 99% (1 error) 
User-3 100% 
User-4 100% 
User-5  

  

 

Table 26 Appendix H – Calibrations Alternate Markov Based Approaches with Real 

Network Data 
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