
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2014

The User Attribution Problem and the Challenge of
Persistent Surveillance of User Activity in Complex
Networks
Claudio Taglienti
Nova Southeastern University, ctaglienti@comcast.net

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Claudio Taglienti. 2014. The User Attribution Problem and the Challenge of Persistent Surveillance of User Activity in Complex Networks.
Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information
Sciences. (319)
http://nsuworks.nova.edu/gscis_etd/319.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

The User Attribution Problem and the Challenge of Persistent Surveillance of User

Activity in Complex Networks

by

 Claudio Taglienti

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Information Systems

Graduate School of Computer and Information Sciences

Nova Southeastern University

2013

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

The User Attribution Problem and the Challenge of Persistent Surveillance of User

Activity in Complex Networks

by

 Claudio Taglienti

 October 2013

In the context of telecommunication networks, the user attribution problem refers to the

challenge faced in recognizing communication traffic as belonging to a given user when

information needed to identify the user is missing. This is analogous to trying to recognize a

nameless face in a crowd. This problem worsens as users move across many mobile networks

(complex networks) owned and operated by different providers. The traditional approach of

using the source IP address, which indicates where a packet comes from, does not work when

used to identify mobile users.

Recent efforts to address this problem by exclusively relying on web browsing behavior to

identify users were limited to a small number of users (28 and 100 users). This was due to the

inability of solutions to link up multiple user sessions together when they rely exclusively on the

web sites visited by the user.

This study has tackled this problem by utilizing behavior based identification while accounting

for time and the sequential order of web visits by a user. Hierarchical Temporal Memories

(HTM) were used to classify historical navigational patterns for different users. Each layer of an

HTM contains variable order Markov chains of connected nodes which represent clusters of web

sites visited in time order by the user (user sessions). HTM layers enable inference

“generalization” by linking Markov chains within and across layers and thus allow matching

longer sequences of visited web sites (multiple user sessions). This approach enables linking

multiple user sessions together without the need for a tracking identifier such as the source IP

address.

Results are promising. HTMs can provide high levels of accuracy using synthetic data with 99%

recall accuracy for up to 500 users and good levels of recall accuracy of 95 % and 87% for 5 and

10 users respectively when using cellular network data. This research confirmed that the

presence of long tail web sites (rarely visited) among many repeated destinations can create

unique differentiation. What was not anticipated prior to this research was the very high degree

of repetitiveness of some web destinations found in real network data.

 Acknowledgements

There are many who have made this journey possible. I am thankful to our Lord for always

supporting me and my family during this challenging process. I could have not completed this

difficult journey without the unconditional love and care of my wife Dianne and my children

Luke and Cristina.

At the heart of this work is the supervision of my advisor, Dr. Cannady who was instrumental in

guiding me during the choice of the specific approach and throughout this process. Dr.

Cannady’s belief in me has given me the confidence to tackle the many trials that have emerged

during the dissertation. I am grateful to Dr. Mukherjee who has challenged the original approach

requesting an early test to verify the validity of the proposed solution. By successfully

completing those tests both the dissertation committee and I gained confidence in the proposed

approach. Special thanks to Dr. Li for helping me improve the quality of the dissertation by

encouraging me to find the right words to adequately express concepts and expand on key topics

of this work.

I would also like to acknowledge Narothum Saxena and Mike Irizarry for agreeing to sponsor

this degree and for their continued support for my efforts over the years. I am grateful to my

coworkers Slava Lemberg and Sebastian Thalanany for never getting tired of listening to my

ideas. Finally, I want to thank Sarin Virani and Patrick Chen for their assistance in collecting

communication traffic data from the cellular network.

I made several friends while attending Nova Southeastern University, but one in particular stands

out Daffyd E. MacSteaphan (formerly David O. Schankin) as the one I will miss the most.

vi

Table of Contents

Abstract iii

List of Tables ix

List of Figures x

Chapter 1 1

Introduction 1

Problem Statement 3

Dissertation Goal 6

Research Questions 7

Relevance & Significance 8

Definition of Terms 13

Summary 15

Chapter 2 16

Review of the Literature 16

Complex Networks 28

Chapter 3 35

Methodology 35

Approach Introduction 51

The HTM Implementation 55

Accuracy of Markov Chains and State Cloning 65

Playback and Inference 73

Walking Through an Example 77

Revisiting Markov Chains Accuracy 81

Alternative Approaches 82

Validating the Instrument 89

Validating the Approach 90

Generation of Synthetic Data for the Simulation 102

Generating Malicious Data for the Experiments 110

vii

Resource Requirements 110

Chapter 4 111

Results 111

Results of experiments to verify user attribution accuracy without concept drift using synthetic

data 111

Accuracy Scalability 124

Results of experiments to verify user attribution accuracy with concept drift 127

Results of experiments using real network data from a cellular data network 131

Results of experiments simulating DOS Attacks 143

Results of experiments simulating Phish Attacks 146

Results of experiments for Session Identification Algorithms 148

Summary of Results 153

Chapter 5 157

Conclusions, Implications, Recommendations, and Summary 157

Known Limitations of Proposed Approach 169

Summary 172

Appendix A 178

HTM1 User Attribution Test Results Using Synthetic Data with no Concept Drift 178

Five train days, one test day and one thousand destinations 178

Five train days, one test day and five thousand destinations 181

Five Train days one test day and ten thousand destinations 184

Five train days, three observations and one thousand destinations 187

Five train days, three observations and five thousand destinations 190

Five train days, three observations and ten thousand destinations 193

Appendix B 196

User Attribution Test Results Using Synthetic Data with Concept Drift 196

Five train days, two test day, one thousand destinations and five users 196

Ten train days, three test day, one thousand destinations and five users 199

Fifteen train days, four test day, one thousand destinations and five users 204

Twenty train days, five test day, one thousand destinations and five users 209

Appendix C 214

viii

Intra Observation Repetitiveness MATLAB Algorithm 214

Appendix D 215

Inter Observation Repetitiveness MATLAB Algorithm 215

Appendix E 216

User Attribution Test Results when simulating DOS attacks 216

Experiments using synthetic data for ten users and four infected users 216

Experiments using real network data for ten users and four infected users 219

Appendix F 222

User Attribution Test Results when simulating Phish attacks 222

Experiments using synthetic data for ten users and four infected users 222

Experiments using real network data for ten users and four infected users 225

Appendix G 228

HTM2 (++) User Attribution Test Results Using Real Data 228

Five Users for five train days, one test day and over five thousand destinations 228

Five users for five train days, two test days and over five thousand destinations 229

Five users for ten train days, three test days and over five thousand destinations 230

Ten Users for five train days, one test day and over five thousand destinations 231

Ten users for five train days, two test days and over five thousand destinations 232

Ten users for ten train days, three test days and over five thousand destinations 233

Appendix H 234

Calibration Results for qualification of HTM V1, HTM V2 and Alternate Algorithms 234

Calibration runs for qualifying HTM V1 with Synthetic Data 234

Calibration runs which failed to qualify HTM V1 with Real Network Data 235

Calibration runs for qualifying HTM V2 with Synthetic Data 236

Calibration runs for qualifying HTM V2 with Real Network Data 237

Calibration runs for qualifying Alternate Approaches with Synthetic Data 238

Calibration runs for qualifying Alternate Approaches with Real Network Data 239

References 240

ix

List of Tables

Tables

1. Degree of Similarity/Membership Formulas 57

2. Table L used to generate Length of Longest Common Subsequence 59

3. HTM State Machine Events 62

4. HTM State Machine Actions 62

5. HTM Sample Input 64

6. Feed Forward Beliefs generated at Layer 1 during Playback 77

7. Layer 2 Spatial Pooler conversion of layer 1 temporal groups into layer 2 sequence of

coincidences 78

8. Feed Forward Beliefs generated at Layer 2 during Playback 79

9. Layer 3 Spatial Pooler conversion of layer 2 coincidences into layer 3 sequence of

coincidences 80

10. Example of Transition Matrix M for a Third Order Markov Graph 94

11. All-K Implementation of PPM 101

12. Simulation Parameters 104

13. Accuracy tests completed using Synthetic data with no concept drift 113

14. Alternate Algorithms Calibration results for 5 users, 5 Train Days and 2 Test days 117

15. Accuracy tests completed using Synthetic data with concept drift 128

16. HTM1 Calibration results with Real Network Data for 5 users, 5 Train Days and 2 Test days

 133

17. Calibration results for Alternate Approaches using real network data for 5 users, 5 Train

Days and 2 Test days 134

18. HTM2 Calibration results with Real Network Data for 5 users, 5 Train Days and 2 Test days

 136

19. Accuracy tests which simulated DOS attacks 144

20. Accuracy tests which simulated Phish attacks 147

21. Appendix H – Calibrations HTMV1 with Synthetic Data 234

22. Appendix H – Calibrations HTMV1 with Real Network Data 235

23. Appendix H – Calibrations HTMV2 with Synthetic Data 236

24. Appendix H – Calibrations HTMV2 with Real Network Data 237

25. Appendix H – Calibrations Alternate Markov Based Approaches with Synthetic Data 238

26. Appendix H – Calibrations Alternate Markov Based Approaches with Real Network Data

 239

x

List of Figures

Figures

1. Simulating user web visits to web sites using Zipf distribution 34

2. Three Layer HTM for User Attribution 40

3. Communication Session Identification Algorithm during Training 54

4. HTM Three layer Implementation 55

5. Algorithm to Compute Length of Longest Common Subsequence 59

6. Algorithm to Compute Path Probability – Part 1 60

7. Algorithm to Compute Path Probability – Part 2 61

8. HTM MAX layer used during the inference phase 61

9. The need for State Cloning 66

10. An example of State Cloning at the single node level 66

11. Cloning States in a Markov Graph 68

12. Generalization of Single node cloning 69

13. How Single Node Cloning Falls Short 69

14. Generalization of Sequence Cloning Condition 70

15. Ensuring that the Sequence Cloning Condition is met 71

16. Layer 1 Markov Graph and Markov Chains (Temporal Groups g1-g6) 75

17. Markov Chains Creation Algorithm 76

18. Layer 2 Markov Graph and Markov Chains 79

19. Creation of higher level navigational concepts at higher levels of the HTM 80

20. Layer 3 Markov Graph and Markov Chains 81

21. Addressing Layer 2 Markov Chains Ambiguity with node C5 82

22. First Order Markov Graph Algorithm 93

23. Third Order Markov Graph Algorithm 96

24. All-K
th

 Order Markov Algorithm, where K = 3 96

25. Training Algorithm for Prediction By Partial Match (PPM) using Method C 99

26. Training Algorithm for Prediction By Partial Match (PPM) using Method C 99

27. Inference Algorithm for Prediction By Partial Match (PPM) using Method C 100

28. Synthetic Input Data for User Attribution Simulation 103

29. Algorithm to generate synthetic random train input for a single user 105

30. Algorithm to generate synthetic random input for multiple users 106

31. Synthetic Data Generation Process 109

32. Experiment 5-100 users, 1000 Destinations, 5 Train Days and 1 Test Day 113

33. Experiment 5-100 users, 5000 Destinations, 5 Train Days and 1 Test Day 115

34. Experiment 5-100 users, 10,000 Destinations, 5 Train Days and 1 Test Day 116

35. Similarity Stats for synthetic data for 5 users, 5 Train Days and 1 Test Day 119

36. Experiments for 5 Train days, 3 Observations for test data, 1000 destinations 120

xi

37. Experiments for 5 Train days, 3 Observations for test data, 5000 destinations 121

38. PPM Matches and Miss Matches per K-Order = 3 122

39. Experiments for 5 Train days, 3 Observations for test data, 10,000 destinations124

40. Accuracy Scalability 150 to 500 users using synthetic data 126

41. Recall and Precision percentage changes for accuracy scalability measurements 127

42. 5 Users, 5 Train Days, 2 Test days using concept drift 129

43. Difference in recall from the baseline of the “Walk Only” HTM Algorithm 130

44. Real Data HTM1, 5000 destinations, 5 users, Train 5 days, Test Days = 1, Average Recall

 132

45. HTM1 Real Network Data comparison with Alternate Algorithms 135

46. Real Data HTM2, 5000 destinations, 5 users, Train 5 days, Test days = 1, Average Recall

 137

47. Intra Observation Repetitiveness statistics for real network data 138

48. Accuracy comparisons of all HTM versions including removal of same time destinations 1

Test day 139

49. Accuracy comparisons of all HTM versions including removal of same time destinations 2

Test days 140

50. Comparison of Inter and Intra repetitiveness statistics for 5 users 141

51. HTM2++ accuracy performance with real network data for 5 Users for 1, 2, 3 test days

 142

52. HTM2++ accuracy performance with real network data for 10 Users for 1, 2, 3 test days

 143

53. DOS Attack using Synthetic data against 10 users with 4 infected users 145

54. DOS Attack using real network data against 10 users with 4 infected users 146

55. Phish Attack using Synthetic data against 10 users with 4 infected users 147

56. Phish Attack using real network data against 10 users with 4 infected users 148

57. Accuracy of different session identification algorithms for 5 users 151

58. Percentage change for 5 users to train files resulting by use of window algorithm 152

59. Accuracy of different session identification algorithms for 10 users 152

60. Percentage change for 10 users to train files resulting with window algorithm 153

61. Recall Accuracy Scaling for up to 100 users for 1 test day 159

62. Recall Accuracy Scaling for up to 100 users with 3 observations 160

63. Recall Accuracy Scaling for up to 500 users with 3 observations 160

64. HTM Run-Times for 1 Test Day 162

65. HTM Run-Times with 3 observations 162

66. HTM2++ Recall Accuracy with real network data 163

67. HTM Recall Accuracy in the presence of concept drift above base line 164

68. Recall Accuracy Impact of a DOS Attack 165

69. Recall Accuracy Impact of Phish Attacks 166

70. Session Identification Recall Accuracy Results 167

xii

71. Detecting Duplicate HTMs 171

72. Algorithm to detect duplicate HTMs 172

73. Appendix A Synthetic Data Precision Results for 5 Train, 1 Test, 1000 Destinations 178

74. Appendix A Synthetic Data False Negatives Results for 5 Train, 1 Test, 1000 Destinations

 179

75. Appendix A Synthetic Data False Positives Results for 5 Train, 1 Test, 1000 Destinations

 180

76. Appendix A Synthetic Data Precision Results for 5 Train, 1 Test, 5000 Destinations 181

77. Appendix A Synthetic Data False Negatives Results for 5 Train, 1 Test, 5000 Destinations

 182

78. Appendix A Synthetic Data False Positives Results for 5 Train, 1 Test, 5000 Destinations

 183

79. Appendix A Synthetic Data Precision Results for 5 Train, 1 Test, 10,000 Destinations

 184

80. Appendix A Synthetic Data False Negatives Results for 5 Train, 1 Test, 10,000 Destinations

 185

81. Appendix A Synthetic Data False Positives Results for 5 Train, 1 Test, 10,000 Destinations

 186

82. Appendix A Synthetic Data Precision Results for 5 Train, 3 Observations, 1000 Destinations

 187

83. Appendix A Synthetic Data False Negatives Results for 5 Train, 3 Observations, 1000

Destinations 188

84. Appendix A Synthetic Data False Positives Results for 5 Train, 3 Observations, 1000

Destinations 189

85. Appendix A Synthetic Data Precision Results for 5 Train, 3 Observations, 5000 Destinations

 190

86. Appendix A Synthetic Data False Negatives Results for 5 Train, 3 Observations, 5000

Destinations 191

87. Appendix A Synthetic Data False Positives Results for 5 Train, 3 Observations, 5000

Destinations 192

88. Appendix A Synthetic Data Precision Results for 5 Train, 3 Observations, 10,000

Destinations 193

89. Appendix A Synthetic Data False Negative Results for 5 Train, 3 Observations, 10,000

Destinations 194

90. Appendix A Synthetic Data False Positives Results for 5 Train, 3 Observations, 10,000

Destinations 195

91. Appendix B Synthetic Data Precision Results with Concept Drift 5 Train, 2 Test, 1000

Destinations 196

92. Appendix B Synthetic Data False Negatives Results with Concept Drift 5 Train, 2 Test, 1000

Destinations 197

xiii

93. Appendix B Synthetic Data False Positives Results with Concept Drift 5 Train, 2 Test, 1000

Destinations 198

94. Appendix B Synthetic Data Recall Results with Concept Drift 10 Train, 3 Test, 1000

Destinations 199

95. Appendix B Synthetic Data Precision Results with Concept Drift 10 Train, 3 Test, 1000

Destinations 200

96. Appendix B Synthetic Data False Negatives Results with Concept Drift 10 Train, 3 Test,

1000 Destinations 201

97. Appendix B Synthetic Data False Positives Results with Concept Drift 10 Train, 3 Test, 1000

Destinations 202

98. Appendix B Recall difference between baseline and Concept Drift for 10 Train, 3 Test, 1000

Destinations 203

99. Appendix B Synthetic Data Recall Results with Concept Drift 15 Train, 4 Test, 1000

Destinations 204

100. Appendix B Synthetic Data Precision Results with Concept Drift 15 Train, 4 Test, 1000

Destinations 205

101. Appendix B Synthetic Data False Negatives Results with Concept Drift 15 Train, 4 Test,

1000 Destinations 206

102. Appendix B Synthetic Data False Positives Results with Concept Drift 15 Train, 4 Test,

1000 Destinations 207

103. Appendix B Recall difference between baseline and Concept Drift for 15 Train, 4 Test, 1000

Destinations 208

104. Appendix B Synthetic Data Recall Results with Concept Drift 20 Train, 5 Test, 1000

Destinations 209

105. Appendix B Synthetic Data Precision Results with Concept Drift 20 Train, 5 Test, 1000

Destinations 210

106. Appendix B Synthetic Data False Negatives Results with Concept Drift 20 Train, 5 Test,

1000 Destinations 211

107. Appendix B Synthetic Data False Positives Results with Concept Drift 20 Train, 5 Test,

1000 Destinations 212

108. Appendix B Recall difference between baseline and Concept Drift for 20 Train, 5 Test, 1000

Destinations 213

109. Appendix E 5-5-5 DOS Attack Recall & Precision results before and after Attack using

Synthetic Data 216

110. Appendix E 10-10-5 DOS Attack Recall & Precision results before and after Attack using

Synthetic Data 217

111. Appendix E 20-20-5 DOS Attack Recall & Precision results before and after Attack using

Synthetic Data 218

112. Appendix E 5-5-5 DOS Attack Recall & Precision results before and after Attack using

Real Data 219

xiv

113. Appendix E 10-10-5 DOS Attack Recall & Precision results before and after Attack using

Real Data 220

114. Appendix E 20-20-5 DOS Attack Recall & Precision results before and after Attack using

Real Data 221

115. Appendix F 1-1-1 Phish Attacks Recall & Precision results before and after Attack using

Synthetic Data 222

116. Appendix F 3-3-1 Phish Attacks Recall & Precision results before and after Attack using

Synthetic Data 223

117. Appendix F 5-5-1 Phish Attacks Recall & Precision results before and after Attack using

Synthetic Data 224

118. Appendix F 1-1-1 Phish Attacks Recall & Precision results before and after Attack using

Real Data 225

119. Appendix F 3-3-1 Phish Attacks Recall & Precision results before and after Attack using

Real Data 226

120. Appendix F 5-5-1 Phish Attacks Recall & Precision results before and after Attack using

Real Data 227

121. Appendix G HTM1, HTM2, HTM2++ Real Network Data Recall & Precision Results for 5

users, 5 Train, 1 Test 228

122. Appendix G HTM1, HTM2, HTM2++ Real Network Data Recall & Precision Results for 5

users, 5 Train, 2 Test 229

123. Appendix G HTM1, HTM2, HTM2++ Real Network Data Recall & Precision Results for 5

users, 5 Train, 3 Test 230

124. Appendix G HTM1, HTM2, HTM2++ Real Network Data Recall & Precision Results for

10 users, 5 Train, 1 Test 231

125. Appendix G HTM1, HTM2, HTM2++ Real Network Data Recall & Precision Results for

10 users, 5 Train, 2 Test 232

126. Appendix G HTM1, HTM2, HTM2++ Real Network Data Recall & Precision Results for

10 users, 10 Train, 3 Test 233

1

Chapter 1

Introduction

The internet of people is becoming the internet of things and it is going to be mobile.

Communication devices attached to gas meters, vending machines, fleets of trucks, payment

kiosks, as well as, android phones enabled as WIFI routers, ipads, and iphones, all seek,

sometimes without requiring human control, persistent connectivity to different resources via

complex networks. In this new and dynamically evolving environment it is becoming

increasingly difficult to identify these devices and their users.

Complex networks represent graphs with patterns of connectivity that are neither purely

regular nor purely random but instead follow a particular mathematical function, known as the

power law where these graphs expand continuously with the addition of new vertices and new

vertices tend to attach preferentially to other vertices that are already well connected. The

hyperlink connectivity of documents in the World Wide Web, the pattern of connectivity of users

accessing web documents on the web, the nodes that connect the internet as well as mobile

networks that attach to the internet from multiple locations all share the properties of complex

networks.

Traditionally, users are identified via authentication techniques which verify the

legitimacy of either the user or the device accessing that network. Once properly authenticated

the user/device can access the resources of that network and potentially other networks for which

the user had not been authenticated. As mobility is becoming pervasive, users continually move

across secured and unsecured networks to access resources available across the internet. A key

2

question that this study has addressed is: “How can users be identified when accessing resources

across complex networks when no authentication information is available? The answer to this

question has important implications to identification of malicious users re-entering the network.

In particular, the traditional user identification problem which leverages authentication to

recognize users, morphs into a user attribution problem when user authentication is not possible.

Clark and Landau (2010) acknowledge the need for stronger forms of personal identification that

can be observed in the network and define the attribution problem in terms of a question: “Why

don’t packets have license plates? ”. Addressing user attribution allows users to be recognized

among many by attributing a trace of past user activity to a given user.

While the academic community has recognized this problem and its complexity, few

solutions have been proposed and none address the user attribution problem that ensues when

users move across complex networks driven by mobility scenarios that have become a

mainstream of personal computing. User identification and user attribution have been addressed

in the context of web usage mining but solutions are strongly coupled to the web page structure

of specific web sites and cannot be applied in their current form to the more generic user

identification problem across multiple web sites accessed via complex networks. More recently

“re-identification” has been proposed as an approach, used in dynamic networks like

telecommunication networks and the internet, which turns the user identification problem into a

matching problem that involves comparing the behavior of network entities such as users across

time periods. The re-identification approach has been successfully applied to email-alias

detection, author attribution and identification of fraudulent consumers in telecommunication

networks, but never in the context of complex networks as defined in this work.

3

This study makes a contribution to the field of computer information systems by tackling

the highly relevant and current problem of user attribution in complex networks. The proposed

research has made use of hierarchical temporal memories to record and classify historical user

activity in the form of unique time ordered user web site visits. This classification ensures that

future user attributions are based on identification of unique patterns of activity that match prior

activity patterns by a given user. Hierarchical temporal memories represent a new advance in our

understanding of how the neocortex part of a human brain learns and infers sequence patterns

over time.

Problem Statement

This study has addressed the challenge that no effective method exists that can recognize

the source of communication entering the network or returning to a web site by only utilizing the

communication traffic of the device or the user. This problem is further exasperated by the fact

that often no form of explicit (user name/password) or implicit (cookies) authentication is

available to identify the source of communication. When user authentication is not available,

users can no longer be identified, instead, users can be recognized based on past user activities

and the user identification problem can be restated as a user attribution problem.

Recognition of the source of communication is especially important in the security field

where it is necessary to allow users/devices classified as malicious to be blocked or to have their

communication rate limited when they attempt to re-enter the network irrespective of their new

credentials or of the new assigned source IP address. For instance, an intrusion detection and

prevention system can detect and block an active user session that has been classified as

malicious. However, when the user re-enters the network, especially in mobile networks, that

4

user looks like a brand new user and the intrusion detection and prevention system needs to

quickly rediscover that user as being malicious in order to be able to stop him. An optimal

solution should recognize the user, by leveraging historical observations of communication

activity, before any malicious behavior is ever re-started.

The problem of correctly recognizing users by just leveraging user past communication

activity (the focus of this study) is generic and not peculiar to the type of network (wireline or

wireless) being used. The user attribution problem, when a user accesses a wireline type

network (cable, dsl), can be easily addressed by leveraging the source IP address assigned to this

user since it changes very seldom. The user attribution problem becomes difficult to solve when

users either move across networks or use networks that hide or modify the source IP address as is

the case in certain type of mobile networks.

In order to better appreciate the severity of this problem, consider a malicious user or a

compromised device that has been authenticated by an operator network and then proceeds to

hack multiple web servers hosted outside the operator network. Imagine then, that this user

continues to perform malicious activity while moving between secured and unsecured networks.

How can this user be recognized and stopped? Authentication does not help to identify malicious

authenticated users if the attack occurs away from the authentication point. In addition, a

malicious user can hide his tracks and renew his authentication credentials by switching

periodically between network operators. If user/device authentication cannot effectively be used

to identify users re-entering the network then what new approach should be used?

Identification of the source of communication traffic has traditionally relied on the IP

address associated with the source of the connection, utilizing it as the client or user identifier.

5

This client identification technique has been used to enforce access-control decisions but suffers

from several shortcomings that can potentially make it ineffective (Casado & Freedman, 2007):

 A portion of IP addresses are dynamically assigned to clients upon initial connection to

the network

 A portion of IP addresses are allocated behind Network Address Translation (NAT)

boxes which hide the real IP address (typically a private IP address) of the client

 A portion of IP addresses go through web proxies which cause the client IP address to be

replaced by a new public IP address

A consequence of the difficulty of utilizing the source IP address as a way to identify the

origin of communication is particularly felt in networks where users move as is the case in

mobile networks. In these networks no effective method exists to identify a mobile device

location by utilizing only the device communication traffic information. Specifically, the

properties of mobile devices make IP-based user and device identification, and IP-based geo-

location (the problem of locating an internet host by using only its IP address) identification

almost impossible to use in order to find a device and its physical location (Balakrishnan,

Mohomed, & Ramasubramanian, 2009).

Balakrishnan et al. (2009) are not sure as to the cause of the problem, yet the answer can

be found in the way these networks are designed. Mobile networks that serve a large number of

subscribers leverage wireless gateways to support mobility. These wireless gateways, allocate IP

addresses to devices that have been authenticated and authorized to access the network, and can

support mobility for hundreds of thousands of devices across large geographical areas. These

wireless gateways own large pools of IP addresses that are dynamically assigned to devices

6

potentially dispersed across many states within the continental USA. As a result, even in the best

of circumstances, where the IP address of a device is traced back to this gateway, it is not

possible to identify the device relying solely on the IP address alone since a device in San

Francisco could be assigned an IP address (for the duration of that data session) by a wireless

gateway deployed in Chicago. The source IP address can also change when users move across

wireless gateways (like WIFI access points) that control access to wireless networks that do not

support mobility as is the case when a student moves across a university campus.

Traditional security methods that utilize “IP trace back” techniques fail to identify the

source of communication originating from devices that operate in complex networks due to the

deployment of these large wireless gateways that control the source of communication (source IP

addresses) for millions of devices. In addition, identification of the source of communication is

complicated by the dynamic assignment of source IP addresses to devices by these wireless

gateways as well as by the presence of large scale NAT and web proxy devices in operator

networks. It is difficult to determine how long IP addresses remain allocated to a given device

since IP addresses allocated by wireless gateways, out of very large IP pools, persist for longer

time periods based on operator configuration (up to 24 hours) than IP addresses modified by

NATs or web proxy devices, which are allocated out of much smaller ranges of IP addresses and

change very often, typically for the duration of a TCP connection (Egevang & Francis, 1994).

Dissertation Goal

A new approach is needed that can recognize a user in the network solely based on prior

observed communication behavior independently of the IP address assigned to the source or the

complex networks that are traversed by the communication traffic. The goal of this study has

7

been to address the user attribution problem, in its generic form, independent of the type of

network.

Research Questions

Specifically, the following questions have been addressed in this study:

1. Is it possible to recognize specific users among many in the network by observing

and classifying their historical communication behavior and be at least as accurate

in the classification process in terms of better precision, better recall, fewer false

positives and fewer false negatives as when using comparable classification

approaches?

2. Is the solution scalable? That is, can the solution maintain the same level of

performance in terms of accuracy, as the communication population (number of

sources and number of destinations contacted by these sources) increases?

The consequences of dynamically changing or of hidden source of communication (IP

addresses) has high relevance to the area of network security. This study has addressed the

problem of user identification and attribution by forgoing use of tracking techniques like cookies,

logins, source IPs and instead it has only leveraged the historical unique communication traffic

characteristics of different users. User attribution through behavioral patterns is a new area of

research with applications in fields as diverse as marketing and security. Yang (2010) proposes

behavior based identification in the context of creation of user profiles built on web usage

patterns. Her paper is among the first to study user behavior patterns in web usage data for the

purpose of user recognition. She acknowledges that there is currently no research on building

8

user behavioral profiles from web usage data for the purpose of user recognition and she admits

that very limited research is being done on analyzing web users' behavior for user recognition.

The contribution of this proposed work is significant and original in that solutions to

address this very important problem are few and limited. The problem addressed is real, difficult

to solve, and is important since solutions to this problem can easily be generalized to be

applicable in several different domains.

Relevance & Significance

This study addresses the important problem of real time user attribution. A relevant

property of user attribution is that it is privacy preserving with respect to the real identity of the

user. Consider the following real-world scenario where the user attribution solution described in

this paper is deployed in the network (possibly an operator network) and monitors all HTTP

traffic. As traffic passes through the user attribution solution (UAS), the solution learns to

recognize users (User 1, User 2, User 3, …., User N) based on the user past communication

behavior. After the learning stage, the UAS can recognize any user (inference stage) that it has

seen before as they re-enter the network possibly using a new source IP address and new

authorization credentials without knowing their specific identity (User1 is Joe Smith). A key

measure of how successfully the UAS performs is based on the accuracy of user recognition.

The “user attribution problem” is generic and not necessarily tied to attack scenarios, but

it can be used to recognize and stop malicious users. Consider a second real-world scenario

where the UAS is coupled to an intrusion detection and prevention system (IDPS) so that instead

of using the source IP address to recognize users (due to the unreliability of this source), the

IDPS uses the user labels (User 1, User 2, User 3…. ,User N) provided by the UAS. The UAS

9

provides user labels to the IDPS after it has completed the learning stage and it has entered the

inference stage. Assume the IDPS (out of scope for this study) detects anomalous behavior with

User4 and blocks all HTTP traffic associated with this user. User4, unable to access the internet

shuts down his device and decides to re-enter the network next day. User4 has a brand new IP

address assigned and initially is able to access the internet, until the UAS recognizes User4 and

passes this user label to the IDPS which will again block this user. The key to the user attribution

problem is the ability to learn past user communication behavior so that a user can be

recognized.

Recognizing a user re-entering the network is a problem made difficult by the dynamic

nature of communication source identifiers, such as source IP addresses, and the limited scope of

session identifiers such as cookies that are valid only within a specific web-site visit and not

across multiple web-sites visits. These challenges render ineffective the use of current techniques

for user identification and user attribution within and across networks. The inability to provide

timely and correct classification of the source of communication has serious consequences in the

area of security prevention where it is critical to correctly recognize users that have been labeled

as malicious so that they can be quickly stopped from re-entering the network.

Online services often use IP addresses as client identifiers when enforcing access-control

decisions. Casado and Freedman (2007) in their work acknowledge that the academic

community has typically eschewed this approach due to the effect that NATs, proxies, and

dynamic addressing have on a server’s ability to identify individual clients. Casado et al.,

recognize the drawbacks of using IP-based identification in the face of NATs, proxies, and

dynamic IP renumbering since blacklisting large proxies or NATs can result in legitimate clients

losing access to desired services, while whitelisting can give access to unwanted clients. The

10

authors admit that the actual extent of the problem has remained largely a mystery. They report

that part of the challenge in uncovering the impact of edge opacity is a lack of practical

techniques and deployments to “peer through the shroud” of middleboxes in the wild. In their

study, the authors analyzed data mostly from wireline residential ISPs from nearly 7 million

clients across 214 countries and their results show that while 74% of clients are behind NATs or

proxies, most NATs are small and follow an exponential distribution. Dynamic renumbering

from DHCP generally happens on the order of days with fewer than 2% of the clients that visited

their servers over a week’s period using more than two IP addresses. Proxies, on the other hand,

service client populations that may be both larger and geographically diverse. The authors

conclude that poor access control policies for proxies can have greater negative implications than

for NATs.

These results seem to indicate that the problem of dynamic changes to source IP is not

too serious in a typical residence for NATs since only few devices sit behind them and that

dynamic IP addresses assigned to devices persist for relative long time periods. Only web

proxies are identified as a problem since these network elements serve a large number of clients.

Unfortunately, the impact of NATs, proxies and dynamic IP address changes becomes very

serious when considering the impact of mobility and the use of mobile devices in the context of

operator networks. On February 3rd 2011, IANA handed out the last blocks of addresses to the

Regional Internet Registries (RIRs). As a result there are no more IPv4-addresses at the IANA

level, and the depletion is nearly final. The slow depletion of available public IPv4 addresses has

encouraged deployment of large scale carrier grade NAT devices in operator networks (Donley,

Howard, Kuarsingh, Chandrasekaran, & Ganti, 2010; Jiang, Guo, & Carpenter, 2011). These

network devices serve millions of subscribers for both wireless and wireline operators utilizing a

11

small number of public IP addresses producing the same negative impact that Casado and

Freedman reported for web proxies.

The dynamic nature of source IP addresses assigned to users is likely to persist for years

to come. IPv6 promises to address the public IPv4 address shortage and eliminate middleboxes.

However, source IP addresses will continue to change dynamically even with IPv6, since IP

addresses are always assigned by the network (the wireless gateway or access point) to the

devices that attach to it (Nakhjiri & Nakhjiri, 2005). This is because the network must advertise

reachability of any IP address assigned to a given device in order to ensure that traffic originating

from a given device will always return to the originating network and be routed back to that

device (Halabi, 2001).

The problem of dynamically changing source IP addresses can occur across a variety of

wireless networks. Consider a laptop connecting to a home wireless router, after traveling to the

airport it connects to a hot spot provider and then after landing at a new location, this same

laptop connects to a business network and accesses the internet. On the way back to the airport,

in a shared cab ride the owner of the laptop connects to the internet thanks to the WIFI hotspot

functionality provided by an Android phone owned by another rider. The owner of the Android

device gets dropped off at his house where his Android phone attaches to the home WIFI

wireless router to access the internet. In this scenario, each time a device attaches to a new

network that device will be assigned a new IP address. Mobility is pervasive and as users start to

move across complex networks, this problem will only worsen.

The consequence of being unable to recognize the source of communication has profound

impacts on security and particularly the area of intrusion prevention since attempts to block

previously detected malicious devices can back fire. Xie, Yu, and Abadi,(2009) describe the

12

challenges faced by intrusion detection and prevention devices as they attempt to target

containment to offending IP addresses. Detected anomalies cannot be blocked based on the

offending source IP address and when an attacker changes its IP address, legitimate activities

that subsequently use the old IP address will be misclassified as bad, while malicious activities

from the new IP address will slip through. The use of proxies and NAT devices also imply that

blacklisting can result in denial of service to many legitimate clients that share IP addresses with

attackers.

In the context of mitigating intrusions, one major challenge is the ability to timely and

correctly identifying sources of an attack (Peng, Leckie, & Ramamohanarao, 2007). Proper

identification is needed to provide a targeted response to the intrusion that can stop the attackers

without affecting the rest of the system. This is a difficult problem to address since during an

intrusion, the reported source of the attack (namely the source IP address) could be spoofed and

made appear to originate from many different valid subnets. It is important to realize that

accuracy of identification of a source of an attack is inversely proportional to the scope of impact

to the system. Identifying an individual machine or user as the source of an attack allows for a

targeted response to stop this attack without affecting any other machine or user in the system.

However, if the source of the attack cannot be confined to an individual machine/s or user/s then

the scope of the response could expand to the location/s where the intrusion originated from.

Mitigation in this case, would entail finding locations in a network where the intrusions originate

from and stopping all traffic originating from these locations. It is not difficult to see that with

mobility, intrusion mitigation becomes an increasingly complex problem to address.

Accurate and effective response to a detected intrusion is a critical part of a mitigation

system. Consider the set of possible actions available to an intrusion response system as

13

described in (Carver, 2002): Terminate User Session, Block IP Address, Warn the intruder,

Trace the connection, Force Additional Authentication, Restrict user activity.

How can any of these activities be carried out when the source of the attack cannot be

recognized? A major limitation of current active intrusion response systems is that they do not

take into account the collateral damage to legitimate users. These systems can launch immediate

responses to attacks, however, predictable responses as described above, can be easily

compromised by an adversary by forcing the triggering of massive denial of service attacks

against the network by utilizing a large number of spoofed IP addresses (Ghorbani, Lu, &

Tavallaee, 2010).

The importance of a reliable source IP address is critical not only in intrusion protection

but also in detecting port scans (set of connection attempts from a single source to a set of targets

during some time interval). Gates (2009) in her work on port scan detection, acknowledges this

important point by indicating that IP addresses are commonly used to represent a source, and as

it is often difficult to determine if two different IP addresses represent the same source, in her

paper she used IP addresses to indicate the source, recognizing that she may have done so

erroneously in some case.

Definition of Terms

The following key terms are used and are uniquely relevant to this study:

 Accuracy – Identification precision measured using one of the following

statistical measures: Recall, Precision, False Positives, False Negatives

14

 Accuracy Scalability – It measures the ability of the solution to maintain

consistent (possibly high) levels of accuracy when the number of users and/or the

number of web destinations visited increases.

 Attribution – Generally means assigning a cause to an action. For this study it

refers to identifying the agent responsible for the action (Clark & Landau, 2010)

 Attribution Problem – David Clark described the attribution problem in terms of

the following question: “Why don’t packets have license plates?”

 User-Attribution Problem – The problem of identifying a user based solely on

network traces of past communication activity without leveraging any

authentication or tracking techniques like cookies, logins, source IPs.

 Complex System – Self-organizing systems, which at the end of their evolution

show an emergent architecture with unexpected properties and regularities

(Barrat, Barthelemy, & Vespignani, 2008).

 Complex Network – A complex system structured as a graph that has non-trivial

topological characteristics that do not match previously studied random graphs

and has the following properties: self organized dynamic evolution, emergence of

the “small-world” concept, structurally scale free and showing a power law

degree distribution (see section “Complex Networks” for more details).

 Mobile Networks – Networks that share the properties of complex networks. They

are owned and operated by different providers who enforce different

administrative policies and can be accessed by mobile devices.

15

 Run-Time Performance Scalability – It measures how well the solution manages

computing resources to accomplish its task in terms of CPU and memory

utilization

 User Classification - The process of matching records of past behaviors that

belong to the same individual, sometimes when the individual is acting

anonymously

Summary

Solutions to the user attribution problem, in the context of complex networks, are

relevant in several technology areas such as web mining and security. Because there is so little

research in this area, it was critical to limit the scope of this initial work so that comprehensive

and in depth solutions can be explored and compared to other existing well established

methodologies. The work carried out in this study attempts to create the foundation upon which

many critical topics related to the user attribution problem can be addressed via future studies.

One future study with high applicability to the area of security is the topic of timeliness and

concept drift as they relate to the recognition of a malicious user.

The goal of this work has been to provide a solution to the user attribution problem which

can be measured in terms of its accuracy and the ability to maintain consistently high levels of

identification precision when the number of users and/or web destinations visited increases.

Chapter 2 provides more motivations for the existence and impact of the user attribution problem

in the context of complex networks, while chapter 3 describes in detail the approach used to

address the user attribution problem using hierarchical temporal memories.

16

Chapter 2

Review of the Literature

Solutions to the problem of correctly recognizing the unique source of communication

have been proposed in the literature and range from IP Traceback techniques to web usage

mining approaches. Unfortunately, as will be detailed in the following paragraphs, these

approaches fall short of effectively addressing the problem.

One technique that has been proposed to recognize the source of communication is to

trace the communication traffic back to its origin. Extensive IP traceback research is available

that attempts to recognize the source of any packet sent over the internet. Traditional IP

traceback attempts to address this problem in the context of security for DOS and DDOS attacks.

A large number of IP traceback techniques have been proposed in the literature as reported by

Santhanam, Kumar, and Agrawal (2006), all of them entail tracing backwards through routes

taken by packets from the victim node, with trace traffic possibly passing through several ISP

domains necessitating inter-domain cooperation. Typical challenges faced by IP traceback

algorithms in recognizing the source of the attack range from having to address potentially

forged (spoofed) source IP addresses, to attempting to trace attackers hiding behind stepping

stones. These compromised hosts overwrite their source IP address on the outgoing packet

headers and also apply header transformation to conceal their true origin. It is important to note

that network address translation (NAT) devices, similarly to stepping stones, modify the private

source IP address of packets by replacing it with the public IP address of the egress interface of

the NAT device together with a potentially new port number. As pointed out by Santhanam et al.

(2006), most IP traceback schemes are only capable of tracing up to the stepping stone but not

17

beyond and thus IP traceback schemes would be unable to detect sources behind a NAT device.

Because IP traceback schemes rely on routing, they will not work across firewalls, unless the

firewalls were to be specifically configured to allow traceback traffic. Individual organizations

would find it difficult, if not impossible, to successfully utilize IP tracebacks without the

involvement of the upstream ISP (Belenky & Ansari, 2003).

There are two major ways to trace back IP flows to their source; Reactive and proactive.

Reactive approaches start tracing after the attack is detected while proactive methods log

information for tracing while packets are in transit so that when tracing is required, the target of

the attack can refer to this information to identify the attack source.

The reactive scheme of controlled flooding, as proposed in Burch and Cheswick (2000),

is used to trace the source of DOS attacks and relies on the fact that during DOS attacks the links

of the attack paths should be heavily loaded. By measuring incoming traffic to the attacked

system and adding more traffic load to the links of the suspected path, attack packets to the target

are expected to decrease as they are dropped. If this happens the process is repeated for the next

hop until the source of the attack is detected.

Stone (2000) proposes a tracing overlay network “CenterTrack” where a tracing router is

used to tunnel all monitored traffic through itself from edge routers. All traffic is monitored

using signature-based intrusion detection and when an attack is detected the source is found to be

only one hop away from the target. Chang et al. (1999) proposed Deciduous (Decentralized

source identification for network based intrusion), which leverages knowledge of the network

topology to establish IPSec tunnels between routers and the target. If an attack packet gets

authenticated via a security association, then the attack originates at a point behind that router,

18

otherwise the attack source originates in the path between the router and the target. The schemes

described have several limitations in that all require significant ISP cooperation for performing

the trace back. CenterTrack suffers from scalability limitations based on the centralized

forwarding approach and likewise IPSec is also not scalable because of the implicit processing

overhead required to iteratively built security associations to investigate the integrity of links.

Probabilistic packet marking is used in (Savage, Wetherall, Karlin, & Anderson, 2001)

where routers mark packets picked at random (by using the identification field of the IP packet

that passes through them) with their own address so that when the target receives enough such

packets it can reconstruct the addresses of all marking routers along the attack path. iTrace is

used in (Bellovin, Leech, & Taylor, 2003), this software uses ICMP Traceback messages to help

trace IP packets back to their source. When forwarding packets, routers can generate (with a low

probability) a traceback message that is sent along to the destination. When enough traceback

messages from enough routers along the path are available, the traffic source and path can be

determined. The traceback message contains next and previous hop information together with as

much of the traced packet as will fit. The attack path back to the source can be reconstructed

using a time to live field available in the trace back message and the addresses of the routers on

the attack path that implement iTrace. The Intension-drive iTrace method proposed by Mankin,

Massey, Wu, Wu, and Zhang,(2001) represents an improvement over the original iTrace scheme

in terms of reducing the number of iTrace messages that are not applicable to a specific sought

attack and improving the time to complete trace backs.

Authors in (Snoeren et al., 2002) propose a scheme called source path isolation engine

(SPIE) where each router, known as a data generation agent (DGA) saves partial information of

19

every packet that passes through that router so that it can be reused in the future to determine if

that packet had passed through it. The challenge with this scheme is to minimize the amount of

data that needs to be saved. The authors propose to save the IP header of packets and the first 8

bytes of the payload by hashing this data to produce several digests which are stored in a space-

efficient data structure called a bloom filter, which considerably reduces storage requirements.

IP traceback schemes rely on routing to trace back the source of communication and thus

require cooperation among network operators to support the specific tracing scheme

requirements. When such cooperation is clearly defined, IP traceback schemes can be effective,

but when such collaboration is not clearly outlined, then it would be difficult to trace users as

they move across complex networks.

A different way to tackle the problem of identifying the source of communication is to

monitor and track information that users access and the way in which they access it. That is,

utilize past communication data that describes patterns of usage about users visiting a given web

site, such as IP addresses, page references, date and time of access, in order to uniquely and

repeatedly identify such users.

Web Usage mining is the process of applying data mining techniques to the discovery of

usage patterns from web data, targeted towards various applications (Srivastava, Cooley,

Deshpande, & Tan, 2000). These web mining techniques are applied mainly in the analysis of

log based data and entail the following steps: pre-processing, pattern-discovery, and pattern-

analysis. In the context of web usage mining, identifying user sessions is a challenge because of

the difficulty of obtaining reliable usage data due to the presence of proxy servers, anonymizers,

dynamic IP addresses, missing references due to caching, and the inability of servers to

distinguish users during different visits to web sites.

20

Grčar (2004) describes web usage mining as the process of discovering usage profiles

instead of user profiles. By studying web server logs, he came to the conclusion that sessions are

easier to identify than users. However, in the worst case, the only user identification information

included in a log file is the user source IP address. Grčar recognizes that the user’s IP address is a

poor form of identification since different users can be assigned the same IP address and one user

can be assigned different IP addresses even during the same session. Other researchers make

similar claims (Pitkow, 1997; Rosenstein, 2000). A technique proposed by Cooley, Mobasher

and Srivastava (1999) to distinguish users with the same IP address is to make use of the user

agent field and the HTTP referrer field. Cookies created by a given web site represent an even

better form of user identification since 90% of users have cookies enabled (Baldi, Frasconi, &

Smyth, 2003). Identification of the end of user sessions, as recommended in Cooley, Mobasher

and Srivastava (1999), is carried out with the assumption that if a given predefined time period is

exceeded visiting a web site or between two accesses to the same web site, the current session

ends and a new session starts at that point. Because the sessions can have holes (missing web

pages) due to the presence of web caches, the missing web pages can be inferred based on the

site structure.

Sessions as proposed in (Chen, Park, & Yu, 1996; Cooley, et al., 1999), can be divided or

joined into transactions. Transactions are made up of auxiliary web pages that are visited as part

of the navigation toward a desired web page and content web pages that are the ultimate

destination for users. Transaction identification which creates meaningful groups of references

(URLs) for each user, is carried out using reference length (time spent by a user viewing a given

web page) and maximal forward reference (the last page requested by a user before backtracking

occurs). Grčar (2004) represents transactions as vectors of weights where each weight for a

21

given web page represents either the amount of time spent on that web page or the number of

times that page is visited. The author measures similarity among transactions using the cosine

similarity measure in order to cluster together transactions that belong to the same user.

Association rules represent a different approach to clustering also based on distance

measures. The work of Cooley et al. (1999) shows that association rules utilizing the A-priori

algorithm can be effective in the area of recommender systems. Frequent itemsets of visited web

pages can be discovered which could show that web page-x and web page-y are accessed

together 20% of the time. Association rules can then be used to show that when web page-x is

accessed in a transaction, web page-y is also accessed a certain percentage of the time. This

approach is promising but requires all data processed by the A-priory algorithm to be available,

thus precluding application of the algorithm to data streams.

User session reconstruction is important in web mining activities and entails correct

mapping of activities to different distinct users and the correct separation of activities belonging

to different visits of the same individual. As users navigate a site, user identification occurs via

identifiers such as cookies, source IP addresses and user agent fields, while session identification

either utilizes embedded identifiers if available, or time heuristics or navigation heuristics which

utilize the referrer field, so that a page must have been reached from a previous page to belong to

the same session (Liu 2008). Identifying user sessions is similar to the problem of identifying

individual users since references to web pages must be grouped into logical units representing

web transactions or user sessions (Liu & Wu, 2004).

The authors in (Spiliopoulou, Mobasher, Berendt, & Nakagawa, 2003) tackle the problem

of evaluating heuristics for session reconstruction and propose two key steps in this process:

22

1. All activities performed by the same physical person should be grouped together

2. All activities belonging to the same visit to the web site should be placed into the

same group

The W3C (W3C Web Usage Characterization Activity 1999), defines (server) session or

visit as the group of activities performed by a user from the moment he enters the site to the

moment he leaves it. Since a user may visit a site more than once, the web server log records

multiple sessions for each user. A user activity log, records the sequence of saved activities

belonging to the same user. Thus, sessionization is the process of segmenting the user activity

log of each user into sessions representing a single visit to that web site. Spiliopoulou et al.,

define proactive and reactive sessionization heuristics to perform such segmentation. Use of

cookie-based identification and user authentication are considered proactive approaches since the

mapping between the user and a session is guaranteed while (or even before) the user is

accessing the site. On the other hand, reactive strategies like utilizing a source IP address and

user agent, would attempt to establish such a mapping from the servers logs after the user has

accessed the site. The authors conclude that use of cookies, coupled with time based heuristics

(measuring session or inter user request timeouts) allows correct reconstruction of user sessions

over 90% of the time. They further report that use of cookies improves the quality of

reconstructed sessions by 20%.

Unfortunately, cookies have shortcomings because they cause privacy concerns, they are

easy to remove from a user browser and they cannot be used across web site visits since each

cookie is created by a specific origin server to be used only by a specific user. The authors

(Iváncsy & Juhász, 2007) address the cross-site shortcoming of cookies by using two cookies,

one (first party cookie) to track a user at one web site and the other (a third party cookie) using a

23

central server controlled by the authors. This third party cookie is created by the central server

and remains the same across all sites visited during the test. The authors embed in all web pages

of visited sites a reference to a small 1x1 GIF image residing in the central server, which when

the web page is accessed, downloads the third party cookie. This cookie allows correlation of all

sessions belonging to a given user across web sites. The authors show that their approach

outperforms, in user identification accuracy, approaches that just use the source IP address.

While the authors do manage to track user sessions across web sites, their experiment could

easily fail if cookies were to be deleted by the user. More importantly, this experiment would

also be difficult to implement in a real world scenario since this solution requires each site to

embed the small image and deployment of a central server would likely suffer from scalability

problems as the number of users increases.

Most often, the objective of user identification is to recognize the user across repeated

entries to multiple web sites, without implicit identifiers (cookies) or explicit identifiers created

when users login or register to access sites. Without such identifiers, accurate user identification

is a challenge and user identification must then be inferred which turns the user identification

problem into a user attribution one. A new approach is needed that could recognize users

accessing a multitude of web sites without having to rely on cookies.

In (Jin, Sharafuddin, & Zhang, 2007) the entropy of the persistence of IP addresses is

computed but the objective of this study is to identify the presence of dynamic IP addresses

rather than profiling single users. User profiling at the granularity of single users was studied in

(Song, Venable, & Perrig, 1997) for user recognition, by monitoring keystroke latency patterns

or at the device level, for device recognition by fingerprinting devices via detection of changes in

clock skews among different devices using the TCP Timestamp option (Kohno, Broido, &

24

Claffy, 2005). Kohno et al., believe that their approach can be used to identify the same physical

device among a large number of devices since there exist variability in the clock skew of

different physical devices, and it holds that the clock skew for a given device is constant and

independent of network access technology. The time stamp option defined in (Jacobson, Braden,

& Borman, 1992) shows promise when present in TCP packets for improving the user session

identification process. A way to utilize this optional TCP field is utilized in the approach section

of this idea paper.

Tracking electronic identities in communication networks can be achieved by using

“signatures” of node activities (Cormode, Korn, Muthukrishnan, & Wu, 2008). Signatures

capture the distinctive and discriminating communication behavior of an individual. The authors

adopt a signature based approach to analyze the patterns of communication exhibited by

individuals. Using real data the authors measure key signature properties in the form of

persistence, uniqueness and robustness in order to detect, among several scenarios, label

masquerading. Label masquerading occurs when a user switches all of his communication from

one node to another. An example of this, is the repetitive debtor problem (Hill, Agarwal, Bell, &

Volinsky, 2006), where a consumer switches accounts with no intention of paying for his

network usage. In their experiments, the authors found that high persistence (signatures remain

stable across time) and uniqueness (signatures from one user should not match signatures from a

different user) are key properties needed to correctly identify users that leverage label

masquerading.

The idea of profiling and recognizing users based on their communication behavior was

recently undertaken by (Kumpošt, 2007; Kumpošt & Matyáš, 2009). The authors use real data

from a university campus network to recognize users based on their IP address and

25

communication profile using SSH, HTTP and HTTPS. The experiments conducted by these

authors produced reasonably accurate identification results for SSH type traffic with a 21% rate

of false alarms; however for HTTP and HTTPS traffic the false alarm rate was high, 70% and

60% respectively. The authors attributed the poor performance to the fact that students

connecting to the internet utilized wireless connections from laptops from multiple locations

across campus and therefore were assigned different IP addresses.

Similar work on user profiling was also carried out by Yang (2010). Her approach was to

build user profiles of web browsing behavior from consecutive web sessions of known users and

use these profiles to predict the owner of future anonymous web sessions (i.e. user

identification). The experiments conducted by the author show that this approach can be highly

effective and efficient. However, the solution does not scale well (the experiment could not go

beyond 100 users) since many users can share the same behavior and her approach cannot

connect consecutive user sessions, forcing identification to take place over short periods of web

activities. Yang acknowledges that recognizing web users based solely on their online user

behavior rather than using tracking techniques is a difficult problem. The problem is made even

more complicated due to the basic need of recognizing a user when that user identity is not

known in the first place. This is very important for real life applications where supervised

learning (assuming the user is known at training time) cannot be applied.

Herrmann, Gerber, Banse & Federrath (2010) implement web user identification attacks

by linking web sessions of a given user solely based on the history of his past activities on the

web and specifically by observing how frequently different host names are visited by users.

Their experiments are limited to 28 users and show that consecutive sessions can be linked to a

26

given user with a high probability for session durations ranging from 5 minutes to 48 hours.

Their results show correct user identification for 50% of the users 80% of the time.

The recent work of both Yang (2010) and Herrmann et al. (2010) shows promise in

utilizing approaches that leverage user web past activities to identify users. Their experiments

share limitations that have left open opportunities to perform more research in this area:

 Both leverage supervised learning and assume that the user is known at training time

 Both do not address concept drift and are unable to adjust to changes in users’

behavioral patterns

 Both are limited in their ability to identify user sessions. Yang’s approach attempts to

match sessions learned from user web activities before time T with anonymous

sessions observed after time T. Moving away from time T increases the difficulty of

connecting sessions belonging to the same user. The approach used by Herrmann et

al. (2010) uses a fixed time window (all activity falling within the window belongs to

the same user) to group sessions belonging to the same user. This solution will

erroneously distribute contiguous sessions belonging to the same user to a new user.

 Both solutions do not scale in real world situations as user identification relies

exclusively on the uniqueness of the web destinations visited by users, as is

acknowledged by Herrmann et al. (2010) : “…. tracking one user among thousands of

unknown users will cause a false alarm for the majority of instances…”

Even more recently, Banse, Herrmann, and Federrath (2012) address the challenge of

tracking internet users (linking a large number of multiple user sessions) without resorting to the

use of explicit tracking techniques such as cookies or other explicit identifiers. The authors also

27

explicitly address the problem of changing source IP addresses in their solution by assuming that

addresses can change only within a fixed time period (24 hours), an epoch. In their experiments,

the input is represented as a triplet: epoch, source IP, destination IP. Session identification is

accomplished by aggregating all events that share epoch and source IP. The authors verified their

solution in a real world setting with up to 2000 concurrent active users each day and report

being able to correctly link up to 88% of all sessions on a day by day basis. It is important to note

that the research left as future work by these authors is tackled by the work carried out in this

study, namely:

 The authors acknowledge that NAT devices which force the same source IP

address to be shared among multiple users, is a problem not addressed in their

solution

 The authors acknowledge that increasing the number of times that the source IP

address changes from once a day to every three hours decreases the accuracy of

their algorithm from 60% to 49%

 Epochs as defined in this work are tied to a fixed location where user requests are

issued. In order to address mobility the epoch would need to account for location

(time zone)

As this literature review has shown, the problem of recognition of users that get assigned

different source IP addresses re-entering the network or accessing the network from multiple

locations is a real issue that needs to be addressed especially in the area of security for intrusion

response and prevention systems. The research in this topic, which has leveraged trace back,

tracking and inference techniques, has so far not provided an effective solution to this problem

28

Complex Networks

A system can be complex and complicated at the same time but these are two very

different concepts. Barrat et al. (2008) explain that the intricate appearance of large-scale graphs

naturally evokes the idea of complicated systems in which large number of components work

together to perform a function. The internet is a physical system that is composed of

independently administered computer networks each of them having its own administration,

rules and policies. There is no central authority that oversees its growth as new connections and

nodes are added to it on a daily basis. These attributes make the internet a complicated system,

much like mobile networks that attach to the internet from a multitude of different locations. Yet,

the internet and mobile networks also share properties of complex systems where they

dynamically evolve and self organize in very specific structures that maintain a scale-free

topology.

Typically, complex networks are difficult to describe based on their topology. Many of

them form networks whose vertices are the elements of the system and whose edges represent

interactions among them. In the case of the World Wide Web, vertices are HTML documents

connected by links pointing from one page to another, while in the case of the internet vertices

are routers and computers linked by various physical or wireless links. Because of their large size

and the intricacy of the interactions, the topology of these networks is largely unknown (Barabasi

& Albert 1999). Barrat et al. (2008) believe that complex systems consist of a large number of

elements capable of interacting with each other and their environment in order to organize in

specific emergent structures. These authors attribute the characteristics of complex networks to

the fact that decomposing the system and studying subparts in isolation does not allow an

understanding of the whole system and its dynamics, since the self organization principles reside

29

mainly in the collective and unsupervised dynamics of the many elements. Mobile networks, in

the form of WIFI hotspots and cellular networks provide access to the internet and support

connections to the World Wide Web. Mobile networks add to the intricacy of the topology of the

internet in many cases with deployments where one wireless network overlaps with another, with

different operators administering these networks and different standards that define how these

networks attach to the internet.

The patterns of connections among elements of complex networks are neither regular nor

random, instead these networks tend to self organize into a scale free state where the probability

P(K) that a vertex in the network interacts with other K vertices decays as a power-law,

following P(K) ~ k
-y

 where y is a constant. The power law tail characterizing P(K) indicates that

highly connected (large in-degree) vertices have a large chance of occurring, thus dominating

connectivity. Barabasi and Albert defined the principle of “preferential attachment” as typical of

complex networks, where there is a higher probability that a new vertex will be linked to another

existing vertex that already has a large number of connections. This power law behavior strongly

contrasts with the Poisson degree distribution of classical random graphs where links are

randomly created between pairs of existing nodes.

One key property that is traditionally shared by complex networks is the fact that while

complex networks are often large in size, in most networks there is a relatively short path

between any two nodes. This is known as the concept of “small worlds”. Broder et al. (2000)

found that the average path length between nodes in a 50 million node sample of the World Wide

Web is 16, while Adamic (1999) found that for 60,000 web root nodes the average path length

was 3.1 hops, leading him to acknowledge that the World Wide Web is a small world. Another

important property of complex networks is the high tendency for nodes to cluster together so that

30

nodes will tend to create tightly knit groups (cliques) characterized by a relatively high density of

ties. The local clustering coefficient of a vertex (node) in a complex network quantifies how

close its neighbors are to being a clique (complete graph). Watts and Strogatz (1998) defined this

coefficient to determine whether a graph is a small-world network.

As previously described, the degree of a vertex in a network is the number of edges

connected to that vertex. P(k) was previously defined to represent the fraction of vertices in the

network that have degree k and it follows a degree distribution that has a power tail. Both the

World Wide Web and the internet follow two power law degree distributions; Pout(k) ~ k
-Yout

 that

describes the probability that a node/document has k outgoing edges/hyperlinks and Pin(k) ~ k
-Yin

that describes the probability that k edges/hyperlinks point to a certain node/document. Different

studies for the World Wide Web show values for Y
out

ranging from 2.45 for document sizes of

325729 to 2.72 for document sizes of 2 X 10
8
.

Of specific interest to this study is the evaluation of the distribution of visitors to web

sites. Adamic and Huberman (2000a) studied the distribution of users among web sites by

examining usage logs from America Online covering 120,000 sites. They discovered that the

distribution of visitors per site follows a universal power law similar to that found by Pareto in

income distributions. They reasoned that a small number of sites control the traffic of the web

population, a result typical of winner-take-all markets. The authors agree that the World Wide

Web gives rise to an asymptotic self similar structure in which there is no natural scale and the

number of users per site is indeed distributed according to a power law. In another study Adamic

and Huberman (2000a) find inconsistencies in the conclusions of a study by Barabasi and Albert

(1999) which states that because of preferential treatment a vertex that acquires more

connections than another will increase its connectivity at a higher rate so that the connectivity

http://en.wikipedia.org/wiki/Steven_Strogatz

31

between nodes increases in line with the growth of the network. This leads to older vertices

increasing their connectivity at the expense of younger and leading to the well known “rich-get-

richer” phenomenon for highly connected vertices. Adamic and Huberman studied web crawls

of 260,000 sites and concluded that all sites are not created equal since no correlation exists

between the age of a site and its number of links. They explain that the rate of acquisition of new

links varies from site to site and is probably proportional to the number of links the site already

has, because the more links the site already has, the more visible it becomes and the more links it

will get.

While there has been agreement in the research community that communication traffic

has self similar characteristics, until recently it was believed that complex networks are not

invariant or self-similar under large scale transformations. This belief is rooted in the small

world property of these networks which would seem to imply that the number of nodes increases

exponentially with the diameter of the network rather than following the power law relation

expected for self-similar structures. Song, Havlin and Maske (2005) analyzed real complex

networks, like the web, utilizing a box counting method as a scale invariant renormalization

procedure and concluded that, on the contrary, these networks consist of self repeating patterns

on all length scales that suggest they share common self-organizing properties.

 What are the implications of addressing the user attribution problem in the context of

complex networks? The self similar, small world and clustering properties together with the

preferential attachment characteristic of complex networks supports the notion that users tend to

visit a limited number of mostly popular sites with increasing frequencies. How can the approach

implemented in this study leverage unique and personal patterns to differentiate among users if

32

different users visit mostly the same sites and this research proposes to use web site visits as a

way to uniquely recognize users?

This study has leveraged at its fullest the power law properties that characterize web

traffic of users who visit different web sites. Specifically, the implications of the power law

distribution support the notion that while it is true that few web sites get visited very often by all

users, few and unique web sites, in the long tail portion of the power law distribution, get visited

less often by a variety of users as well. By recording communication patterns of past activity for

each user it becomes possible to identify unique and differentiating elements that will enable

isolation among users. More specifically, the assumption in this study has been that the long tail

properties of the distribution of user visits to web sites together with the time order of such visits

create conditions for unique differentiation among user patterns that allows to adequately address

the user attribution problem.

In order to leverage the power law properties that characterize users’ web site visits, this

research created synthetic data for its experiments by implementing a zipf generator that

simulates user visits to web sites ranging from 1 to N, with web site 1 being the most popular and

N the least. The zipf distribution is of the form:

Zipf(n) =

 where C = [∑ (

)

]

, N = maximum number of web sites,

and 0 < θ < 1. The algorithm used to implement this distribution are based on zipf algorithm used

in (Gray, Sandaresan, Englert, Baclawski, & Weinberger, 1994) as shown in the Java snippet in

Figure 1. Next_ZipfRandom returns the next web site in rank order from 1 to n (with 1 being the

most visited and n the least) following a power law distribution. The algorithm generates web

33

sites that are weight proportional to the Riemann zeta function:

+

+….+

. In the algorithm

below, θ(theta) controls the skewness such that θ = 1.0 indicates the highest skew (all nodes have

different popularity) and θ = 0 indicates the lowest skew (all nodes are equally popular). To see

how the Next_ZipfRandom function is used in the context of the research experiment, refer to

section “Generation of Synthetic Data for the Simulation”.

It is important to note that, Hierarchical Temporal Memories are an appropriate tool to

study complex networks. HTMs perform well when the data they process support a hierarchical

structure. Ravasz and Barabasi (2003) show that the scale free and high degree of clustering of

complex networks like the World Wide Web are the consequence of a hierarchical organization.

They show that a small group of nodes, such as communities of interest in the WWW, organize

in a hierarchical manner forming larger groups, while still maintaining a scale free topology.

This self similar nesting of different groups into other groups forces a hierarchical structure that

well fits the ability of the HTM to correlate groups that are close in space and time.

34

Figure 1 Simulating user web visits to web sites using Zipf distribution

long Next_ZipfRandom(long n, double theta)
{
 double alpha = 1.0 / (1.0 - theta);
 double zetan = zeta(n,theta);
 double eta = (1.0 - Math.pow(2.0 / (double)n, 1.0 - theta)) / (1.0 - zeta(theta,2.0)/ zetan);
 double u = random.nextDouble(seed);
 double uz = u * zetan;

 if(uz < 1.0) return (1);
 if(uz < 1.0 + Math.pow(0.5,theta)) return (2);
 return(1 + (long)(n * Math.pow(eta * u - eta + 1.0,alpha)));
}

long zeta(double n, double theta)
{
 int i = 0; long ans = 0;

 for(i=1; i< n; i++)
 {
 ans += Math.pow(i+1,theta);
 }
 return(ans);
}

35

Chapter 3

Methodology

As humans generate more and more data in their lives, they leave behind massive

amounts of information that reveal their unique behavioral characteristics. Using this data, it is

possible to recognize each user. User classification is the process of matching records of past

behaviors that belong to the same individual, sometimes when the individual is acting

anonymously. Hills and Nagle (2009) define identification in the context of dynamic networks as

a matching task that involves comparing network entities across time periods. The authors

acknowledge as a limitation the theoretical aspect of their work in modeling real user behavior.

Kumpošt and Matyáš (2009) tackle this limitation by addressing the user attribution problem

using an identification approach which pinpoints users among others based only on observed

behavioral characteristics. The approach that has been used in this study to address the user

attribution problem relies on the premise that users follow patterns of behavior peculiar to them

and is reflected in a time ordered set of unique destinations visited during communication

sessions. Specifically, each communication source visits frequently and persistently over time

unique destinations with respect to other communication sources. These destinations are visited

in a specific order in the context of user sessions. Observing user sessions over time, together

with the order of visits to specific web sites, can be leveraged to infer unique users re-entering

the network.

There are two important requirements that this solution to the user attribution problem

has addressed:

36

1. Accurate recognition of users re-entering the network with potentially new source IP

addresses

2. The ability to recognize communication patterns belonging to the same user (among

many different user sessions belonging to many users) by analyzing the sequential

time ordered nature of web visits, much as is done in web usage mining to predict

what web page a user clicks next (Liu 2008). However, as opposed to traditional web

usage mining, user sessions are be tracked across many different web sites.

Network signatures, derived from user navigational patterns, have been shown to be

effective for targeted marketing and advertising in identifying online users based on their

browsing behavior (Hill, et al., 2006). In addition, social network signatures have been used for

author attribution of written documents, where the identities of authors of articles can be inferred

based on the authors they cite (Hill & Provost, 2003). The applications of re-identification are

vast, ranging from protecting the privacy of personal records to asymmetric threat detection for

national security, to detecting subscription fraud in the telecommunication industry.

Development of reliable methods which forgo use of tracking techniques such as cookies, logins

and keys and only rely on web usage patterns for identification of users in communication

networks is an important problem (Yang 2010).

Hill et al (2006) show that the level of activity in connections among nodes and the

freshness of such connections can be used to predict node behavior in dynamic networks. The

authors used communication signatures derived from the levels of activity of nodes and edges in

graphs to detect repetitive fraud by users re-entering the network with new IDs and to recognize

users’ repeated access to web servers. The authors represented the evolution of network

transactions over time among nodes by tracking: (1) Lifetime of node relationships, (2)

37

Frequency of transactions among nodes, (3) Degradation in the relative importance of the

relationship with the passing of time.

The experiments conducted by these authors provide the motivation for this study by

showing that by monitoring the evolution of network transactions, predictive performance of

user behavior continues to significantly improve for user connectivity to web sites as the number

of connections increases. They conclude that despite the increase in the number of connections,

the predictive performance improves, thus allowing a more representative signature to be built

for each user. It is important to note that while addressing the user identification problem, the

authors do not explicitly deal with the problem of identifying subscribers re-entering the network

when the source IP address changes due to dynamic re-assignment or due to the presence of

NAT or web proxies.

A solution to the user attribution problem as implemented in this study addresses both the

spatial and the temporal aspects of the network data used as input. The spatial aspects are tied to

the recognition of unique user sessions and unique destinations visited by a user. The temporal

aspects are tied to the need to observe time ordered visits to different web sites in the context of a

user session in order to better discriminate among multiple users.

Hierarchical Temporal Memory (HTM) is a technology which is modeled on the

algorithms used in the neocortex of the brain (George & Widrow 2008; Hawkins, George, &

Niemasik, 2009). Network nodes in an HTM, are organized in a hierarchical way, with each

node implementing learning and memory functions. HTMs are unique in stressing the temporal

aspect of perception, implementing memory for sequences of patterns that facilitate anticipation.

Each level in the hierarchy is trained separately to memorize spatial-temporal objects (patterns)

and is able to recognize objects in a bottom-up/top-down process (Duch, Oentaryo, & Pasquier,

38

2008). The HTM hierarchy also enables efficient representation of relationships among many

inputs by leveraging reuse of lower level inputs in order to represent higher level concepts at

higher levels of the hierarchy. HTMs allow sequence learning (concatenation of spatial and then

temporal learning), which provides the ability to make predictions and can be applied to

disambiguate input. Only few methods exist that combine spatial and temporal learning in a tight

way (e.g. recurrent neural networks can do this a well) (Greff, 2010).

The predictive power of HTMs comes in part from their use of Markov models in the

context of Bayesian networks used to propagate beliefs across the hierarchy. Markov models as

proposed by Deshpande and Karypis (2004) are well suited to address the temporal aspect of the

inference problem and have traditionally been proposed as the underlying modeling machinery

for web link prediction and web pre-fetching to minimize system latencies. The ability of HTMs

to infer causes of novel inputs in space and time and to make predictions leveraging the

hierarchical nature of the input data, makes HTMs good candidates to be used to address the user

attribution problem.

HTMs have been successfully used in classification problems in a variety of applications.

Experiments conducted by Bobier (2007) showed recognition accuracy of 95% by using the

commercial Numenta’s NuPIC framework to model HTMs in the context of recognition of USPS

handwritten digits. Besides being applied to image recognition, HTMs have also been applied to

speech recognition with promising results as reported in the work of Doremalen and Boves

(2008). HTMs have also been used to model and predict user choices. In (Melis, Chizuwa, &

Kameyama, 2009), the authors build a mobile phone intention prototype using HTMs and

Bayesian Networks to predict user intentions while using a mobile phone based on the menu

choices that the user selects. The authors report that the HTM performs well and is able to easily

39

use information (input) from the real world with little preprocessing and good accuracy. The

authors conclude that when the structure of the application is reflected into the HTM, even better

results can be obtained, a theme that is consistent in the literature.

HTMs have also been used in the area of web analytics. In a talk given for the association

of computing machinery (ACM), Subutal Ahmad, vice president of engineering at Numenta,

described results of experiments using Numenta’s HTMs to predict user web click behavior for

topics and pages of interest to the user. In these experiments web content was partitioned into

177 different topics. In their experiments random prediction reported 0.56% accuracy. By

training the HTM with 100,000 user sequences (web pages) and using no temporal context (0
th

order prediction) the accuracy reported was 23%, which matches what most web sites can do

today. By including in the analysis transition probabilities from a given web page to another in

the form of 1
st
 order prediction, predictive accuracy increased to 28%. By further leveraging use

of variable order prediction, accuracy levels jumped to 45%. Variable order prediction allows

prediction to fully leverage the dynamic “context” (patterns embedded in the sequence of the

most often visited web pages) of web pages visited by a user.

The user attribution problem implemented in this work benefits from the use of variable

Markov models. These models increase (over fixed order Markov models) the predictive power

of HTMs and are critical in enhancing the accuracy of proactive identification of recurring

temporal patterns (visits to web sites). This study has utilized a three node HTM, as shown in

Figure 2, that was used to classify unique users re-entering the network with the bottom node

recognizing user navigational patterns and the top nodes recognizing user sessions (higher level

concepts) for each properly classified user.

40

Figure 2 Three Layer HTM for User Attribution

41

The HTM at layer 1 collects sequence of web destinations and maintains their temporal

relationships (navigational patterns that are likely to follow each other for a given user) via a

Markov graph. These destinations are then be broken up into separate temporal groups based on

their sequential relationships and the connectivity strength of the connections among the

destinations. One can think of these destinations as representing different areas of interest for a

given user (e.g. soccer and tennis for group 1, high school and universities for group 2 and blogs

and movies for group 3). However, layer 1 would not deal with the temporal relationships among

the temporal groups it creates. Creating temporal relationships among groups created in layer 1

is the job of layer 2 of the HTM.

The HTM at layer 2 deals with relationships among higher level concepts received from

layer 1 in the form of temporal groups. For instance, temporal group 1 from layer 1 (a

coincidence in layer 2) can be thought of as representing the higher level category of sports,

while group 2 from layer 1 could represent education and group 3 could represent entertainment.

Layer 2 learns navigation patterns among these higher level concepts received from layer 1.

Layer 3 is similar to layer 2 and learns temporal relationships among the higher level

concepts received from layer 2. So, for instance, for a given user, layer 3 could have learned that

the user navigates sports followed by education and then entertainment sites. Each layer of the

HTM communicates to the layer above the degree to which the input is similar to temporal

patterns (feed forward beliefs) learned within that layer. Layer 3 is then responsible for

generating the final output in the form of a belief in how well the input matches learned

navigation patterns for this user inferred through the three layers of the HTM.

42

The generalization property brought about by the hierarchical structure of HTMs has

another advantage in that it enhances the ability of HTMs to correctly recognize ordered visits to

web sites by different users. When users visit web sites and the corresponding ordered site visits

are stored in a Markov chain, it is critical to be able to distinguish the start and end of a sequence

of such visits. A predefined amount of time between visits is used to mark the beginning and end

of such visits. However, if web site visits by a given user fall outside this time window then the

original sequence is viewed as a set of many smaller sub-sequences, possibly with only one

element in each. Under these conditions a Markov chain would lose accuracy by not being able

to operate on a longer sequence. In an HTM, higher layers of the hierarchy are able to recover, to

a large extent, the original sequence and thus improve the accuracy of the HTM. The hierarchical

structure of HTMs increases the discrimination power of the model by improving the ability to

recognize long recurring patterns while at the same time becoming less susceptible (more

invariant) to the time differences in the arrival of input. Riesenhuber and Poggio (1999)

originally proposed a model for visual processing in the cortext as a hierarchy of increasingly

sophisticated representations. This hierarchical model was consistent with physiological data

from inferotemporal cortex that accounts for the complex visual task and makes testable

predictions. They obtained invariance in the model (to changes in the position of an optimal

stimulus) by generalizing simple cell to complex cell relationship by using a maximum operation

(max) performed on the simple cell inputs to the complex cells, where the strongest input

determines the cell's output. This preserved feature specificity. The model also alternated layers

of units combining simple filters into more complex ones to increase pattern selectivity with

layers based on the max operation. This hierarchy helped to build invariance to position and

43

scale while preserving pattern selectivity. A similar approach has been used in this study to

combine outputs from different layers of the HTM.

Tremendous and potentially infinite volumes of data streams are often generated by real-

time internet traffic. Unlike traditional data sets, stream data flow in and out of a computer

system continuously and with varying update rates. They are temporally ordered, fast changing,

massive, and potentially infinite. For example, the universe corresponding to the set of all pairs

of IP addresses on the Internet is very large, which makes exact storage intractable (Han &

Kamber, 2006). This study assumes that data is not collected from data bases or servers (web

proxies/servers) as traditionally done in web mining; instead it assumes that data is processed

“off the wire”. This requirement is due to the need to collect the TCP time stamps (the need for

this parameter is explained later in this paper) from the data stream which is not normally found

in web server log files. Hierarchical temporal memories were chosen for this study because of

their ability to process (learn and infer) streams of data (George & Widrow, 2008). As described

in the next sections, not all approaches are well suited to deal with stream data.

Methodologies for stream data processing address the need for infinite amount of storage

space to store streams and often settle for approximate rather than exact answers. Synopses

provide summaries of stream data, which typically can be used to return approximate answers to

queries. Random sampling, sliding windows, histograms, multi resolution methods (e.g., for data

reduction), sketches (which operate in a single pass), and randomized algorithms are all forms of

synopses (Han & Kamber, 2006).

Traditional methods of frequent itemset mining, classification, and clustering tend to scan

the data multiple times, making them infeasible for stream data. In addition, these techniques

44

ignore the temporal order in which transactions occur (e.g. the order in which web pages are

visited). Stream-based versions of stream data mining instead try to find approximate answers

within a user-specified error bound. Examples include the Lossy Counting algorithm for frequent

itemset stream mining as described in Manku and Motwani (2002), which divides the incoming

stream of data into buckets, computes the approximate frequency of items accounting for

maximum frequency error and keeps only items in buckets that are most frequent. This simple

approach unfortunately suffers from at least two short comings: (1) the frequency list of itemsets

in each bucket may grow infinitely as the stream goes on; (2) frequent itemsets are scanned many

times impacting the efficiency of the algorithm. Another example of an algorithm used for

stream data classification is the Hoeffding tree (Domingos & Hulten, 2000; Hang & Fong, 2010).

This algorithm which was originally used to track web clickstreams, uses decision tree learning

and creates nodes incrementally as more data streams in. An advantage of Hoeffding trees is that

this algorithm does not scan the same data multiple times and can classify data even while the

tree is being built. A disadvantage of this technique is that it cannot handle concept drift

(changes in the variables that are being classified) because once a node is created it cannot be

changed. The implications of implementing concept drift in the HTM via continuous learning

(learning occurring after training completes) have been explored with initial positive results,

however, in order to limit the scope of this study continuous learning is left as an area of future

study.

The Very Fast Decision Trees (VFDT) makes modifications to the Hoeffding tree

algorithm to improve both speed and memory utilization but still cannot handle the concept drift

in data streams (Domingos & Hulten, 2000). The Concept Adapting Very Fast Decision Trees

(CVFDT) addresses the concept drift by staying current in spite of continuously changing data

45

by growing an alternate sub-tree whenever an old one becomes questionable and replacing the

old one with the new one when the new one becomes more accurate (Hulten, Spencer, &

Domingos, 2001). One of the shortcomings of the previously described techniques is that they

ignore the temporal ordered (sequential) nature of the data stream, an important aspect of the

approach chosen for this study that is needed to further improve the accuracy of user recognition.

Sequential pattern mining is the mining of frequently occurring ordered events or

subsequences as patterns. Given a sequence database, any sequence that satisfies minimum

support is frequent and is called a sequential pattern (Han & Kamber, 2006). An example of a

sequential pattern in the context of web mining is “70% of users who first visit web page A.html

and then visit web page B.html, in the same session, have also accessed web page C.html”.

Algorithms for sequential pattern mining include GSP, SPADE, and PrefixSpan, as well as

CloSpan (which mines closed sequential patterns). The problem of mining sequential patterns

was first proposed by Agrawal and Srikant (1995). In the Apriori-based GSP algorithm, Srikant

and Agrawal (1996) generalized their earlier notion to include time constraints, a sliding time

window, and user-defined taxonomies. Zaki (2001) developed a vertical-format-based sequential

pattern mining method called SPADE, which is an extension of vertical-format-based frequent

itemset mining methods. PrefixSpan, a pattern growth approach to sequential pattern mining, and

its predecessor, FreeSpan, were developed by Pei et al. (2001) and Han et al. (2000). The

CloSpan algorithm for mining closed sequential patterns was proposed by Yan, Han, and Afshar

(2003).

Constraint-based mining of sequential patterns is another approach to mining sequential

patterns which incorporates user-specified constraints to reduce the search space and derive only

patterns that are of interest to the user. Constraints may relate to the duration of a sequence, to an

46

event folding window (where events occurring within such a window of time can be viewed as

occurring together), and to gaps between events. Pattern templates may also be specified as a

form of constraint using regular expressions (Han & Kamber, 2006).

Markov models have been proposed as an underlying model for web link prediction as

well as web pre-fetching to minimize system latencies (Mukund & George, 2004; Sarukkai,

2000). These models represent web pages as states and transition probabilities represent the

likelihood that a user will navigate from one state to another. Markov models which include

Markov chains are especially suited for predictive modeling based on contiguous sequences of

events. HTMs incorporate Markov models to recognize temporal patterns, as a key element of

their architecture.

An important part of the approach utilized in this study hinges on the ability of the

algorithm to recognize user sessions. That is, identify a set of HTTP requests bound for different

destinations as a group of messages originating from the same source. The approach used for this

study during the trainign pahse has utilized the TS value of the TCP timestamp option field of a

TCP packet carrying an HTTP request as defined in (Jacobson, et al., 1992). The 32 bit TS value

contains a counter that is driven by the clock of the originating device. This counter on most

systems resets to a fixed value or to some random value when the device is rebooted. A

consistent property of this field, needed to compute round time trip delays, is that it continues to

increase over fixed time periods from some initial value until the device reboots or the TS

counter wraps around. In this study, any new HTTP request belonging to a currently tracked

user session with a TS value that falls outside a predefined positive sliding window is to be

deemed to belong to a new user session, otherwise the request belongs to the user session

currently being tracked. This algorithm, by utilizing the TS value, gains in discriminating

47

accuracy since it is able to connect sessions belonging to the same user. Contrast this with the

work by Yang (2010) which relies on the identifying user sessions exclusively by relying on the

destinations visited by the known user. Yang’s approach limits the scalability of the solution, as

acknowledged by the author, since “as the number of users increases user identification based

on behavioral patterns alone becomes infeasible…there is a need for methods (e.g. IP addresses,

Cookies) to connect consecutive sessions. In cases where this assumption does not hold,

identification can only be done on fairly short periods of web activity, which can be quite

difficult….”.

In this study the TCP time stamp (TS) is used to identify and track only user sessions

only during the training phase of experiments. Training of HTMs is completely unsupervised and

leverages the tracking strength of the TS value to identify consecutive web visits as belonging to

the same user session. This is different from the supervised training approach used by Yang in

her experiments where a label (user-id) was used to train her inference model. During training, in

this study, session identification and user identification are one and the same. During the

inference stage the assumption that a specific session belongs to a given user no longer holds and

instead the TS value is only used to identify an anonymous session (a set of consecutive web

visits belonging to an unknown user). The task of assigning an anonymous session to a specific

user is carried out by the Markov chains performing inference within the different layers of each

HTM based on past learned patterns of users’ sessions (web visits). All HTMs attempt to

recognize each anonymous session as shown in Figure 8 and only one HTM will be able to

recognize it better that the other HTMs based on its past training.

The outcome of session identification determines the quality of the input received during

the training and inference stages. Successful session identification would allow identification of

48

multiple web visits from a single source as belonging to a single unknown user, leaving the task

of recognizing the actual user to the HTM Markov chain inference engines. On the other hand,

unsuccessful session identification would either classify multiple web visits from multiple

sources as belonging to a single unknown user or during training misclassify web visits from a

single source as belonging to the wrong user. These conditions of course, would compromise the

training and inference processes, making it impossible to correctly identify this web traffic as

belonging to the correct user. This is exactly the type of session miss-classification problem

acknowledged by Yang (2010) in her experiments.

The TCP time stamp was proposed (Jacobson, et al., 1992) to enable real time round trip

time measurements between TCP peers and to protect against wrapped TCP sequence numbers

in very high speed networks that use very large window sizes (greater that 64K bytes in size). In

this study, the TCP timestamp update rate from a sequence of TCP packets have been used to

fingerprint a user session. The TCP TS value is not a timer, but it represents an infinite counter

started on a given device that is incremented typically every millisecond driven by the device

internal clock and never stops incrementing as long as the device is powered on. Powering off

the device will restart this infinite counter. This counter is sent in each TCP packet to a specific

TCP peer that can use it as a synchronization point.

In this study during training, once an HTM has received the first TCP timestamp, it uses

it to start its own infinite TS counter using its own internal clock and thus synchronizes with the

originator of this TCP session. Because both the originator and the HTM use clocks indirectly to

synchronize, the session identification algorithm utilized in this study needs to account for clock

skew between the HTM clock and the clock of originator of this TCP session. In this research, a

fixed window is used to measure possible clock skew. Unfortunately, using a fixed offset from

49

the currently received TCP TS counter to measure clock skew, can potentially either

underestimate (lose a single tracked user session) the clock skew with a window that is too small

or overestimate (identify a single user session as belonging to multiple user sessions) the clock

skew with a window that is too large. A possible way to address this problem is to allow for

dynamic resynchronization of the HTM TS counter with a tracked source based on how much of

an offset (within a window) a given new received TCP timestamp is from the existing HTM TS

counter. This approach would use the new TCP time stamp received as the new TS counter value

each time the new TS value is within the window but does not match exactly the current HTM

TS counter. This approach could address the potential increase in clock skew that occurs over

time between user and HTM overcoming the limitations of a non-resettable HTM TS counter.

With this approach, it is possible to use a small window size since the algorithm is able to adjust

to clock skew over time. The merits of this approach as well as determining the best size for this

window is an area of further research that should be based on the empirical results of studying

the characteristics of clock skew of mobile devices over real mobile networks.

Clock skew is not the only way in which communication traffic belonging to a given user

session can be misclassified. Based on radio frequency (RF) conditions, communication over

mobile networks can suffer from elevated levels of noise with resulting high levels of data loss.

The user session classification algorithm proposed in this study would need to account for

possible invalid or outdated timestamps. For instance, TCP timestamps that fall within windows

belonging to more than one HTM are obviously invalid and can be discarded. However,

retransmitted TCP packets belonging to an old (no longer active) user session could potentially

be misclassified as belonging to another active user.

50

This study plans to track multiple users visiting multiple destinations. The advantage of

using the TCP time stamp field for session identificatin is its ability to track a given device that

sends multiple HTTP messages to multiple destinations. This benefit is not provided when

utilizing “cookies”, another user identification method also recommended in the literature for

HTTP traffic. Cookies are not designed to track users across multiple destinations because they

are created by each origin server to identify a given user. Instead, cookies work well when used

as user identifiers to track multiple users all visiting the same web site. The referrer field of

HTTP messages has also been used to track user sessions in web mining applications. This

HTTP header reports the web page that was visited just prior to the current one and is used to

create an ordered list of web pages visited at a given web site. The referrer field was not used in

this study because client or web proxy caching can often result in missing access references due

to pages or objects that have been cached (Liu 2008).

In the area of data preparation for web mining, Kumpost (2007) has used both TF-IDF

and cosine similarity, techniques borrowed from text mining, to build user profiles from network

traffic log processing. Kumpošt and Matyáš (2009), extended their work and, similarly to this

study, looked into the issue of profiling and user recognition based exclusively on user past

activity. The experiments conducted by these authors produced reasonable accurate identification

results for SSH type traffic with a 21% rate of false alarms; however for HTTP and HTTPS

traffic the false alarm rate was high, 70% and 60% respectively. The authors attribute the poor

performance to the fact that students connecting to the internet utilize wireless connections from

laptops from multiple locations across campus and therefore get assigned different IP addresses.

The authors dealt with the spatial aspects of the identification problem and relied on a fixed two-

dimensional matrix to represent communication between sources (rows) and destinations

51

(columns) with each row identified by the source IP address. In their approach, the source IP

address is used to assist in the user attribution process.

The approach utilized in this study addresses directly the attribution problem in the

context of changing source IP addresses by forgoing use of the source IP address in the

attribution algorithm. This study also focuses on the user session identification problem, a

problem that does not exist if one assumes that the source IP address does not change and thus

can be used to uniquely recognize a given user. This research extends the work of Kumpošt and

Matyáš in the area of user attribution in network communication in situations where the source

IP address assigned to users or devices can change.

The solution leveraged in this study addresses directly the problem of user recognition by

going beyond the use of spatial algorithms as proposed in Kumpošt and Matyáš’s work, and

instead it proposes both spatial and temporal algorithms in the form of HTMs which leverage the

hierarchical properties of network data in order to anticipate learned user navigational patterns to

allow more accurate identification of users re-entering the network.

Approach Introduction

The approach followed in this paper is based on the work of George and Widrow (2008),

with the following key extensions:

1. This implementation deals with sequences of input. Markov graphs are used for both

training the hierarchical temporal memory (HTM) and for performing inference. In

the work of George and Widrow (2008), Markov graphs were only used during

training and during inference a 0
th

 order Markov graph was used instead (each

52

element is considered to be independent of the previous one), which means that

inference did not rely on the sequential order of input.

2. This implementation uses variable Markov chains and state cloning as a way to

improve the learning and inference accuracy of the HTM.

3. This implementation leverages the idea of “playback” as a way to bootstrap and

optimize learning across multiple layers of the HTM. This concept is missing in the

work of George and Widrow (2008).

The user attribution problem as addressed in this study is really made up of two sub

problems:

1. Communication session identification

2. Communication pattern identification associated with the same user communication

session

Communication session identification entails recognizing multiple consecutive web

destinations as being visited by the same user over time. Session identification is critical during

the learning stage of the classification process to accurately train the HTM to correctly identify

web sites visited by a user during the inference stage. The key element that enables identification

of a source of communication as utilized in this study is the Time Stamp (TSval) value

representing the timestamp option field of a TCP packet as defined in RFC 1323.

Beacken et al. (2011) have discovered that the TCP Timestamp field used for iphones

always starts at the same date/value when the device is restarted but for android devices, the TCP

timestamp value on device power up is random. They state that this allows one to be able to

distinguish iphones from android type devices. In this study, the time stamp value, a 32 bit value

53

implementing a virtual clock on each device, is used to uniquely identify unique sessions

associated with a given user. Each device implements the virtual clock as a 32 bit wrap around

counter which starts at a fixed or random time (depending on the device) and is incremented at

each tick time (RFC 1323 recommends the clock frequency to be in 1 ms as this forces a wrap

around each 24.8 days). For this prototype a resolution of 1 ms was assumed, realizing that the

actual clock resolution could also be extracted from the communication data itself. The chance of

two devices having the same TS value is rare; theoretically it is 1/ 2
32

 assuming randomness

since devices start their virtual clock at different times based on when the device is powered on.

The prototype built for this study identifies multiple communication sessions during the

training phase of learning that belong to different users by tracking the unique TS value (TS) of

each device. All communication input associated with a given <TS> value within a given time

window was fed to a hierarchical temporal memory (HTM) to identify the communication

patterns associated with sessions belonging to different users. These communication patterns are

defined in terms of the destinations (Dest) visited by this user. The input to the prototype has the

following form:

Timestamp <TS, Dest>

The timestamp has a resolution of 1 millisecond and represents the passage of time with respect

to the arrival of input to the prototype. The time stamp is specifically needed to distinguish

multiple <TS,Dest> input pairs immediately following each other with potentially the same TCP

time stamp values, as either all arriving at the same time or at different times.

54

The algorithm below was used for communication session identification during the learning

phase of classification and selection of appropriate HTM to perform communication pattern

identification.

Figure 3 Communication Session Identification Algorithm during Training

Note that each HTMUx once created runs a virtual clock with a 1 ms resolution used to

track the TS value of sessions associated with this HTM. The allowed TS clock windows was

computed as follows: Allowed-TS-Clock-Window = [TSv + Clock()] Clock-Skew-Factor. The

computation TSv + Clock() needs to account for wrap around at 2
32

.

IF (Given input: <TSv,Dest>, TSv is out of range of allowed TS clock skew window for any HTMUx

)THEN

 // New user not identified before

 // Create a new HTM to track communication patterns from this source

- Create New HTMUx (Timestamp:<TSv,Dest>)

ELSE IF (Given input: <TSv,Dest>, TSv is in range of allowed TS clock skew window for a single

HTMUx) THEN

// Existing user already being tracked with existing device type already identified

- Invoke existing HTMUx (Timestamp:<TSv,Dest>)

ELSE // The TCP timestamp matches more than one HTM

- Drop the input

- Update counter: Unable-to-Distinguish-Session

ENDIF

55

It is important to note that in this implementation, the same user utilizing two different

devices would be identified by the prototype as two different users.

The HTM Implementation

The HTM implementation is shown in Figure 4 and depicts for each layer the different

stages that the HTM goes through to learn new input patterns and then perform inference on

them.

Figure 4 HTM Three layer Implementation

56

State transitions are shown in the form of event / set of actions. Specifically, the

following states are defined:

 Initial Learning state is entered after the HTM is first created. Learning occurs in an

unsupervised manner, starting from the bottom layer of the HTM, one layer at a time.

Layer 1 learns first. After that, layer 2 learns and once layer 2 is done learning layer 3

completes learning. Learning entails both spatial and temporal learning. Spatial learning

at layer 1 covers identification of individual sequences of destinations, while at layer 2

and 3 it covers identification of individual sequences of coincidences (temporal groups’

activation levels from the layer below). Temporal learning entails creating a Markov

graph which recognizes and can predict combinations of all sequence of destinations or

coincidences learned at each HTM layer. Initial learning is completed with creation of

temporal groups (Markov Chains) from the Markov graph. These clusters represent

destinations or coincidences that are highly temporally correlated based the specific order

in which they follow each other.

 Playback state is entered when an HTM at layer Ln completes learning and is used to

bootstrap learning for the layer above Ln+1 using the already learned sequences at layer

Ln. Playback improves the time it takes to train the HTM and allows higher layers to learn

higher level concepts that are consistent with the lower level concepts learned by the

layers below.

 Inference state is entered at a given HTM layer when that layer completes training. The

inference phase covers computation of the feed forward beliefs which define the degree

of membership of the input at a specific layer against the sequence of patterns learned at

that same layer adjusted for how rare or frequent that input is.

57

The HTM prototype leverages variable order Markov chains to represent learned

sequences at each one of the three layers of the prototype. Input received at each layer, is

matched against learned sequences to find the most persistence longest common subsequence

learned by this layer of the HTM. Multiple algorithms are implemented by the HTM to provide

different ways to measure the similarity between the input received and the learned longest

common subsequence that best matches this input. The inference algorithms implemented follow

into two main categories: pattern matching and probability based.

Pattern Matching algorithms are based on the following similarity formula (which

measures feed forward beliefs -FFB) applied at each layer of the HTM for a given input

sequence:

HTM Layers Pattern Matching Similarity Formulas for FFB

1 FFB1 = Sequence Similarity + Sequence Persistence

2 FFB2 = (Sequence Similarity + Sequence Persistence) * Input
Activation Level

3 FFB3= (Sequence Similarity + Sequence Persistence) * Input
Activation Level

Table 1 Degree of Similarity/Membership Formulas

Sequence Similarity = (LLCS * weight1) + (LLCSu * weight2)

Sequence Persistence = (Persistence * weight3) , where weight1 + weight2 + weight3 =
1.0,
LLCS = Length of the longest common subsequence computed between the input and all

learned sequences at this layer of the HTM divided by the maximum length between the

input sequence and the length of longest common subsequence

LLCSu = Length of the longest common substring between the input and all learned

sequences at this layer of the HTM divided by the maximum length between the input

sequence and the length of longest common substring

Persistence = Number of occurrences of the Longest Common Subsequence matching the

input divided by the number of learned sequences in the Markov graph for that HTM layer

Input Activation Level = Average of all Feed Forward beliefs received at a given layer for

each input element that makes up the input sequence

58

The longest common subsequence between the input sequence and HTM learned

sequences at each layer is defined as the longest sequence of characters that appear left-to-right

(but not necessarily in a contiguous block) in both input and learned sequences. Because the

longest common subsequence is not always unique among learned sequences, the algorithm

selects always the one with the highest persistence. The longest common substring accounts for

consecutive substrings (substrings are consecutive parts of a string, while subsequences need not

be) thus allowing to recognize as more similar, sequences of destinations that directly follow

each other. So sequences: 8205 and 4820 are more similar since they share a substring (820) than

sequences 8205 and 8125 even though they have the same length for longest common

subsequence (825).

During inference, the length of the longest common subsequence (needed to compute the

degree of similarity of input sequences against each sequence that can be generated by a Markov

chain within an HTM layer) is computed using bottom up dynamic programming. The iterative

algorithm to compute longest common subsequence length is shown in Figure 5 with an example

of its use in Table 2. The longest common substring algorithm is not shown as it is standard

procedure in the literature.

59

Figure 5 Algorithm to Compute Length of Longest Common Subsequence

As an example, consider computing the LLCS for input S1S2S1S6S4S3, against learned

sequence S2S1S3S2S1S4 which produces an LCS length of 4 as shown in Table 2. The LCS

sequence itself can be retrieved by working forwards through table “L”.

 S2 S1 S3 S2 S1 S4

S1 4 4 3 3 2 1 0

S2 3 3 3 3 2 1 0

S1 2 2 2 2 2 1 0

S6 1 1 1 1 1 1 0

S4 1 1 1 1 1 1 0

S3 1 1 1 0 0 0 0

 0 0 0 0 0 0 0

Table 2 Table L used to generate Length of Longest Common Subsequence

In the context of the HTM, specific pattern matching algorithms differ in how they

combine feed forward beliefs belonging to a give observation. The Average method simply

ComputeLCSL(input, learned-seq)
- Create a 2 dimensional table “L” with |input| + 1 rows and |learned-seq| + 1 columns
- Initialize row = |input| + 1 and column = |learned-seq| + 1 to all zeros
// Compute LCSL
- m = |input|
- n = |learned-seq|
- For (i=m; i >=0; i--)
- {
- For(j=n; j>=0; j--){
- IF(input[i] == ‘\0’ || learned-seq[j] == ‘\0’)
- L[i,j] = 0;
- ELSE IF (input[i] == learned-seq[j])
- L[i,j] = 1 + L[i+1, j+1] ;
- ELSE
- L[i,j] = max (L[i+1, j], L[i, j+1]);
- ENDIF
- }
- }
- Return(L[0,0]); // Result

60

averages feed forward beliefs for a given user over a given observation. The Weighted Average

Method averages the feed forward beliefs belonging to a give observation with respect to the

proportion of input matched that far. The Weighted Average Method computes the proportion of

the input matched either a layer 1 of the HTM (BottomUp) or at layer 3 of the HTM (TopTop).

Probability algorithms are based on computation of the path probability (feed forward

beliefs at each layer of the HTM) of the input against the learned longest common subsequence

that best matches the input. Specifically, the path probability of the input is computed based on

the path probability of the learned longest common subsequence in the Markov chain that best

matches the input, with adjustments (penalties) made for mismatches against the input sequence.

The algorithm that computes the path probability of the longest common subsequence that best

matches the input is shown in Figure 6. In Figure 7 the path probability of the longest common

subsequence is adjusted based on how well this sequence matches the input sequence.

Figure 6 Algorithm to Compute Path Probability – Part 1

Computing Path probability of the input at each HTM layer entails two steps:
1: Learned_LCS_Nodes = ComputeLCSNodesProbability(input)
2: ComputePathProbability(input, Learned_LCS_Nodes);

ComputeLCSNodesProbability(input)
 // For each layer of HTM, compute the path probability from the Markov graph
// of the learned longest common subsequence (LCS) that best matches the input as follows
 Learned_LCS = FindBestMatchingLCSFromMG(input)

 For each node Vi (representing node i of the learned LCS) that precedes node Vk (representing node

 k of the LCS, Vi

 Vk) Do

- Learned_LCS[i].probability = P(Vk | Vi) = Vi Vk / Vi

EnDo

Where Vi = Total frequency count of all nodes terminating into node Vi

 Vi Vk = Frequency count for transitions from Vi to Vk (Vi

 Vk)

61

Figure 7 Algorithm to Compute Path Probability – Part 2

All HTMs at layer 3 produce feed forward beliefs (FFBs) during the inference phase that

are input to a maximization layer that computes the best FFB among all HTMs based on the

configured pattern matching or probability based algorithms previously described.

Figure 8 HTM MAX layer used during the inference phase

 ComputePathProbability(input, Learned_LCS_Nodes)
 // Compute the path probability of the input from the learned LCS applying appropriate penalties for
 // mismatches as follows:
 Path_prob = 1.0
 For each element “e” of the input Do
 IF match is found between “e” and learned_LCS_Nodes[i] at the same relative position “i”
 THEN

- Path_prob = Path_prob * learned_LCS_Nodes[i].probability

Else IF “e” does not match learned_LCS_Nodes[i] OR “e” matches an already matched element of
learned_LCS_Nodes
THEN
 // Penalize this input element
 Path_prob = Path_prob * PENALTY

ELSE IF a match is found between “e” and learned_LCS_Nodes[j] not at the next relative position
THEN
 // Elements exist in the learned LCS at a position “j” beyond elements at position “i”
 // (last matched element) in the learned LCS that are not part of the input Penalize them

- Path_prob = Path_prob * learned_LCS_Nodes[i].probability * (j - i) * PENALTY
EndIF

62

The tables below show a quick summary of the events and actions associated with the

HTM in Figure 4.

Events Description

Done(A) Generated when initial learning completes. This occurs when a preconfigured

number of observations has been processed.

Done(B) Generated when all learned sequences in the MG have been generated to the upper

layer

Generate

Output

Layer 3 outputs results of inference. Note that if no match occurs then nothing is

output.

Table 3 HTM State Machine Events

Actions Description

1 Spatial Pooler creates sequences of destinations from individual input destinations

1* Spatial Pooler creates sequences of coincidences from individual instances of

FFBs

2 Temporal Pooler creates and updates the Markov graph (MG) based on received

input (sequences of destinations for layer 1 and sequences of coincidences for

layers 2,3)

3 Temporal Pooler creates Markov chains (temporal groups) extracted from the

Markov graph

4 Find the longest common subsequence that best matches the input sequence. Then:

 [Pattern Matching] Compute the degree of similarity of the input sequence

based on the specific inference algorithm (Table 1)

 [Path Probability] Compute the path probability of the input against the

longest common subsequence

4* In the Playback state, because sequences are internally generated, the degree of

similarity of the input is always 100%

5 [Pattern Matching only] Adjust the degree of similarity of input (destination or

coincidence) to learned (historical) persistence of longest common subsequence

matching that input by computing the LCS persistence (Table 1).

6 Compute feed forward belief (FFB) and send it to higher layer

7 Compute the level of activation of coincidence for layer Ln from FFB from layer

Ln-1 (Table 1). Then:

 [Pattern Matching] Adjust degree of similarity with level of activation

 [Path Probability] Adjust path probability with level of activation

7* In the Playback state of layers 2 and 3 the level of activation of input is always

assumed to be 100% because the HTM learns the structure of co-occurrences of

temporal groups from layers below.

8 Report output in the form of feed forward belief

9 Generate, in time-order, all sequences belonging to each Markov chain (temporal

groups) at this layer of the HTM.

Table 4 HTM State Machine Actions

63

The rest of the section describes in more detail different areas of the HTM

implementation. The spatial pooler determines the demarcation point for combining time

stamped input in the form of < TCP Timestamp Value, Navigational Destination> into sequences

of destinations using the following rules:

a. Arrival of input destination to spatial pooler falls within a specified inter arrival

time

b. Input destination is not already present in the sequence (no duplicate allowed in

sequence)

c. Size of sequence does not exceed a specified maximum sequence size

For instance, assuming a max sequence size of 5 with a max allowed inter arrival time of

3 ms, the following input 1<TS, S1>, 3<TS, S2>, 4<TS, S3>, 5<TS, S4>, 10<TS, S1>,

12<TS, S2>, 13<TS, S5> would be converted by the spatial pooler into the following sequences:

S1, S2, S3, S4 and S1,S2,S5. For the rest of the discussion, for illustrative purposes, assume that

the following sequences of destinations were formed by the spatial pooler based on input

collected from the network, using the rules presented above.

Example Data Description

S1,S2,S3,S4 User visits four web destinations which, for the purpose

of this example, relate to category “S” for “soccer”.

S1,S2,S5

S1,S3,S6

S1,S3,S6

T1,T2,T3 User visits three web destinations which, for the purpose

of the example, relate to category “T” for “tennis”.

T1,T3,T5

T6,T5,T7

S3,S7,S6,S1

H-L1,H-L2 User visits two web destinations, which for the purpose

of the example, relate to category “H-L” for “High

64

Example Data Description

School”.

H-L1

H-L1,H-L3

H-L1

H-L1, H-L2, H-L3

UL1, UL2, UL3, UL4 User visits four web destinations, which for the purpose

of the example, relate to category “UL” for

“University”.

S2,S6,S5

Table 5 HTM Sample Input

The temporal pooler creates and updates the Markov graph (MG) for each layer. The MG

represents the long term memory for each layer. The MG stores representations of sequences as

they occur over time with nodes defining the elements of a sequence and arcs between nodes

defining the number of times a node Y follows a node X (X Y). The MG includes both “start”

and “final” state nodes for all sequences represented. More formally, the Markov graph is a

Markov model which is characterized by a set of states {s1, s2, s3, …sn} and a transition

probability matrix [Pri,j]nxn where Pri,j represents the probability of a transition from state si to sj.

The probability of reaching state sj from state si is given by the product of all transition

probabilities along the non-cyclic path.

In general, Markov models predict a symbol using some finite number (which determines

the order of the Markov model) of immediately preceding symbols (history), which is called the

Markov context. Variable order Markov models always attempt to identify the longest Markov

context possible. While Markov models are probabilistic models for sequences, their predictive

power lies in their ability to accurately recognize the Markov context. Markov Chains can do this

very well because at their core they are a special form of finite state machines. More formally, a

deterministic finite automaton, DFA, is a five-tuple M = (K, Σ, δ ,s ,F) where K is a finite set of

65

states K={k1,…kn}, Σ is a finite input alphabet Σ={ a1,…an }, s∈K is the initial state, F ⊆ K is

the set of final states, and δ is the transition function mapping K x Σ to K where δ (ki,a) that

represents the state reached when in state ki and the input symbol a is read. A probabilistic finite

automaton (PFA) is a finite automaton that has a probability attached to each transition between

states. A PFA having at most one transition between every two states corresponds to a Markov

chain (Borges, 2000).

In this study, the Markov graph can be thought of as represented by a two dimensional

matrix with rows holding the “start” state and all individual elements of learned sequences.

Columns hold, excluding the “start” state, the same individual elements of learned sequences,

followed by the “final” state. The temporal pooler updates the MG by adding new rows/columns

for each new (not seen before) element of a sequence. The temporal pooler also increments the

transition frequency counts for links between existing elements of a sequence. An actual

implementation of Markov graphs would not have been able to use a two dimensional matrix as

just described since the Markov graphs would potentially need to learn and grow continuously,

instead the Markov graph was implemented using an adjacency list with n vertices consisting of

n lists. The i
th

 list would have a node for vertex j if and only if the graph contains an edge from

vertex i to vertex j. This node would contain the relevant values for vertex j (creation time stamp

and frequency count) .

Accuracy of Markov Chains and State Cloning

State cloning was first introduced by Cormack and Horspool (1987) to enable Markov

graphs to better discover correct correlation between states. State cloning is needed to prevent

66

the Markov graph and Markov Chains from either generating or from recognizing incorrect

sequences (sequences that had never been learned). Ambiguities occur in these graphs when

multiple sequences pass through shared states, loops are an example of such condition. Consider

the following Markov Graph which was created with sequences abd and xbc:

Figure 9 The need for State Cloning

Without knowledge of the input, this graph will recognize and generate one of the

following four sequences: abd, abc, xdb or xbc. Two of them, abc and xdb were never added to

the graph and are thus incorrect. Assuming that sequence abd was added first to the Markov

Graph and assuming the following single node clone conditions: Clone a state Sx (not a “start” or

“final” state) iff both conditions are met:

1. Number of out links leaving Sx, Osx > 1

2. Number of in links entering Sx, Isx > 1

Then cloning node “b” produces the following Markov graph:

Figure 10 An example of State Cloning at the single node level

67

While the process of cloning states helps address the ambiguity problem described, it

does add more nodes to the graphs and thus does not tend to scale well. The number of clones

decreases as cloning conditions are relaxed (increase upper limit for Osx and Isx). Unfortunately,

increasing this upper limit will re-introduce the ambiguities discussed.

Consider how the defined single node clone conditions can be used when adding a

transaction Tk,i,j between three Markov graph nodes. Assume transaction Tk,i has already been

added to the graph, then we have three different possibilities:

A. Adding transition Ti,j to nodei could violate the “clone conditions” for nodei.. If the clone

condition is violated then nodei needs to be cloned as shown in Figure 11 case A.

B. Adding transition Ti,j to cloned nodej could violate “clone conditions for nodej. If the

clone condition is violated then nodej needs to be cloned as shown in Figure 11 case B.

C. Adding transition Ti,j to cloned nodej could violate “clone conditions for both nodei. and

nodej. If the clone condition is violated then both nodei. and nodej need to be cloned as

shown in Figure 11 case C.

68

Figure 11 Cloning States in a Markov Graph

Another way to determine when the single node cloning condition is violated is to

determine if the number of different sequences that are shared by a node is greater than 2 as

shown below.

69

Figure 12 Generalization of Single node cloning

Is it possible to satisfy the single node clone condition and still produce ambiguity within

a Markov graph? Yes, consider the Markov graph below where two sequences are added, 5,1,2,3

and 1,2,3,4 in that order. Note that the single node cloning conditions are satisfied, yet this graph

produces two sequences that were never learned: 1, 2, 3 and 5, 1, 2, 3, 4.

Figure 13 How Single Node Cloning Falls Short

The problem occurs at the transitions covered by points a and b. These transitions allow

the generation through nodes 1 and 3 of more than 2 sequences. Namely: <1, 2, 3, 4>, <1,2,3>,

<5,1,2,3>, <5,1,2,3,4>. To address this problem the single node cloning condition must be

extended to cover multiple nodes in a sequence as shown below.

70

Figure 14 Generalization of Sequence Cloning Condition

The single node clone condition can then be replaced by the following sequence cloning

condition. The sequence cloning condition is violated iff:

 When adding a sequence to the Markov graph if the in-degree of a node(x)

corresponding to sequence element x is going to be > 1 and the out-degree of node(y) (where y ≥

x, that is y can be the same node as x or follow x) corresponding to element y is also going to be

> 1 then one must clone all sequence elements corresponding to nodes between node(x) and

node(y) that already exist in the Markov graph. Note that sequence cloning is a special case of

single node cloning where node(x) and node(y) are one and the same. Figure 15 shows how

sequence cloning can be applied to remedy the shortcoming of single node cloning.

71

Figure 15 Ensuring that the Sequence Cloning Condition is met

Research on State Cloning

In Hawkins et al. (2009) the authors acknowledge that in order to mimic the operation of

a sequence memory in the neocortext, a memory mechanism is needed that can learn and

represent sequences of arbitrary high order. These authors recognize that the amount of memory

required to keep track of dependencies in long sequences grows exponentially with the order of

the model. For this reason they propose to use variable order Markov models that can learn long

and complex sequences with manageable amount of resources. Hawkins et al. (2009) proposed a

state splitting (cloning) algorithm based on the work of Cormack and Horspool (1987), in order

to address the problem that Markov graphs can misrepresent learned sequences when a given

state in a Markov graph participates in more than one unique sequence. Based on this algorithm,

a state t is split (cloned) when it frequently follows a particular state and it follows other states as

well. More formally state t is split in two states if the following two conditions exist:

72

Ts,t ≥ min_cnt1, where Ts,t is the transition from state s to state t

Σi,j ≠ s Ti,t ≥ min_cnt2, min_cnt1 and min_cnt2 are fixed threshold values

The concept of state cloning in the context of usage mining was first introduced in

Levene and Loizou (2003). Based on the state cloning algorithm defined by these authors, given

a transition Ti,k,j, a state sk is cloned if there is sufficient evidence that the transition from sk to sj

is dependent on the transition from state si to sk. More formally:

Pi,k,j -

 > γk , Pi,k,j = wi,k,j / wk,j

Where wi,k,j is the frequency count from sk to sj given that the previous transition that

occurred was from si to sk and 0 < γk < 1. Borges and Levene (2004) proposed a cloning

algorithm where a state would be cloned when the second order probability differs from the first

order probability by more than a given threshold based on the following four conditions. A state

Ax is eligible for cloning iff:

1. State s has at least two out-links O > 1

2. State s has at least two in-links I > 1

3. Wx > V, where V represents the number of visits (Wx) to a state to ensure the

reliability of the probabilities associated with the state

4. In the context of transition Ajxk , there is at least one transition (Aj,Ax) and (Ax,Ak)

such that |Pj,x,k – Px,k| ≥ γ, where 0 ≤ γ ≤ 1, Pj,x,k = wj,x,k / wj,x and wj,x is

the number of times that the link from Aj to Ax was traversed, and wj,x,k is the

number of times that sequence AjAx Ak was traversed.

73

The ability of Markov graphs to accurately represent unique learned sequences decreases

when a state in the Markov graph is shared among more than one sequence. All cloning

approaches described so far rely on a threshold to mitigate the Markov graph accuracy problem

by measuring the number of occurrences of certain transitions coming to or leaving certain

states. Cormack and Horspool (1987) and Borges and Levene (2004) place more importance on

transitions leading up to the target state (state that can be cloned), while Levene and Loizou

(2003) put more importance on transactions that follow the target state. The key idea of using a

threshold that measures the frequency of state transitions is to ensure that if a transition that

creates ambiguities within a Markov graph occurs with enough persistence then it is worth

cloning that target state. In contrast, the “sequence cloning” algorithm proposed in this paper

targets exclusively the structure of the Markov graph and can operate across multiple target

states that make up a sequence by always assuming that any transition in a Markov graph that

creates ambiguities will trigger cloning of one or more target states. As a result, none of the

described cloning approaches would be able to address the ambiguity shown in Figure 13, but the

“sequence cloning” approach proposed in this paper does.

Playback and Inference

While the ability to recognize sequences is critical during the inference stage, sequence

generation is critical in both playback and inference stages. In the playback stage, learned

sequences at layer n are generated in increasing order of time, so that layer n+1 can correctly

learn higher level concepts from the layer below. This in effect simulates the HTM been

retrained on the same input used to train the layer below. In order to generate sequences in

increasing time order (from oldest to most recent), each node in the Markov graph holds a FIFO

74

queue of timestamps. Each time stamp represents the time when a node was created or modified

by updating or adding incoming or outgoing links to/from this node. Time ordered sequence

generation is achieved by traversing the Markov graph at each layer of the HTM, starting from

the “start” state, while removing from the front of the FIFO queue timestamps associated with

nodes with the least recent (oldest) timestamp for each transition up to the “final” state.

Generation of sequences stored in Markov chains is also performed during inference

when the input sequence produced by the spatial pooler is compared for degree of similarity

against all learned sequences that can be produced by Markov Chains at that layer. In this case

sequence generation does not need to be in time order and thus it ignores timestamps held at each

Markov chain node.

The temporal pooler creates Markov Chains from the Markov graph (MG). Markov

chains are also Markov Models which represent clusters of highly connected sequences. Markov

Chains were implemented as overlays of the Markov graph. Figure 16 shows a Markov graph

with 6 Markov Chains (g1-g6) based on the sample data input from Table 5. Clone states were

created as each sequence was added to the Markov graph and links between nodes represent the

frequency of occurrences of transitions between those two nodes.

75

Figure 16 Layer 1 Markov Graph and Markov Chains (Temporal Groups g1-g6)

76

The algorithm used to create the Markov chains shown in Figure 16 is presented below

Figure 17 Markov Chains Creation Algorithm

The algorithm shown in Figure 17 guarantees that highly connected nodes that form a

complete sequence belong to the same Markov chain and that each node (cloned and equivalent

non cloned nodes are considered to be different unique nodes in a Markov graph) belongs to one

and only one Markov chain. The merge portion of the algorithm ensures that nodes S2 and S6

belong to Markov chain g2 since node S5 also belongs to g2. The agglomerative hierarchical

clustering algorithm used in George and Widrow (2008) could not be used in this study since it

relies on grouping based on measuring similarity which, in the context of image pixels, makes

sense but when used with web destinations, has no meaning. George and Jaros (2007) propose a

simple algorithm to create Markov chains from a Markov graph. This algorithm creates Markov

chains based on the degree of connectivity of nodes, so that the most highly connected nodes are

grouped together. In particular, the algorithm finds the next seed as the most connected node (has

the highest aggregated in-degree frequency value) and groups it with the next Ntop (fixed value)

While there are more nodes to be processed from the Markov graph Do

- Pick the next node (seed node) from the Markov graph not yet processed adjacent to the “Start”
state. This seed node is the first node of a new Markov Chain gi

- Perform a depth first traversal of the Markov graph originating from the seed node and add all
traversed nodes to Markov Chain gi that have not been processed yet

- Potentially merge this Markov Chain gi with another already processed Markov Chain gx if
Markov Chain gi has elements in common (same node in the Markov graph) with Markov Chain
gx. When merging, smaller Markov chains get merged into larger ones.

EnDo

77

nodes (not already in the group) that are most connected (have the highest frequency values) to

the seed node. The algorithm in Figure 17 accomplishes a similar goal but instead of relying on

the strength of the connectivity and using an arbitrary value for Ntop, it completely relies on the

existence of connectivity among the nodes to each other ignoring the strength of the connections.

In doing so, algorithm in Figure 17 manages to preserve the integrity of sequences learned

regardless of the number of nodes in the graph and degree of connectivity among these nodes.

Walking Through an Example

In order to get a better idea of how beliefs propagate up the HTM network layers, the rest

of the paper shows what happens during playback of input learned in layer 1 of the HTM as

represented in the Markov graph and Markov chains shown in Figure 16. Input received at layer

1 by the spatial pooler is organized into sequences with the temporal pooler computing

corresponding feed forward beliefs as shown in Table 6.

Sequence Generated Historical Persistence
Feed Forward Belief

λ<g1,g2,g3,g4,g5,g6>

S1,S2,S3,S4 W1234/total # seq in g2 = 1/15= 0.67 λ<0,.67,0,0,0,0>

S1,S2,S5 W125/total # seq in g2 = 1/15= 0.67 λ<0,.67,0,0,0,0>

S1,S3,S6 W136/total # seq in g2 = 2/15= 0.13 λ<0,.13,0,0,0,0>

S1,S3,S6 W136/total # seq in g2 = 2/15= 0.13 λ<0,.13,0,0,0,0>

T1,T2,T3 W123/total # seq in g5 = 1/15= 0.67 λ<0,0,0,0,.67,0>

T1,T3,T5 W135/total # seq in g5 = 1/15= 0.67 λ<0,0,0,0,.67,0>

T6,T5,T7 W657/total # seq in g6 = 1/15= 0.67 λ<0,0,0,0,0,67>

S3,S7,S6,S1 W3761/total # seq in g3 = 1/15= 0.67 λ<0,0,67,0,0,0>

H-L1,H-L2 W12/total # seq in g1 = 2/15= 0.13 λ<.13,0,0,0,0,0>

H-L1 W1/total # seq in g1 = 5/15= 0.33 λ<.33,0,0,0,0,0>

H-L1,H-L3 W13/total # seq in g1 = 1/15= 0.67 λ<.67,0,0,0,0,0>

H-L1 W1/total # seq in g1 = 5/15= 0.33 λ<.33,0,0,0,0,0>

H-L1, H-L2, H-L3 W123/total # seq in g1 = 1/15= 0.67 λ<.67,0,0,0,0,0>

UL1, UL2, UL3, UL4 W1234/total # seq in g4 = 1/15= 0.67 λ<0,0,0,.67,0,0>

S2,S6,S5 W265/total # seq in g2= 1/15= 0.67 λ<0,.67,0,0,0,0>

Table 6 Feed Forward Beliefs generated at Layer 1 during Playback

78

After layer 1 completes initial training, layer 1 starts playback of learned sequences to

layer 2. The spatial pooler at layer 2 maps feed forward beliefs from layer 1 into sequence of

coincidences using the rules previously described to combine input into sequences as shown in

Table 7.

Feed Forward Belief Coincidence Sequences of Coincidences for Layer2

λ<0,.67,0,0,0,0> C1 new coincidence C1

λ<0,.67,0,0,0,0> C1 C1

λ<0,.13,0,0,0,0> C1 C1

λ<0,.13,0,0,0,0> C1

λ<0,0,0,0,.67,0> C2 new coincidence C1, C2

λ<0,0,0,0,.67,0> C2

λ<0,0,0,0,0,67> C3 new coincidence

λ<0,0,67,0,0,0> C4 new coincidence

λ<.4,0,0,0,0,0> C5 new coincidence C2, C3, C4, C5

λ<1,0,0,0,0,0> C5 C5

λ<.2,0,0,0,0,0> C5 C5

λ<1,0,0,0,0,0> C5 C5

λ<.2,0,0,0,0,0> C5

λ<0,0,0,1,0,0> C6 new coincidence

λ<0,.2,0,0,0,0> C1 C5, C6, C1

Table 7 Layer 2 Spatial Pooler conversion of layer 1 temporal groups into layer 2 sequence

of coincidences

Having completed initial learning, layer 2 then would convert the received coincidences

into the Markov Graph and Markov chains as shown below in Figure 18.

79

Figure 18 Layer 2 Markov Graph and Markov Chains

Assuming that initial learning is completed at layer 2, layer 2 starts playback in order to

train layer 3 as shown in Table 8.

Sequence Generated Historical Persistence
Feed Forward Belief

λ<g1,g2,g3>

C1 W1/total # seq in g1 = 4/9= .44 λ<.44,0,0>

C1 W1/total # seq in g1 = 4/9= .44 λ<.44,0,0>

C1 W1/total # seq in g1 = 4/9= .44 λ<.44,0,0>

C1 C2 W12/total # seq in g1 = 1/9= .11 λ<.11,0,0>

C2, C3, C4, C5 W2345/total # seq in g2 = 1/9= .11 λ<0,.11,0>

C5 W5/total # seq in g3= 1/9= .11 λ<0,.11,0>

C5 W5/total # seq in g3= 1/9= .11 λ<0,.11,0>

C5 W5/total # seq in g3= 1/9= .11 λ<0,.11,0>

C5, C6, C1 W561/total # seq in g3 = 1/9= .11 λ<0,0,.11>

Table 8 Feed Forward Beliefs generated at Layer 2 during Playback

80

Finally, the spatial pooler at layer 3 converts feed forward beliefs received from layer 2

into sequence of coincidences using the rules previously described to combine coincidences into

sequences of coincidences as shown in Table 9.

Feed Forward Belief Coincidence Sequences of Coincidences for Layer3

λ<.44,0,0> C1 new coincidence C1

λ<.44,0,0> C1 C1

λ<.44,0,0> C1 C1

λ<.11,0,0> C1

λ<0,.11,0> C2 new coincidence C1, C2

λ<0,.11,0> C2 C2

λ<0,.11,0> C2 C2

λ<0,.11,0> C2

λ<0,0,.11> C3 new coincidence C2, C3

Table 9 Layer 3 Spatial Pooler conversion of layer 2 coincidences into layer 3 sequence of

coincidences

Figure 19 shows how low level user navigational concepts, represented by different navigational

patterns, move up the HTM hierarchy and form higher level navigational concepts.

Figure 19 Creation of higher level navigational concepts at higher levels of the HTM

Figure 20 shows the sequential relationships of higher level (layer 3) navigational patterns for this user.

81

Figure 20 Layer 3 Markov Graph and Markov Chains

Revisiting Markov Chains Accuracy

In Figure 18, consider coincidence node C5 in temporal group g3 and its cloned

equivalent C5’ in temporal group g2, this node should represent the start of sequences belonging

to the same temporal group, g3, but it does not. Single occurrences of C5 will be learned in layer

2 and forwarded to layer 3 as coincidences belonging to temporal group 2 instead of temporal

group 3. This observation leads to the requirement that each node in a Markov graph that follows

the “start” state must be unique. Figure 21 shows the Layer 2 Markov graph and Markov chains

that address the problem.

82

Figure 21 Addressing Layer 2 Markov Chains Ambiguity with node C5

The condition necessary to address this problem is the following:

When a cloned node N’ representing the start of a an input sequence is also adjacent to

the “Start” state (as its equivalent non cloned node) and the out degree of the cloned node N’ is 1,

then the transition to this cloned node N’ must be moved (updating frequency counts for the

transition into and out of both the cloned and non cloned nodes) to the equivalent non cloned

node N in the Markov graph. As a result, the transition with a frequency of 3 from the “start”

state to cloned state C5’ shown in Figure 18, is moved in Figure 21 to non cloned state C5.

Alternative Approaches

83

The objective of this section is to introduce several approaches of which a few were

chosen as a basis of comparison against which the HTM approach was measured. The ability to

recognize ordered sequences of web visits by users is critical in order to accurately attribute past

user communication activity to a specific user. This section explores different techniques used in

sequence data mining by leveraging the research in this area conducted by Sarawagi, S. (2005),

more recent research can also be found in (Xing, Pei & Keogh, 2010). These approaches can be

used with streams of data much like the HTM.

A sequence is an ordered set of elements s = a1, a2, a3, …,an , where each element ai could

be numerical, or categorical as is the case for a fixed size alphabet Σ. The length of a sequence is

not fixed and the order, which can be regular or irregular, is determined by time or position. The

need to analyze sequences is evident in multiple areas of research: sequence of phonemes in

speech recognition, sequence of words and delimiters in language analysis, sequence of strokes

in handwriting, in bioinformatics for gene or protein analysis, in website/ecommerce mining

where work has been done on modeling a customer as a sequence of page visits/items orders and

using that to classify customers or predict the next page to be visited. There are several

operations that can be applied to sequences, from traditional data mining operation like

classification, clustering, and discovery of repeated patterns, to sequence specific operations like

partial sequence classification, segmenting a sequence, and predicting the next symbol of a

sequence.

Sequence classification assumes the existence of a set of classes C and a number of

example sequences in each class. The model is trained so that unseen sequences can be identified

as belonging to a given class. For instance, in intrusion detection, given a sequence of packets,

the model would label a session as an intrusion or as normal. Two key characteristics make

84

sequence classification unique: sequences are of variable lengths and order does matter. Several

traditional classifiers can be adapted to be used with sequences: boundary-based, generative,

distance-based, kernel-based.

Classification methods such as decision trees, neural networks, linear discriminants are

boundary-based classification schemes. These schemes all require data to have a fixed set of

attributes in order to map each instance to a point in a multi-dimensional space. During training

each class is partitioned into a separate region of the multi-dimensional space, then predicting the

class label that the given instance x belongs to entails finding the boundaries of the region that x

belongs to, and mapping it to the associated class determined during training. Several methods

have been used to embed sequences in a fixed dimensional space. In text mining for instance,

sequences of words (terms) are cast as a vector where each term represents a dimension and its

coordinate represents the frequency count (the term and inverse document frequency TF-IDF).

The similarity between any two documents is measured using a cosine similarity measure. While

this approach is quite effective in finding frequently used terms and reducing the discriminative

power of terms that appear frequently in many documents, this approach ignores the order of

sequence elements (Han & Kamber 2006). Another approach leverages a sliding window

technique to map subsets of sequences to a fixed dimensional space. The approach uses a k-

window size to create k dimensions corresponding to k-grams of elements of a sequence. The

number of dimensions is bound by d
k
 where d is the size of the specific domain. This approach

represents an improvement over the vector approach previously described since it is able to keep

the order of the elements in the k-gram. Each k-gram represents a segment of k consecutive

segments and is usually selected as a feature. The sequence is then represented as a vector of the

presence or absence of k-grams or as a vector of the frequencies of k-gram. The sliding window

85

method has been used to classify sequences of system calls as being representative of intrusions

or normal application behavior (Lee & Stolfo, 1998).

Generative classifiers require a generative model of the data for each class since they

assume that sequences in a class are generated by the underlying model. For each class i, the idea

is to train a generative model GMi, to maximize the likelihood over all training instances of

sequences in class i. The prior probability of a class P(ci) is the fraction of training instances of

sequences in class ci. For predicting the class of an instance s of a sequence, one can assume

class conditional independence and use naïve Bayesian classification P(s|ci)*P(ci) for each i and

then select the class i with the largest value of P(s|ci)*P(ci). Generative models differ in how

much importance they place on dependence on specific parts of the sequence (the context).

The simplest generative model is the independent model which assumes that the

probability distribution of an element at position i of a sequence is independent of all elements

before it, that is P(xi | x1,…xn) = P(xi). Given a set of training sequences T, the probability of a

subsequence s ∈ T is estimated as a fraction of the number of occurrences of s in T. In a first

order Markov model the probability of generating the i
th

 element depends on the element

immediately preceding it. Thus the conditional probability P(xi | x1,…xn) = P(xi| xi-1) and during

training, the maximum value of P(si | sx) is estimated as the ratio of sx si occurrences in T over

the occurrences of sx. For higher order Markov models the probability of generating an element

of a sequence at position i depends on a fixed length r of symbols before it. Thus the conditional

probability P(xi | x1,…,xn) = P(xi| xi-r,…., xi-1) and during training the maximum value of

conditional probability P(si | sxr,…., sx1) is estimated as the ratio of sxr,…., sx1 si occurrences in T

over the number of occurrences in sxr,…., sx1. Markov models have been used in a variety of

applications including predicting the user browsing behavior, however since these models do not

86

utilize enough history they do not correctly discriminate different observed patterns. On the other

hand, using higher Markov models has a number of limitations which include high state-space

complexity, reduced coverage (number of different sequences recognized) and often even worse

prediction accuracy (Deshpande & Karypis, 2004).

One way to address the space and accuracy problem of higher order Markov models is to

train different order Markov models and use them all during the inference phase. This approach

was proposed by Pitkow and Pirolli, (1999) for an all-K
th

 Markov model. This approach,

however sacrifices state-space complexity for improved accuracy. The same authors proposed to

identify patterns of frequent access in the form of longest repeating subsequences to produce a

subset of all paths in the model (thus removing low information elements from the model) and

then use this set of sequences for prediction. This approach does reduce the state-space

complexity but also reduces prediction accuracy. Deshpande and Karypis (2004) propose an

approach that has low state complexity, improved prediction while retaining the coverage of an

all-K
th

 order Markov model. These authors propose three approaches that attempt to eliminate

superfluous states, by pruning states of an all-K
th

 order Markov model, while attempting to

maintain overall performance. The authors claim that for many problems they can prune up to

90% of the states of an all-K
th

model with improved accuracy by up to 11%. Their tests show that

as the order of Markov model is increased, accuracy tends to increase in line with space

requirements (number of states) while coverage decreases. These authors also discovered that by

increasing the order of the Markov model the number of states increases which causes the

number of training instances needed to train the model to also increase. The three approaches

proposed by Deshpande and Karypis (2004) all start from a K
th

 order Markov model and

eliminate (prune) many of states in the model that are expected to have low predication

87

accuracy. In the first approach, a support pruned Markov model is proposed where low support

states (with frequency of occurrences below a given threshold) are eliminated without affecting

the overall accuracy and coverage of the model. In the second approach, a confidence pruned

Markov model is proposed where if the probability of the most frequently traversed out-link of a

state is significantly larger than the probability of other out-links emanating from this same state,

then this state is kept, otherwise the state is pruned as it is unlikely to yield high accuracy. The

probability for this approach is computed based on confidence intervals built around the

frequency of state out link traversals. In the third approach, an error pruned Markov model is

proposed which computes the error at each state to support a pruning decision. The approach

runs the model against a known validation set (a data set not used in training) and then computes

errors based on deviations between the results and the known baseline of the validation set.

Variable order Markov (VMM) models attempt to learn probabilistic finite state automata

over a finite alphabet, which can model sequential data of considerable complexity. In contrast to

N-gram Markov models (0 to N order Markov models) that estimate conditional probabilities of

the form P(σ | s) where s is the context (one or more symbols) and σ is the symbol appearing

after the context, Variable order Markov models learn such conditional probabilities where

context lengths |s| vary in response to available statistics in the training data. Thus VMMs allow

capturing of both small and large order Markov dependencies based on observed data (Begleiter,

El-Yaniv & Yona 2004).

There exist a relation between prediction of finite sequences and lossless compression

algorithms where in theory, any lossless compression algorithm can be used for prediction and

vice versa (Feder & Merhav, 1994). The Prediction by Partial Match (PPM) algorithm, originally

developed by Cleary and Witten (1984) and its variant (PPM-C) developed by Moffat, A. (1990)

88

is considered one of the best lossless compression algorithms. The idea of PPM is to use the last

few characters of the input (finite context of K
th

order, where k represents the number of

preceding symbols) to predict the upcoming one. For each K value (K = N to K = -1), K order

probabilities of the occurrence of each symbol are computed. During prediction the algorithm

starts with the highest order K order model probabilities and if the current input symbol cannot

be predicted based on the K
th

 context than the escape probability associated with the K
th

 context

is used and the next input symbol is compared against a lower K context until a match is found

or eventually stopping at the K-1 context. The probability of an escape event in the PPM-C

variant of the algorithm is the proportion of symbols learned for the given K context. The escape

represents the penalty incurred for missed predictions. With this approach it was shown that

continuing to increase the context length can lead to more accurate predictions but also decreases

coverage since there is a greater chance of not giving rise to any prediction at all given that

context lengths are associated with many lower valued escape probabilities.

The desire to model large memories uniformly has motivated the need for variable

memory models where each element of a sequence is assumed to have a variable number of

elements on which it depends. Ron, Singer, and Tishby (1996) have proposed a compact, tree

shaped variant of a probabilistic automata called Probabilistic Suffix Trees which allows storage

of all substrings of a given string in linear space. A suffix tree representing a sequence s, is a

rooted tree where each internal node, other than the root has at least two children and each edge

is labeled with non empty substring of s. A key node property is that no two edges out of a node

can have edge-labels beginning with the same character. A key feature of the suffix tree is that

for any leaf i, the concatenation of the edge labels on the path from the root to the leaf i exactly

89

spells out the suffix of S that starts at position i. The algorithm for building a suffix tree is

simple: As long as there exists more suffixes of a sequence s, add the next shortest suffix to the

tree. The authors tested their algorithm by cleaning corrupt text from the bible and showed that

suffix trees can capture variable context length predictions by using a compact yet accurate

model.

The generative Markov models described so far assume that the probability distribution

of an element i in the sequence depend only on symbols preceding this element. When the

probability distribution of elements in a sequence depends on other factors than a different model

must be used. A Markov model where states do not correspond to observed sequence elements

but are “hidden” addresses this shortcoming. Hidden Markov Models (HMM) define an emission

probability per state that represents the probability of seeing a given element at that state (the

emission probability must equal 1 at each state). Computing the probability of generating a

sequence is more difficult with HMMs than with Markov chains since with Markov chains a

sequence can only be generated through a single path through the states of the model, in contrast,

in HMMs a sequence could be generated from an exponential number of paths. This problem

makes direct computation of the maximum likelihood of generating a training sequence not

feasible, instead HMMs use expectation maximization algorithms like Baum-Welch to estimate

the maximum likelihood values needed to generate training sequences.

Validating the Instrument

The prototype that supports the HTM approach proposed in this paper was implemented

in Java. This prototype implements the functionality outlined in this chapter. The following self-

verification functionality was included in the prototype in order to ensure the reliability of this

instrument for the experiments that were conducted for this study:

90

 Verify the integrity of the connectivity and frequency counts of the Markov graph for

each layer of the HTM.

 Verify the integrity of the Markov Chains by verifying that no nodes are shared among

any two Markov chains for each layer of the HTM.

 Verify that no ambiguous transitions exist in the Markov graph for each layer of the

HTM

 Verify that the clone condition is met for the Markov graphs for each layer of the HTM

 Verify that the sequences learned within the spatial pooler match the sequences

represented by the Markov chains since variable order Markov chains can miss-represent

learned sequences even when using “cloning” techniques

Validating the Approach

 The goal of this study is to recognize a user in the network solely based on prior

observed communication behavior independently of the IP address assigned to the source or the

complex networks that are traversed by the communication traffic. The following parameters

were used to measure this goal: Accuracy and Scalability.

Accuracy was evaluated by:

 Measuring how well the prototype is able to correlate input in the form of

individual web destinations to the appropriate session that the input belongs to

 Measuring how well the prototype is able to match sequences of web destinations

visited by a specific user

91

 Measuring how well the Markov chains in the prototype are able to faithfully

represent input received, no more, no less.

Accuracy scalability was evaluated by:

 Measuring accuracy as the number of users added to the experiment increases

 Measuring accuracy as the number of destinations visited by users increases

Experiments were conducted using first synthetic data representative of real network data

in order to create a baseline of performance, and then real network data was used to further

validate the ability of the prototype to satisfy the goals of this study. Experiments that measure

accuracy scalability results can be found in section “Accuracy Scalability”.

The baseline was created by evaluating two key tasks that are critical for this study:

session identification and user communication behavior attribution. The use of the TCP

timestamp option, as proposed in this paper, was used for session identification as a basis of

comparison against two other techniques:

1. Time window that predefines a default session duration for each user as proposed

in Herrmann et el. (2010). All communication that starts and continues within a

time window of time belongs to a given user.

2. Source IP address tracking as proposed in Kumpošt and Matyáš (2009). Source

identified by the source IP address assigned to this user each time he/she attaches

to a network or each time the address is recycled by the network

The ability to attribute sequences of destinations visited by different users to a given user

was accomplished by comparing the HTM approach to traditional generative classification

92

approaches since these are well understood in the literature and thus represent a good baseline.

The following generative classification approaches were considered as a comparison baseline for

accuracy against the HTM:

 First Order Markov Model

 Third Order Markov Model

 Finite Context Higher Order Markov Models

o All-K
th

Order Markov Model (with K=3) as presented in Pitkow and

Pirolli (1999)

o Prediction by partial match (PPM), using method C algorithm as presented

in Moffat, A. (1990) where K = 3

The Algorithm for the First Order Markov Graph that was used for comparison purposes

against the HTM is shown in Figure 22.

93

Figure 22 First Order Markov Graph Algorithm

Table 10 shows an example of a set of web sessions and the representation of the

transition matrix for a third order Markov graph. As in the first order Markov graph the rows of

matrix “M” represent the K-order context of the graph. The “M” matrix in Table 10 represents

transitions of the form VK1-3 -> VJ4 . The Algorithm for the third order Markov graph that was

used for comparison purposes against the HTM is shown in Figure 23. This algorithm computes the

maximum likelihood value of parameter P(Vi | Vi-k ….. Vi-1) with K=3 as the ratio of Vi-k ….. Vi-1 Vi

occurrences in matrix “M” over the number of Vi-k …..Vi-1 occurrences which are computed by

summing the frequencies in the Vi-k …..Vi-1 row. Note that the sum of the in degree frequencies of

node/set of nodes is the same as the sum of the out degree frequencies of that same node/set of

nodes except when that node is the last on in the input, in which case the out degree frequency

will be one greater than the in degree frequency for that node.

- Given input stream I, a sequence of web destinations represented as integers, visited by userx

- Build a Matrix “M”, initialized with all zeros, where the size of each side is |Σws|

(Σws = domain of all web sites visited by any user) that represents the 1st order Markov Graph for

userx such that M[row, column] represents the transition from web site Vrow to web site Vcolumn;
i.e. Vrow

 Vcolumn

 - During training read the next 2 web sites (Vrow, Vcolumn) from the input stream I and update the
 Markov chain probability P(Vcolumn | Vrow) = Vrow Vcolumn / Vrow for Markov chain entry M[Vrow, Vcolumn]

- During inference compute the path probability of the input that makes up this observation as
follows:

o Path_probability = 1.0
o Read next web sites VK, VJ from input stream
o While there is more input for this observation Do

 If M[VK, VJ] == 0 Then
 Path_probability = Path_probability * PENALTY

Else
 Path_probability = Path_probability * (M[VK, VJ] / SumColumns(VK))
EndIF

 VK = VJ

 Read the next input web site VJ

- Where SumColumns(VK) adds up all the rows at column VK and PENALTY = 1/ (|Σws|*|Σws|)

94

Web Sessions:

{S1,S2,S3,S4,

 S2,S3,S1,S4,

 S4,S3,S1,S2,

 S1,S2,S3,S4,

 S1,S4,S3,S2,

 S3,S2,S4,S1,

 S1,S3,S2,S4}

M[VK1-3, VJ4] S1 S2 S3 S4

S1S2S3 0 0 0 2

S2S3S4 1 1 0 0

S3S4S2 0 0 1 0

S4S2S3 1 0 0 0

S2S3S1 0 0 0 1

S3S1S4 0 0 0 1

S1S4S4 0 0 1 0

S4S4S3 1 0 0 0

S4S3S1 0 1 0 0

S3S1S2 1 0 0 0

S1S2S1 0 1 0 0

S2S1S2 0 0 1 0

S4S1S4 0 0 1 0

S1S4S3 0 1 0 0

S4S3S2 0 0 1 0

S3S2S3 0 1 0 0

S2S3S2 0 0 0 1

S3S2S4 1 0 0 0

S2S4S1 1 0 0 0

S4S1S1 0 0 1 0

S1S1S3 0 1 0 0

S1S3S2 0 0 0 1

Table 10 Example of Transition Matrix M for a Third Order Markov Graph

Figure 24 shows the algorithm for the All-K
th

 Order Markov Graph algorithm with K=3,

which combines different context lengths (1-3) in order to improve accuracy. Figure 27 shows

the implementation of the Prediction by Partial Match (PPM) algorithm which leverages method

“C”. The first and third order Markov models were chosen because they represent well

understood generative classification algorithms for sequence mining and thus provide a good

baseline for comparison purposes with the HTM approach. On the other hand, both the All K
th

95

Order Markov algorithm and the PPM algorithm were chosen because as generative

classification algorithms they provide explicit logic on how to compare input and learned

sequences but also detail what to do in cases of a mismatch. In case of mismatch, both of these

methods seek shorter prefixes (substrings) of the learned sequences to match the input, whereas

the HTM seeks to find the longest common subsequence of learned sequences to match the input.

The longest common subsequence is a more forgiving measure of similarity than using a

substring. It was important to measure the performance accuracy of these algorithms against the

HTM since these algorithms have been successfully used in fields such as data compression and

web mining.

96

Figure 23 Third Order Markov Graph Algorithm

Figure 24 All-K
th

 Order Markov Algorithm, where K = 3

- Given input stream I, a sequence of web destinations represented as integers, visited by userx

- Build a Matrix “M”, initialized with all zeros, where the columns side is |Σws| and the row side

|Σ3ws| (Σws domain of all web sites visited by any user and Σ3ws domain of all 3 consecutive web

sites visited by userx) that represents the 3rd order Markov Graph for userx such that M[row,
column] represents the transition from web sites Vrow 1-3to web site Vcolumn4; i.e. Vrow1-3

 Vcolumn4

 - During training read the next 4 web sites (Vrow1-3, Vcolumn4) from the input stream I and update the
 Markov frequency counts M[Vrow1-3, Vcolumn4]

- During inference compute the path probability (P(Vcolumn4 | Vrow1-3) = Vrow 1-3Vcolumn 4/ Vrow1-3) of the
input that makes up this observation as follows:

o Path_probability = 1.0
o Read next 4 web sites VK1-3 (VK1, VK2, VK3), VJ4 from input stream
o While there is more input for this observation Do
 If M[VK1-3, VJ4] == 0 Then

 Path_probability = Path_probability * PENALTY
Else
 Path_probability = Path_probability * (M[VKk1-3, VJ4] / SumRow(VK1-3))
EndIF

 VK 1-3= Vk2-3 VJ4

 Read the next input web site VJ4

- Where SumRow(VK1-3) adds up row VK1-3 of matrix M
 (see example in Table 10) and PENALTY = 1/ (|Σws|*|Σ3ws|)

- Build a 1st order Markov graph M1 as shown in Figure 22
- Build a 2nd and 3rd order Markov graph M2, M3 as shown in Figure 23
- During training read input and update frequencies in all three Markov graphs (M1, M2, M3)
- During inference try and match input against the following states of each Markov graph from

the highest order (M3) to the lowest order (M1) until a match is found for:
1. M3: VK1-3 (state representing the third order context for this Markov graph)
2. M2: VK1-2 (state representing the second order context for this Markov graph)
3. M1: VK (state representing the first order context for this Markov graph)

- As soon as a match is found for a given state in the Markov graph, compute the path probability
of the input sequence just read based on the logic specific to the order of the matched graph
using Figure 23 if the input matched a state in M2 or M3, otherwise using Figure 22 if the input
matched a state in M1

97

In addition, algorithms operating at a layer 1 of the HTM were compared to algorithms

operating at layers 2 and 3 of the HTM in order to explore the merits of the hierarchical structure

of HTM. Accuracy and scalability were assessed for all experiments conducted against the

baseline.

Scalability in this study represents the ability of the solution to provide consistent levels

of accuracy during training and inference as the number of users increases while keeping

constant the number of destinations and vice versa increasing the number of destinations as the

number of users remains constant. The ability to be accurate and scalable in the solution to the

user attribution problem has been achieved in a very limited fashion by the work of Herrmann, et

al. (2010) who used a set of 28 users from a real world data set. These authors explain that the

rigid time window used to identify sessions belonging to the same user prevents their solution

from scaling to a higher number of users since their approach will erroneously distribute

contiguous requests across two sessions when these sessions cross time boundaries. Yang (2010),

leveraged a maximum of 100 users in her experiments and also acknowledges the limitations of

being able to identify consecutive user sessions being forced to use short periods of user web

activity to track sessions. Banse et al. (2012) are able to scale their solution to much higher

numbers, 2100 concurrent users on average, while still using a fixed time window. Their solution

scales better due to the tracking strength of source IP addresses, not assumed to change within a

fixed time window, assigned to a given user. The authors acknowledge the scalability limitations

of their solution when source IP addresses change often as is the case when a user moves across

mobile networks.

98

In this study, scalability was assessed by increasing the number of users from 5, 20, 50,

100, up to 500 and by increasing the number of web sites from 1000, 5000, up to 10,000 (for

experiment results which measure scalability based on these parameters see the “Results” chapter

with specific emphasis on section “Results of experiments to verify user attribution accuracy

without concept drift using synthetic data”) . The range of the number of users and web sites

utilized was enough to show how accuracy improves, remains constant or deteriorates when both

the number of users and/or web sites increases. Experiments were also conducted with 150, 250,

350 and 450 users as reported in section “Accuracy Scalability”, utilizing the best performing

HTM algorithms at layers 1 and 3, in order to provide even more insight into accuracy scalability

as it specifically pertains to increasing number of users when the number of destinations remains

fixed.

The limit of 500 as the maximum number of users is the result of the challenge that these

experiments encounter in the computer run time and memory needed to complete the training

and inference stages for all experiments since there are seven algorithms supported by the HTM,

plus four alternate approaches, all of which need to be verified against the different combination

of number of users and web sites described above using appropriately sized training and test data

sets.

99

Figure 25 Training Algorithm for Prediction By Partial Match (PPM) using Method C

Figure 26 Training Algorithm for Prediction By Partial Match (PPM) using Method C

-During Training for each context of size K=3 down to K=1 Do
 - J = K

 - Get |K| + 1 input symbols: ij-2ij-1ij ij+1, where 1 ≤ j ≤ N, N = number of symbols in input
- Record K input symbols ij-2ij-1ij into context Ck,j = { ij-2ij-1ij}

 - While there is more input to be read Do
 - Record input symbol ij+1 following the |K| symbols as transaction Ck,j ij+1

 - Update the frequency count FCkj,ij+1for transaction Ck ,j ij+1

 - Update context Ck,j by sliding the context to the right of the input by one symbol
 Ck,j = { ij-1ij ij+1}

- j = j + 1
- Get the next input symbol ij+1

 EnDo
 For each recorded transaction Ck ,j ij+1 Do

 -Add an escape symbol ϵ to the set of symbols following context Ck

 with a frequency count FCk,jϵ = M, where M = Number of symbols
 that follow context Ck,j

-Compute P(ij+1 | Ck,j) = FCkj,ij+1 / ∑
 Ckj,ij+1) + FCk,jϵ

 -Compute P(Ck,jϵ) = FCk,jϵ / ∑
 Ckj,ij+1) + FCk,jϵ

 EnDo
 EnDo
 During training when K=0, Ck = { } and Ck iΣ ,where each iΣ is a unique input symbol in the input Σ
 Alphabet

-Add an escape symbol ϵ to the set of symbols following context Ck

 with a frequency count FCkϵ = M
-Compute FCk,iΣ as the number of times iΣ occurs in the input

 -Compute P(iΣ) = FCk,iΣ /(∑
 Ck,iΣ) + FCkϵ

 -Compute P(Ckϵ) = FCkϵ /(∑
 Ck,iΣ) + FCkϵ

 EnDo

100

Figure 27 Inference Algorithm for Prediction By Partial Match (PPM) using Method C

- Initialization: Match not Found; K = 3; i = 1; J = K; path_probability = 1.0;

 - Get |K| + 1 input symbols: ii..j , ij+1

 - While there is more input to be read Do
 -While Match not Found AND k >= 0 Do

 IF i ≤ j AND input symbols ii..j match any context symbols in Ck

 AND ij+1 matches symbol following Ck,j (Ck,j

 ij+1)
 THEN // Compute the probability of the symbol following matched context

 // When K = 0, P(ij+1 | Ck,j) = P(ij+1)
 path_probability = path_probability * P(ij+1 | Ck,j)
 Match Found

 ELSE IF (i ≤ j AND input symbols ij..i match any context symbols in Ck

 AND ij+1 Does NOT match symbol following Ck,j (Ck,j

 ij+1))
 OR (i > j AND ij+1 Does NOT match symbol following Ck,j (Ck,j

 ij+1))

 THEN
// No match for symbol following context use escape probability
// and match shorter prefix of the context (lower k order context)

path_probability = path_probability * P(Ck,jϵ)
k = k – 1
i = i + 1

ELSE // Input does not match context match a lower K order context
k = k – 1
i = i + 1

 ENDIF
 EnDo

- IF Match not Found
THEN
 // K = -1 , Input did not match any prefix of context or learned single symbol
 path_probability = path_probability * (1/|Σ|)
ENDIF
// Drop leftmost input symbol from input, keeping input size = k and read next symbol

- i = i + 1
- j = j + 1

- Read next input symbol ij+1

EnDo

101

It is important to note that a prediction by partial match (PPM) can also be implemented

by using an All-K algorithm (the implementation chosen for this study) and representing escape

frequencies for each k order context (K > 0) as an additional column in each K Markov graph as

shown in Table 11.

Web Sessions:

{S1,S2,S3,S4,

 S2,S3,S1,S4,

 S4,S3,S1,S2,

 S1,S2,S3,S4,

 S1,S4,S3,S2,

 S3,S2,S4,S1,

 S1,S3,S2,S4}

K=3 Context S1 S2 S3 S4 Esc

S1S2S3 0 0 0 2 1

S2S3S4 1 1 0 0 2

S3S4S2 0 0 1 0 1

S4S2S3 1 0 0 0 1

S2S3S1 0 0 0 1 1

S3S1S4 0 0 0 1 1

S1S4S4 0 0 1 0 1

S4S4S3 1 0 0 0 1

S4S3S1 0 1 0 0 1

S3S1S2 1 0 0 0 1

S1S2S1 0 1 0 0 1

S2S1S2 0 0 1 0 1

S4S1S4 0 0 1 0 1

S1S4S3 0 1 0 0 1

S4S3S2 0 0 1 0 1

S3S2S3 0 1 0 0 1

S2S3S2 0 0 0 1 1

S3S2S4 1 0 0 0 1

S2S4S1 1 0 0 0 1

S4S1S1 0 0 1 0 1

S1S1S3 0 1 0 0 1

S1S3S2 0 0 0 1 1

Table 11 All-K Implementation of PPM

Each escape frequency equals the number of non-zero columns for a given k context. The

escape frequency for a K=0 context equals the number of contexts in a given Markov graph (21

for the Markov graph in Table 11). The SumRow in Figure 23 would also need to be adjusted to

102

account for escape frequencies. Finally, the All-K algorithm which normally represents K > 0

order Markov graphs would now need to also support a K=0 Markov graph.

Generation of Synthetic Data for the Simulation

Training and test data was produced based on two different HTM verification

approaches:

 The HTM was verified against synthetic data that mimics user web visits found in real

world scenarios as shown in Figure 28, using the algorithm presented in Figure 29 and

Figure 30

 The HTM was verified against other approaches as presented in the “Validating the

Approach” section. These approaches, as opposed to the HTM, do not leverage any

timing information. For these tests the same synthetic data generated by the algorithm in

Figure 29 was used to generate input for all these alternate approaches but all timing

information (time stamp and TS values) was removed so that only sequences of

destinations are left to be processed. Training and inference for these alternate

approaches took place based on “observations”. Each observation simulated a user web

session worth of input and consisted of a predetermined number (50) of web sites visited.

During inference all approaches, including the HTM approach, output the specific

inferred user on a per observation basis.

Simulation was performed by using input data that is as representative of real user

network traffic as possible. The input to the HTM prototype has the following form:

Timestamp<TS, Dest>, where:

103

 Generation of the Timestamp input field was accomplished by modeling devices

entering (random distribution arrival times) and leaving (random distribution for

service times) the network.

 Generation of the TCP TS value was accomplished by using a 50/50 ratio of TS

values started at a fixed value (iphones) and random values (android phones).

 Generation of destinations (ranked in order of popularity) visited by all users in the

simulation followed a power law distribution (Zipf)

Figure 28 Synthetic Input Data for User Attribution Simulation

Figure 28 shows the input framework within which the simulation was run. A Java

application was developed separate from the prototype, which produced, for each user, the

synthetic input data as shown in Figure 28. The data simulated devices associated with users

entering the network at random times and initiating multiple communication sessions until the

104

devices are turned off. The table below shows the various random parameters that were used in

the simulation.

Random Simulation

Parameters

Statistical

Distributions

Boundaries of

Distributions

Explanations

Power On Time Random Uniform 0 – 3 hours Simulates users powering on their

devices and entering the network in the

morning hours, between 6:00 AM and

9:00 AM

Intra Session Time

(IRA)

Random Uniform 0 – 5 seconds Time between HTTP requests for a given

user within the same user

communication session. User

communication sessions form clusters of

web destinations visited by a user that

follow each other close in time.

Inter Session Time

(IRT)

Random Uniform 1 – 5 minutes Time between the end of a user

communication session and the

beginning of the next user

communication session for that same

user.

Service Time Random Uniform Power Off Time -

Power On Time

Amount of time a device once powered

on remains on in the network.

Power Off Time Random Uniform 0 – 21 hours Simulates time when users power off

their devices and exit the network.

Web Destinations Zipf 1 – 10,000 web

destinations

Simulates web destinations ranked in

order of importance (1 most visited to

10000 as the least visited) visited by

users.

Number of Web

Destinations per user

session

Random Uniform 1- 10 destination

per session

For each user session a user is allowed

between 1 to 10 web visits chosen at

random.

TCP Timestamp

(TS)

Random Uniform 0 - 2
32

 50 % of devices entering the network

will have a random starting value while

the other 50% will have a fixed starting

value of 0.

Table 12 Simulation Parameters

The input generation application creates an input file for each simulated user where the

number of simulation runs is a configurable parameter of the application and determines the

number of power on/off cycles that each device is allowed for a given simulation.

105

Figure 29 Algorithm to generate synthetic random train input for a single user

The above algorithm creates 5 simulation days’ worth of synthetic data for user Ux. The

simulation code in Figure 29 generates synthetic data for training purposes for both HTM and

Ux_Max-Simulation_Days = 5 // Defines max number of Train or Test days for the simulations

// Create one input file per user Ux in simulation
For Each user Ux in simulation Do

- Generate_Input_For_User(Ux, Ux_Max_Simulation_Days)
EnDo

Generate_Input_For_User(Ux, Ux_Max_Simulation_Days)

TimeStamp = 0
While (Ux_Max_Simulation_Days > 0) Do

DevicePowerOnTime = TimeStamp + Uniform Random(0, 3Hrs)
DevicePowerOffTime = DevicePowerOnTime + Uniform Random(0, 21Hrs)
TS = Generate TCP TimeStamp-TS
TimeStamp = DevicePowerOnTime

 While (TimeStamp < DevicePowerOffTime) Do
 NumberDestinationsPerSessions = Uniform Random(1,10)
 While (NumberDestinationsPerSessions > 0 AND TimeStamp < DevicePowerOffTime) Do

 Dest = Next_ZipfRandom (1000,theta)
 Output TimeStamp<TS,Dest> to Ux file name
 NumberDestinationsPerSessions = NumberDestinationsPerSessions – 1
 IF (NumberDestinationsPerSessions > 0) THEN
 IntraSessionTime-IRA = UniformRandom(0,5secs)
 TimeStamp = IntraSessionTime-IRA

TS = TS + IntraSessionTime
 EndIF
 EnDO
 InterSessionTime-IRT = UniformRandom(1,40mins)
 TimeStamp = InterSessionTime-IRT
 TS = TS + InterSessionTime
 EnDO

 Ux_Max_Simulation_Runs = Ux_Max_Simulation_Runs – 1
 EnDO

106

alternate approaches. Each simulation day contains a random number of user sessions bounded

by random intersession times. Each user session for the HTM is made up of a random number of

input tokens of the form: Timestamp<TS, Dest>. Within a user session, the intra session time

randomly spaces occurrences of the input tokens. Destinations are selected based on the Zipf

distribution, a power law based distribution, with the most popular destinations having the

highest probability of being selected over less popular destinations. Only web destinations are

recorded for alternate approaches since they do not rely on time.

The synthetic data created by the input generator for each user was merged in order to

simulate a real world scenario where many users enter and exit the network concurrently as

shown below.

Figure 30 Algorithm to generate synthetic random input for multiple users

Why do we need to append the file name (Timestamp<TS, Dest> fnameUx) to the input?

The fnameUx is completely ignored by the prototype during all phases of learning and

inference. The fnameUx is used only to validate the accuracy of the HTMUX in recognizing users.

Each time the HTM is fed an input token such as Timestamp<TS, Dest>fnameUx, the HTM

saves the received input in an HTMUX specific output file. After the simulation is run, a scan of

the HTMUX specific output file allows determination of false positives (mistaken users) since all

// Merge user files in timestamp order in to a single file which includes input from all users
// Each user input user file produced by algorithm in Figure 29 is stored in a fnameUx
For Each user file fnameUx in simulation Do
 Read and Save the next time stamped input Timestamp<TS, Dest> from file fnameUx

EnDO

Sort saved time stamped inputs in ascending order of TimeStamp
Output sorted time stamped input Timestamp<TS, Dest> and append to input filename fnameUx

107

input tokens in the HTMUX output file produced by the HTM for user x should contain

Timestamp<TS, Dest>fnameUx where fnameUx is user x. On the other hand, running the diff

utility between fnameUx and the HTMUX files allows identification of false negatives (users that

were missed; i.e. not recognized by the HTMUX).

Test Data needs to be created using a different approach since it must be similar to the

train data but also maintain a certain level of independence from train data. Three methods are

used for generation of synthetic data for the test phase of experiments. All three algorithms walk

a first order Markov chain of learned destinations which were generated by the input generator

based on the algorithm in Figure 29.

 Random Walk –The next destination Vj, for transitions of the form Vi Vj, is chosen

randomly in proportion to the in-degree of the node Vj. That is, in proportion to the

access frequencies of the neighbors (Vj1,… Vjn) of the current node (Vi). If no such

neighbor Vj exists then the walk proceeds with a new node Vi with at least one neighbor,

selected from the learned destinations based on a zipf distribution. Selection of the next

destination Vj is based on the work of Price (1976) who proposed a model of networks

formation that gives rise to power-law degree distributions. Price was interested in the

power law distribution of citation networks. Specifically, his model showed that a newly

appearing paper cites previous ones chosen at random with a probability proportional to

the number of citations that those previous papers already have. This property is critical

in creating a relationship between train data generated for a given user with test data for

that same user. While a relationship must exist between the train and test data sets it must

also maintain a certain level of independence between the two sets which is provided by

the randomness of the selection of already visited nodes. While the Price model has been

108

applied to simulation of networks traversed by many users, in this study this model is

adjusted to simulate web visits by a single user. As a result the emphasis was not placed

exclusively on in-degree or out-degree of network nodes but instead on the frequencies of

edges emanating from or terminating to nodes representing web visits to web sites. The

algorithm is presented below:

o Follow with connectivity probability 1 -

 > r (0 ≤ r ≤ 1) a learned path

proportional to the frequency of the in-degree of web sites along the path.

Otherwise start a new path. r is a random number that follows a uniform

distribution.

o Ci = Sum of traversal frequencies of all edges emanating from Vi (Vi Vj1-n)

o Oi = is the out degree of Vi

As would happen in real life the algorithm favors learned path patterns, but does also

produce variations that simulate "concept drift”.

 Walk Only - Selects Vj randomly in proportion to access frequencies of all of Vi's

neighbors as long as Vi has at least one neighbor. Note that this algorithm minimizes any

concept drift since it always follows a learned path as long as one exists, as opposed to

the Random Walk algorithm that is constrained by the connectivity probability and the

random value of r.

 Context Drift – Selects Vj using the Walk Only algorithm except for 20% of the Vj

destinations that are selected as new ones outside of the learned train set. In addition,

10% of the Vi Vj transitions selected during the walk are new (not existing in the train

set).

109

Figure 31 shows the entire process used to generate synthetic train and test data for

simulations. CSV files are coma delimited files that just record web destinations. They are used

for two purposes. For alternate algorithms, CSV files represent train and test input files. In

addition, CSV files are also used to match the output of the HTM and the output of alternate

algorithms against the original test files generated for each experiment.

Figure 31 Synthetic Data Generation Process

110

Generating Malicious Data for the Experiments

Simulation of malicious data was used in this study to measure how well the HTM can

recognize malicious users reentering the network. Two types of malicious attacks were simulated

for these experiments: Phishing and Denial of Service attacks.

 Phishing attacks were modeled by simulating few malicious phishing web sites dedicated

to download of software that performed the phishing attack, as well as, web sites that

actually carry out the actual phishing attack (e.g. as for a commercial on-line bank). The

simulation data would contain few users that participate in the phishing attack with the

rest of the users being non malicious. A small portion of the non malicious users would

accidently visit the web sites that actually carry out the actual phishing attack.

 DOS attacks were modeled as a small group of users that visit the same site with high

persistence within a short period of time.

The attack data produced for these experiments by a given malicious user or

compromised device was embedded within normal usage data for these users.

Resource Requirements

All experiments that use synthetic data utilized a standard laptop computer for building

the prototype and for building the algorithms to produce the synthetic data. All experiments that

utilize real network data required access to operator network subscriber data via a carrier grade

network traffic collector. The operator used for these experiments is U.S. Cellular and with their

permission the Wireless Network Guardian (manufactured by Alcatel Lucent) traffic collector

was used to collect live traffic data that was used for the experiments.

111

Chapter 4

Results

Results of experiments to verify user attribution accuracy without concept drift using

synthetic data

A main objective of this study is to address the user attribution problem as accurately as

possible in terms of the ability of the HTM to be able to correctly identify sequences of web

destinations visited by users over time. Test results were recorded in terms of recall (number of

correctly matched destinations for this user as a fraction of all possible correct observations for

this user), precision (number of correctly matched destinations as a fraction of all destinations

matched for this user during the experiment) false positives and false negatives. So, if the HTM

matched 80 observations for user-x such that 80 observations for user-x are correctly matched

out of a total of 80 possibly correct observations for this user then recall and precision equal

100%. However, if the HTM matched 100 observations for user-x such that 80 observations for

user-x are correctly matched out of 80 possibly correct observations for this user then recall is

100% but precision is 80%. In this chapter recall is used to report accuracy keeping in mind that

Appendix A through Appendix H contain the rest of the statistics collected (recall, precision, false

positives and false negatives).

Tests were conducted that measured the ability of the HTM and alternative approaches to

scale accuracy by maintaining high levels of recall and precision as the number of users and the

number of destinations increased.

112

Thirty sets of experiments each run with 11 different algorithms, 7 HTM algorithms

(Simple Average, BottomUp, Path Probability for layers 1 and 3 and TopTop for layer 3) and 4

Alternate algorithms (1
st
 and 3

rd
 order Markov chains, All-K with K=3 and Partial Prefix Match)

were conducted as shown in Table 13. Each square in Table 13 represents execution of 11

experiments using synthetic data with parameters based on different combinations of web

destinations (1000, 5000, 10000) and users (5, 20, 50, 100, 500). Synthetic data was generated

for both train and test data sets based on the algorithms described in “Generation of Synthetic

Data for the Simulation”. Train data sets were limited to 5 train days’ worth of data while the test

data set ranged from 1 day worth of test data, to 3 observations (150 web destinations) worth of

test data. Squares with a red cross indicate experiments that were not executed. For a full

description of the results of these experiments see Appendix A. The rest of the discussion in this

section only reports a key subset of the overall results from Appendix A in order to determine

how well the goals of this study were met.

Number
Destinations

5 Users 20 Users 50 Users 100 Users 500 Users

1000 5/1,
Walk_Only,

No CD

5/1,
Walk_Only,

No CD

5/1,
Walk_Only,

No CD

5/1,
Walk_Only,

No CD

3 obs,

Walk_Only,
No CD, HTM
Layer1 only

3 obs,
Walk_Only,
No CD, HTM
Layer1 only

3 obs,
Walk_Only,
No CD, HTM
Layer1 only

3 obs,
Walk_Only,
No CD, HTM
Layer1 only

3 obs, Walk_Only,
No CD, HTM Layer1 only

5000 5/1,
Walk_Only,

No CD

5/1,
Walk_Only,

No CD

5/1,
Walk_Only,

No CD

5/1,
Walk_Only,

No CD

3 obs,

Walk_Only,
No CD, HTM
Layer1 only

3 obs,
Walk_Only,
No CD, HTM
Layer1 only

3 obs,
Walk_Only,
No CD, HTM
Layer1 only

3 obs,
Walk_Only,
No CD, HTM
Layer1 only

3 obs, Walk_Only,
No CD, HTM Layer1 only

10,000 5/1,
Walk_Only,

No CD

5/1,
Walk_Only,

No CD

5/1,
Walk_Only,

No CD

5/1,
Walk_Only,

No CD

113

Number
Destinations

5 Users 20 Users 50 Users 100 Users 500 Users

3 obs,
Walk_Only,
No CD, HTM
Layer1 only

3 obs,
Walk_Only,
No CD, HTM
Layer1 only

3 obs,
Walk_Only,
No CD, HTM
Layer1 only

3 obs,
Walk_Only,
No CD, HTM
Layer1 only

3 obs, Walk_Only,
No CD, HTM Layer1 only

Table 13 Accuracy tests completed using Synthetic data with no concept drift

The experiments results in Figure 32 used synthetic data, (without any concept drift) and

simulated user web visits over time periods of 5 train days and 1 test day for 1000 web

destinations with a range of users from, 5, 20, 50, and 100. For the purpose of the following

discussions only the recall measurement are reported (the rest of the measurements and

experiments can be found in Appendix A) to compare accuracy results.

Figure 32 Experiment 5-100 users, 1000 Destinations, 5 Train Days and 1 Test Day

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average Recall

20 Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average Recall

50 Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average Recall

100 Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average Recall

114

The graph above shows the following:

 Alternate algorithms (1
st
 and 3

rd
 Order Markov Chain, All-K and PPM) perform

very poorly in terms of accuracy compared to HTM algorithms

 Accuracy for alternate algorithms scales poorly as the number of users increases

in the experiment

 HTM algorithms are considerably more accurate than alternate algorithms

 Recall accuracy for HTM algorithms scales better than for alternate algorithms

 Recall accuracy reported by HTM algorithms at layers 1 and 3 is comparable

 HTM algorithms Bottom Up and TopTop perform the best among all HTM

algorithms

 HTM path probability at layer 3 is the least accurate of the HTM algorithms

 Algorithm 3
rd

 Order Markov Chain is the least accurate of the Alternate

algorithms

Consider what happens when the number of web destinations visited increases from

1000, as in the previous experiment, to 5000 and then 10,000 respectively as shown below in

Figure 33 and Figure 34. The accuracy of all HTM algorithms increases in line with scalability,

while no improvement can be seen for the alternate algorithms. Specifically, for 100 users HTM

algorithms Bottom up and TopTop perform in the range from 97% to 99% accuracy a big

improvement when compared with 86% accuracy reported by the same algorithms for

experiments with 1000 destinations.

115

Figure 33 Experiment 5-100 users, 5000 Destinations, 5 Train Days and 1 Test Day

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average Recall

20 Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average Recall

50 Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average Recall

100Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average Recall

116

Figure 34 Experiment 5-100 users, 10,000 Destinations, 5 Train Days and 1 Test Day

Why are the accuracy results for alternate algorithms so poor? Is it possible that these

algorithms were not correctly implemented? To answer these questions it is important to note

that all algorithms used for the experiments were calibrated. That is, each algorithm was trained

with a given data set and then it was fed that same data set as test data. The expected behavior is

that correctly implemented algorithms can recognize their own learned input. For alternate

algorithms Table 14 shows perfect accuracy for all algorithms as a result of calibration using

synthetic input data. Calibration on all HTM algorithms for synthetic data with the same input

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average Recall

20 Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average Recall

50 Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average Recall

100 Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average Recall

117

show similar results (see Appendix H). From these experiments the following can be stated about

the calibration process:

1. A well calibrated algorithm works as intended as is capable of recognizing its own

trained input from other input

2. A well calibrated algorithm will not necessarily perform well when inferring from test

input that differs from the training input

3. In this study, calibration is used to baseline an algorithm as being implemented correctly

with respect to its abilities to appropriately train and infer its own input.

Users Alternate Approaches
% Accuracy

 1
st

 Order Markov
User-1 100%
User-2 100%
User-3 100%
User-4 100%
User-5 100%
 3

rd
 Order Markov

User-1 100%
User-2 100%
User-3 100%
User-4 100%
User-5 100%

 All K Order Markov (K=3)
User-1 100%
User-2 100%
User-3 100%
User-4 100%
User-5 100%

 PPM
User-1 100%
User-2 100%
User-3 100%
User-4 100%
User-5 100%

Table 14 Alternate Algorithms Calibration results for 5 users, 5 Train Days and 2 Test days

118

The accuracy reported for HTM algorithms in these experiments is quite high, is it

possible that the synthetic train and test data sets created by the input generator are very similar

to each other and would thus allow the HTM algorithms to perform at very high levels of

accuracy?

All synthetic input generated always reports the following similarity statistics, derived

from the work of Kumar, Krishna, and Raju (2010), between train and test data sets generated

based on all observations processed.

Sequence Similarity =

∑

⁄

Substring Similarity =

∑

⁄

Set Similarity =

Total Similarity = (.33) Sequence Similarity + (.33) Substring Similarity + (.33) Set Similarity

LCSL is the length of the longest common subsequence between train and test

observations, whereas LCSSL is the length of the longest common substring between train and

test observations. As can be seen from Figure 35 overall similarity between train and test

synthetic data sets is 50% with set similarity (observations in train and test data sets containing

the same destinations but not in the same order) being as high as 83%. Sequence and substring

similarity measure how alike sequences of destinations are between train and test data sets. The

119

real network data measurements (line in red in Figure 35) for an equivalent data set (5 users, 5

train days, and 1 test days) collected from a real network show that synthetic data similarity

measurements are in line with real data but show less similarity than real data between train and

test sets.

Figure 35 Similarity Stats for synthetic data for 5 users, 5 Train Days and 1 Test Day

These results indicate that synthetic test data is relevant enough to the train data set while

maintaining enough independence from the test data set to support realistic experiments.

The next set of experiments uses synthetic data but extends the number of users to 500

and limits the number of observations (each containing 50 destinations) in the test data set to 3.

The reason for limiting the test data set to only three observations was due to two key reasons:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overall Similarity Sequence Similarity SubString Similarity Set Similarity

Synthetic Data

Real Data

120

1. In security scenarios user attribution needs to be performed as quickly as possible, using

as few observations as possible. This is different from the previous experiment where an

entire day worth of observations was used for the test data set.

2. The time to complete experiments using the HTM increases dramatically (as high a 5 and

a half hours for a single HTM algorithm run) as the number of user reaches 500.

Figure 36 shows the results of running the experiment with 3 test observations with 1000

destinations. While accuracy continues to be better for the HTM versus alternate algorithms, the

overall HTM accuracy is poor especially for 500 users. These tests also show that the HTM does

not scale well moving from 100 to 500 users.

Figure 36 Experiments for 5 Train days, 3 Observations for test data, 1000 destinations

Figure 37 shows the same experiments but this time the number of destinations in the

train and test data sets is increased from 1000 to 5000. These results are quite different from the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

20 Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

50 Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

100 Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

500 Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

121

previous results using 1000 destinations and are more in line with the results obtained for the

experiments using a 1 day worth of test data observations with 5000 destinations. HTM

algorithm Bottom up and TopTop continue to outperform all other algorithms. HTM algorithms

scale well even for 500 users with accuracy as high as 99% for the TopTop algorithm. Alternate

algorithms continue to underperform HTM algorithms.

Figure 37 Experiments for 5 Train days, 3 Observations for test data, 5000 destinations

Figure 39 shows the results of further extending the number of web destinations allowed

in the train and test data sets to 10000. The same conclusions can be drawn for these results as

for the previous ones with experiments conducted using 5000 destinations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

20 Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

50 Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

100 Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

500 Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

122

While HTM algorithms are more accurate, they take longer to provide results than the

alternate algorithms. Why? The HTM performs an exhaustive search of all Markov chains when

presented with an input and finds the best matching longest common subsequence and substring

that was observed most often during training. In contrast all alternate algorithms are based on

extensions of a 1
st
 order Markov graph which matches the input completely based on the on the

very first destination in the sequence. Alternate approaches find this first destination in constant

time and then match the rest of the input from that point in the graph onward. The accuracy

superiority of HTM algorithms is due to the extensive search across all Markov graphs learned

during train time at each layer of the HTM which allows HTM algorithms to find the best match

for the input in contrast to the alternate algorithms which only search a very small subset of the

train data set resulting in a lot of mismatches.

Figure 38 PPM Matches and Miss Matches per K-Order = 3

Figure 38 shows the PPM statistics for the experiment run in Figure 37. The percentage

of hits and misses were computed for all k orders across all users. The PPM algorithm starts at

0

10

20

30

40

50

60

70

80

90

100

K_Order = 0 K_Order = 1 K_Order = 2 K_Order = 3

%Hits

%Misses

123

the highest k order (k=3) and each time the context (input) of size k of the input is not matched

the algorithm scales down to a lower k order (matches a shorter portion of the input). Figure 38

shows that the PPM algorithm operates at k order = 0 about 80% of the time. This means that

80% of the time the PPM algorithm fails to match its input, applies a penalty to the path

probability for the input and moves down to a lower k order Markov graph until it reaches k

order = 0. This explains the poor performance of PPM and other higher K order algorithms (3
rd

Order MC, All-K).

Alternate algorithms have much better run times since discovery of the start of the input

sequence is determined in constant time and matching of the sequence occurs in time

proportional to the size of the input. HTM algorithms on the other hand have search run times

that are proportional to the size of the entire input learned at training time as well as the size of

the input sequence.

124

Figure 39 Experiments for 5 Train days, 3 Observations for test data, 10,000 destinations

Accuracy Scalability

Accuracy scalability, in this study, represents the ability of the solution to provide

consistent levels of accuracy during training and inference when the number of users increases

while keeping constant the number of destinations and vice versa increasing the number of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

20Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

50Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

100Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

500Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Recall

125

destinations as the number of users remains constant. It is important to distinguish accuracy

scalability from run time performance scalability which instead deals with how well the solution

manages computing resources (CPU and Memory utilization) to accomplish its task.

The experiments in the previous section report substantial accuracy improvements when

the number of visited web destinations rises from 1000 to 5000. Further increasing the number of

visited web destinations from 5000 to 10,000 brings only marginal accuracy improvements.

Many experiments were run to support this conclusion (see Table 13).

A separate set of experiments was also conducted and reported in this section to explore

more in depth the explicit accuracy scalability of the HTM from a user point of view. In order to

address the gap in number of users from Table 13 between 100 and 500 users, experiments were

run utilizing synthetic data which tested only the two best performing algorithms for each layer

of the HTM: BottomUp Layer 1 and TopTop layer3. These experiments were run with 5000 web

destinations using 5 days of training and 3 test observations for the following number of users:

150, 250, 350 and 450.

Figure 40 shows that overall accuracy, measured in terms of recall and precision, is good

with accuracy values remaining at or above 95% as the number of user increases up to 500 users.

The HTM TopTop layer3 algorithm provides the most consistent accuracy performance with

values of 99% for both recall and precision as the number of users under test increases.

126

Figure 40 Accuracy Scalability 150 to 500 users using synthetic data

Figure 41 shows a different way to look at accuracy scalability by measuring the

percentage change in recall and precision results when the number of users increases. When the

number of users increases from 11% to 67%, the overall recall and precision percentage change

values never go above 1.5%. Positive recall and precision percentage change values indicate a

loss of accuracy when the number of users increases, while a negative recall and precision

percentage change value indicates a gain of accuracy as the number of users increases. These

results confirm that when measured against synthetic data, HTM accuracy performance for users

scales well.

0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

A
cc

u
ra

cy

Accuracy Scalability for Users

HTM-BottomUp-L1

HTM-TopTop-L3

127

Figure 41 Recall and Precision percentage changes for accuracy scalability measurements

Results of experiments to verify user attribution accuracy with concept drift

The next set of experiments tries to measure how accuracy for the HTM and alternate

algorithms is impacted by potential changes in the behavior of the user over time (concept drift).

These changes are reflected in the synthetic data set and take one of two forms:

 Random Walk where the next destination Vj, for transitions of the form Vi Vj, is

chosen randomly in proportion to the in-degree of the current node Vj. Details for this

algorithm can be found in section “Generation of Synthetic Data for the Simulation”.

 Context Drift in the form of either 20% new connections to already existing learned

nodes or 10% new connections to new nodes not learned before.

Table 15 shows all 8 sets of experiments that were conducted using synthetic data with

different forms of concept drift. The experiments were run against both HTM and alternate

-1

-0.5

0

0.5

1

1.5

2

HTM-BottomUp-L1
(%Δ) Recall

HTM-TopTop-L3 (%Δ)
Recall

HTM-BottomUp-L1
(%Δ) Precision

HTM-TopTop-L3 (%Δ)
Precision

%
 C

h
an

ge

Recall & Precision Percentage Changes

11%Δ (450-500)

28%Δ (350-450)

40%Δ (250-450)

67%Δ (150-250)

128

algorithms so that each square in Table 15 represents 11 experiments. For these experiments the

number of users and the number of destinations remained constant with the following parameters

changing:

 Train Days: 5, 10, 15, 20 and Test Days: 2, 3, 4, 5

 Level of concept drift: None=Walk Only, Concept drift via: Random Walk, New

Connectivity (20%) and New nodes (10%)

Number
Destinations/

Number of
users

5 Training Days/2 test
Days

10 Training Days/3 test
Days

15 Training Days/4
test Days

20 Training Days/5 test Days

1000/5
(Baseline)

Walk_Only,
No CD

Walk_Only,
No CD

Walk_Only,
No CD

Walk_Only,
No CD

1000/5 Random Walk,
No CD

Random Walk,
No CD

Random Walk,
No CD

Random Walk,
No CD

1000/5 Walk_Only, 20%
Connectivity,10% New

Nodes

Walk_Only, 20%
Connectivity,10% New

Nodes

Walk_Only, 20%
Connectivity,10%

New Nodes

Walk_Only, 20%
Connectivity,10% New Nodes

Table 15 Accuracy tests completed using Synthetic data with concept drift

The results all experiments shown in Table 15 are reported in Appendix B. The rest of the

discussion in this section only reports a key subset of the overall results from Appendix B in order

to determine how well the goals of this study were met.

Figure 42 shows the impact of applying the random walk and concept drift algorithms to

a base line implemented using the walk only algorithm for 1000 destinations, 5 users with 5 days

of training and 2 days’ worth of test data.

129

Figure 42 5 Users, 5 Train Days, 2 Test days using concept drift

The random walk algorithm applied to synthetic data impacts accuracy the most for HTM

algorithms but not as much for alternate algorithms. Figure 43 represents the same data set used

in Figure 42 and shows the difference from the base line for both random walk and concept drift

algorithms. The further away from the zero baseline recall readings fall, the more that algorithm

implementing a form of concept drift impacts the accuracy of the HTM. Appendix B shows the

rest of the graphs and tables for different number of train and test days.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=5,Test=2, Walk Only, No
CD, Average Recall

5Users-1000Dest
Train=5,Test=2,CD=None,Rando
m Walk, Average Recall

5Users-1000Dest
Train=5,Test=2, Walk Only,
CD=20% conectivity,10%New
nodes, Average
Recall

130

Figure 43 Difference in recall from the baseline of the “Walk Only” HTM Algorithm

The higher negative impact of the random walk algorithm might not be an obvious result,

but it makes sense once one understands that an important property of the random walk

algorithm is that it tends to terminate existing sequences and start new sequences any time the

connectivity probability of the current node Vi does not exceed a random uniformly distributed

value r. Connectivity probability represents the strength of connectivity of node Vi (measured

based on frequency of access to other neighbor nodes) proportional to the number of connections

emanating from node Vi . The concept drift algorithm on the other hand tends to add new

connections or new nodes to existing sequences and does not split them. This means that the

concept drift algorithm as run for these experiments preserves 80-90% of first part of a sequence,

modifying the last 10-20%. The random walk algorithm starts new sequences where the first

element of the new sequence is not selected from the trained data set but from a zipf distribution.

This condition occurs more for nodes that are visited less often during the training session. The

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

5Users-1000Dest
Train=5,Test=2,CD=None,Rando
m Walk, Recall
Difference from baseline

5Users-1000Dest
Train=5,Test=2, Walk Only,
CD=20% conectivity,10%New
nodes, Difference from baseline
Recall

131

results of experiments conducted for different train and test day combinations (shown in

Appendix B) show similar results.

Results of experiments using real network data from a cellular data network

The next set of experiments used real network data collected from a CDMA cellular data

network in North America over a period of approximately a month from 12-17-2012 to 1-18-

2013. The data collected includes real timestamps and real destinations. TCP timestamps were

not collected since they were not included in the retrieved traces and instead they were

synthetically generated to support the HTM training phase of the experiments. Experiments were

conducted against the HTM using the following parameters in order to provide a basis of

comparison with experiments conducted with synthetic data: 5 and 10 users, 5000 destinations, 5

train days and 1 test day, 5 train days and 2 test days, 10 train days and 3 test days. The actual

number of different web destinations visited by all users over the month was about 5200.

Figure 44 shows the results of the experiment using real network data for 5 users, 5 train

days and 1 test day. As can be seen the HTM algorithms performed poorly when using real

network train and test data compared to equivalent synthetic data.

132

Figure 44 Real Data HTM1, 5000 destinations, 5 users, Train 5 days, Test Days = 1,

Average Recall

When the HTM prototype was calibrated using real network data, as shown in Table 16,

it was discovered that not only the calibration was no longer perfect (100% as was the case for

synthetic data) but for some HTM algorithm the accuracy was extremely low.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM1 Real Data, 5 Users-5000
Dest Train=5,Test=1 Average
Recall

HTM1 Synthetic Data, 5 Users-
5000 Dest Train=5,Test=1,
Average Recall

133

Users Layer 1 HTM Algorithms
% Accuracy

Layer 3 HTM
Algorithm
% Accuracy

 Simple Average Simple Average
User-1 100% 100%
User-2 99% (1 error) 99% (1 error)
User-3 100% 100%
User-4 100% 100%
User-5 100% 100%
 Average Bottom Up Average Bottom Up
User-1 78% (48 errors) 79% (46 errors)
User-2 82% (53 errors) 85% (44 errors)
User-3 81% (22 errors) 81% (21 errors)
User-4 74% (38 errors) 76% (35 errors)
User-5 71% (4 errors) 79% (3 errors)
 Average Top-Top
User-1 100%
User-2 99% (1 error)
User-3 100%
User-4 100%
User-5 100%
 Path Probability Path Probability
User-1 6% (206 errors) 4% (215 errors)
User-2 27% (221 errors) 22% (236 errors)
User-3 61% (44 errors) 57% (48 errors)
User-4 41% (86 errors) 32% (100 errors)
User-5 36% (9 errors) 36% (9 errors)

Table 16 HTM1 Calibration results with Real Network Data for 5 users, 5 Train Days and

2 Test days

Why is the HTM performing so poorly with real network data?

Visual observation of both train and test real network data showed a high recurrence of

repeating patterns of a single destination as in: 48 48 48 48 48 48 48. This can be attributed to

two main reasons:

1. Multiple visits to the same web sites occur with the same time stamp. This occurs when

an individual user’s web page retrieves multiple images from the same visited web site

2. Multiple visits to the same web sites occur with different time stamps showing that

indeed users tend to visit the same web site repeatedly

134

This repeated continuous pattern is not handled well by the HTM. This is because the

HTM breaks up repetitive patterns. So pattern, 1,2,3 1,2,3 1,2,3 is sees as pattern 1,2,3 occurring

3 times (which is good), but sequence 2,2,2,2,2,2,2,2 is seen as a single destination 2 visited 8

times. This means that a user who seldom visits destination 2 and another who visits it in a

sequence will produce analogous similarity statistics since for a single repeating continuous

destination, the HTM does not see a sequence of destinations but only a single element.

How did calibration of alternate algorithms perform with real network data?

Table 17 shows the results of calibration test runs for all alternate algorithms. The results

of calibrations of alternate algorithms are better than equivalent results using the same data set

for HTM algorithms.

Users Alternate Approaches
% Accuracy

 1
st

 Order Markov
User-1 100%
User-2 99% (1 error)
User-3 100%
User-4 100%
User-5
 3

rd
 Order Markov

User-1 100%
User-2 100%
User-3 100%
User-4 100%
User-5 100%

 All K Order Markov (K=3)
User-1 100%
User-2 99% (1 error)
User-3 99% (1 error)
User-4 100%
User-5 100%

 PPM
User-1 100%
User-2 99% (1 error)
User-3 100%
User-4 100%
User-5

Table 17 Calibration results for Alternate Approaches using real network data for 5 users,

5 Train Days and 2 Test days

135

It is important to note that the performance of alternate algorithms continued to be poor

against real network data in a non-calibration scenarios with a train data set of 5 days and a test

data set of 2 days, as shown in Figure 45. This leads to another observation regarding the

calibration process. Good calibration results, while important to qualify algorithms for

experiments, do not necessarily guarantee good results with test data that differs from the train

data set.

Figure 45 HTM1 Real Network Data comparison with Alternate Algorithms

The original HTM (HTM1) was modified into a new version HTM2 which accounted for

multiple repeated destinations at layer 1. HTM2 was calibrated and reported the accuracy shown

in Table 18. The accuracy reported is still below the 100% level of performance achieved with

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5Users-5000Dest Train=5,Test=2, Average
Recall

5Users-5000Dest
Train=5,Test=2, Average
Recall

136

synthetic data but performance improved from the previous calibration results for bottom up and

path probability algorithms.

Users Layer 1 HTM Algorithms
% Accuracy

Layer 3 HTM
Algorithm

% Accuracy

 Simple Average Simple Average
User-1 100% 100%
User-2 99% (1 error) 100%
User-3 100% 99% (1 error)
User-4 100% 100%
User-5 100% 100%

 Average Bottom Up Average Bottom Up
User-1 99% (1 error) 99% (1 error)
User-2 99% (1 error) 99% (1 error)
User-3 98% (2 errors) 98% (2 errors)
User-4 100% 100%
User-5 100% 100%

 Average Top-Top
User-1 100%
User-2 99% (1 error)
User-3 100%
User-4 100%
User-5 100%

 Path Probability Path Probability
User-1 100% 93% (14 errors)
User-2 99% (3 errors) 96% (12 errors)
User-3 100% 99% (1 error)

User-4 100% 97% (4 errors)
User-5 100% 100%

Table 18 HTM2 Calibration results with Real Network Data for 5 users, 5 Train Days and

2 Test days

Figure 46 shows the results of running HTM2 against the original synthetic data set

(baseline) and the real network data sets. The performance of HTM2 improved over the previous

version HTM1 for all algorithms, yet it still lags behind the performance of the baseline synthetic

data.

137

Figure 46 Real Data HTM2, 5000 destinations, 5 users, Train 5 days, Test days = 1,

Average Recall

The repetitiveness of the certain destinations within observations was believed to impact

the performance accuracy of the HTM. In order to better understand how this property of real

network data impacts the experiments, an intra-observation repetitiveness statistic (see Appendix

C for the MATLAB script) was created and applied to the real network data set for 5 users, 5

train days and 2 test days. Intra-observation repetitiveness statistic measures uniqueness of

destinations within an observation. For instance, a 75% value for this statistic given input [3 3 3

3] means that three in four destination in the input repeat. If the input was [1 1 2 2 3] then intra-

observation repetitiveness would be 40% or two in five observations repeat. Figure 47 shows that

intra-observation repetitiveness is very high for train real network data and high for test real

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM2 Baseline, 5Users-
5000Dest Train=5,Test=1
Average Recall

HTM1 5Users-5000Dest
Train=5,Test=1 Average
Recall

HTM2 5Users-
5000Dest Train=5,Test=1
Average Recall

138

network. For synthetic data intra-observation repetitiveness is fairly high for the train data set but

low for the test data set.

Figure 47 Intra Observation Repetitiveness statistics for real network data

In order to gain more insight into the intra observation repetitiveness results the third

observation for user 3 from the real test dataset was extracted and is shown below:

48,52,48,48,48,4

8,48,48,48,48,48,48,48,48,48,48,48,48,48,499,48,48

The intra-observation repetitiveness for this observation is 94 % with 47 repeating

destinations out of 50. If indeed the high level of repeated destinations within observations in the

data sets contributes to lower accuracy performance then reducing it should provide measurable

improvements. The next set of experiments, were designed to address this question by reducing

repeated destinations within observations and removing from the real network datasets any

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Intra Observation Repetitiviness
Train Data

Intra Observation Repetitiviness
Test Data

139

repeated destinations that occurred at the exact same time, as measured in the real network data

by the value of time stamps. This change does not impact the validity of the results since what is

being removed from the data set includes repeated retrievals of objects like pictures belonging to

a given web page. The reduction was applied to all train and test data files and accounted for a

total reduction in repeated destinations of about 35%. Figure 48 shows the results running the

HTM algorithm for 5 users, 5 train days 1 test day over a real network data set with reduced

repeated destinations. The results show a definite improvement (HTM2++ represents the HTM

runs where destination repetitiveness was reduced) but the results are still below the accuracy

results of the synthetic baseline.

Figure 48 Accuracy comparisons of all HTM versions including removal of same time

destinations 1 Test day

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM2 Baseline, 5Users-
5000Dest Train=5,Test=1
Average Recall

HTM1 5Users-5000Dest
Train=5,Test=1 Average
Recall

HTM2 5Users-
5000Dest Train=5,Test=1
Average Recall

HTM2++ 5Users-
5000Dest Train=5,Test=1
Average Recall

140

In order better understand the impact of the 35% repetitiveness reduction impact, the

experiment was run again against 5 users, 5 train days and this time 2 test days. Figure 49 shows

that while an improvement is achieved (see HTM2++) over not applying the 35% reduction,

results do not go above 90% accuracy.

Figure 49 Accuracy comparisons of all HTM versions including removal of same time

destinations 2 Test days

How did this 35% reduction in repeated destinations impact the composition of train and test

data sets?

Consider the same third observation for user 3 extracted from the real test data set:

48,48,48,48,48,48,48,48,499,48,48,48,48,48,48,48,48,48,149,48,48,48,48,48,48,48,48,48,48,48,48,48,48

,48,48,48,149,48,48,48,48,48,48,48,48,48,48,48,48,76

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM2 Baseline 5Users-
5000Dest Train=5,Test=2,
Average Recall

HTM1 5Users-5000Dest
Train=5,Test=2 Average
Recall

HTM2 5Users-
5000Dest Train=5,Test=2
Average Recall

HTM2++ 5Users-
5000Dest Train=5,Test=2
Average Recall

141

As shown, the observation composition of repeated web destinations was only very

slightly reduced thus accounting for the improved accuracy reported by the HTM (HTM2++).

The measure of inter observation repetitiveness was also implemented (see Appendix D for the

MATLAB algorithm) to measure repetitiveness across observations. Figure 50 shows both intra

and inter observation repetitiveness for synthetic, real network data and real network data filtered

for repeated destinations within the same timestamp value. The metrics reported in this graph are

averages across 5 users, with data sets of 5 train days and 2 test days. Figure 50 brings to bear an

interesting inverse relationship between intra and inter observation repetitiveness, such that intra

observation repetitiveness is highest for real network data and lowest for synthetic data. On the

other hand, inter observation repetitiveness is highest for synthetic data and lowest for real

network data, albeit the difference for inter observation repetitiveness between synthetic and real

data is smaller than the difference for intra observation repetitiveness between the same data sets.

Figure 50 Comparison of Inter and Intra repetitiveness statistics for 5 users

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Intra
Observation

Repetitiviness
Train Data

Intra
Observation

Repetitiviness
Test Data

Inter
Observation

Repetitiviness
Train Data

Inter
Observation

Repetitiviness
Test Data

Synthetic Data

Real Data

Real Data No same time
repeating destinations

142

Figure 51 and Figure 52 show accuracy results after running HTM2 on data sets with

reduced repeated same time destinations. The experiments were conducted for 5 and 10 users

respectively over 5 training days and 1, 2 3 test days. Accuracy performance worsens as the

number of users increases from 5 to 10. Improving HTM accuracy performance for real network

data that displays such extreme levels of intra observation repetitiveness is a very important topic

for further study.

Figure 51 HTM2++ accuracy performance with real network data for 5 Users for 1, 2, 3

test days

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM2++ 5Users-5000Dest
Train=5,Test=1 Average
Recall

HTM2++ 5Users-5000Dest
Train=5,Test=2 Average Recall

HTM2++ 5Users-5000Dest
Train=10,Test=3 Average
Recall

143

Figure 52 HTM2++ accuracy performance with real network data for 10 Users for 1, 2, 3

test days

For a complete set of statistics on HTM2 experiments using real network data see Appendix G.

Results of experiments simulating DOS Attacks

Another set of experiments run against the HTM was conducted by simulating denial of

service attacks where the attack is initiated from individual devices during the test phase to a

number of destinations (5, 10, 20) learned at train time. The destinations are attacked repeatedly

over time (within a time interval of 5, 10, 20 ms and spaced by a fixed time interval of 5 ms).

The idea is to determine how well the HTM can continue to identify users before and after the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM2++ 10Users-
5000Dest Train=5,Test=1
Average Recall

HTM2++ 10Users-
5000Dest Train=5,Test=2
Average Recall

HTM2++ 10Users-
5000Dest Train=10,Test=3
Average Recall

144

attack. In these experiments 10 users are used and 4 of them are assumed to be infected and start

DOS attacks during the test phase. Table 19 shows all DOS attack experiments run against

HTM2 (HTM version2) algorithms with all results reported in Appendix E.

Number
Users/Number
infected/Data

Source

Number
Destinations/Unit of
time, Repeats every

Number
Destinations/Unit of
time, Repeats every

Number Destinations/Unit of time,
Repeats every

10/4/Synthetic

5/5ms,5ms 10/10ms,5ms 20/20ms,5ms

10/4/Real
Network

5/5ms,5ms 10/10ms,5ms 20/20ms,5ms

Table 19 Accuracy tests which simulated DOS attacks

Figure 53 shows the difference in accuracy between the recall values after and before an

attack. A negative difference between the two values indicates that the HTM2 recall decreased

by that value after the attack. As expected most recall differences values are negative with the

difference value increasing as the number of destinations attacked increases. The BottomUp and

TopTop HTM algorithm are the least impacted by the DOS attacks while continuing to

outperform other algorithms (see Appendix E for more statistics on DOS attacks). Also note that

while path probability is not as impacted by the DOS attacks, its performance continues to be the

worst among the HTM algorithms (see Appendix E).

145

Figure 53 DOS Attack using Synthetic data against 10 users with 4 infected users

The same DOS attack experiment was also conducted with real network data as shown in

Figure 54. HTM (V2) algorithms are minimally impacted (about 8%) by DOS attacks with the

exception of the path probability algorithm at layer 3. In the experiments run with synthetic data

(Figure 53) the maximum impact of DOS attacks did not exceed 11%.

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

After - Before DOS Attack 5-5-5
Average Recall

After - Before DOS Attack 10-
10-5 Average Recall

After - Before DOS Attack 20-
20-5 Average Recall

146

Figure 54 DOS Attack using real network data against 10 users with 4 infected users

Results of experiments simulating Phish Attacks

Another set of experiments simulates phishing attacks. For these experiments attacks are

initiated from individual devices during the test phase where unique destinations (1, 3, 5) are

randomly selected from outside the device training data set (to simulate access to never visited

before web phish sites) and attacked within a time interval (1ms, 3ms, 5ms) spaced by a random

time intervals [1 minute – 1 hour]. Table 20 shows all Phish attack experiments run against

HTM2 algorithms with all results reported in Appendix E.

-0.25

-0.2

-0.15

-0.1

-0.05

0

After - Before DOS Attack 5-5-5
Average Recall

After - Before DOS Attack 10-
10-5 Average Recall

After - Before DOS Attack 20-
20-5 Average Recall

147

Number
Users/Number
infected/Data

Source

Number
Destinations/Unit of
time, Repeats every

Number Destinations/Unit
of time, Repeats every

Number Destinations/Unit of time,
Repeats every

10/4/Synthetic

1/1ms,[1min – 1
hour]

3/3ms, [1min – 1 hour] 5/5ms ,[1min – 1 hour]

10/4/Real
Network

1/1ms,[1min – 1
hour]

3/3ms, [1min – 1 hour] 5/5ms,[1min – 1 hour]

Table 20 Accuracy tests which simulated Phish attacks

Figure 55 and Figure 56 both show that the accuracy of HTM (V2) is minimally impacted

by Phish attacks, even less than for DOS attacks since accuracy drops by no more than 5% after

these attacks.

Figure 55 Phish Attack using Synthetic data against 10 users with 4 infected users

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

After - Before Attack,
1BadDests,intra=1ms ,inter=
[1min-1hr], Average
Recall

After - Before Attack
3BadDests,intra=3ms ,inter
[1min-1hr], Average
Recall

After - Before Attack
5BadDests,intra=5ms ,inter
[1min-1hr], Average
Recall

148

Figure 56 Phish Attack using real network data against 10 users with 4 infected users

Results of experiments for Session Identification Algorithms

The last set of experiments for this study attempts to evaluate the effectiveness of the

TPC Timestamp algorithm as a session identification technique. This approach is compared to

two other session identification approaches; one leveraging the source IP address and the other

leveraging a sliding time window to identify sessions belonging to a specific user.

For this research, the TCP timestamp was the session identification algorithm used during

the training phase, during the test phase the session identification algorithm was not used and

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

After - Before Attack,
1BadDests,intra=1ms ,inter=
[1min-1hr], Average
Recall

After - Before Attack
3BadDests,intra=3ms ,inter
[1min-1hr], Average
Recall

After - Before Attack
5BadDests,intra=5ms ,inter
[1min-1hr], Average
Recall

149

instead inference relied entirely on the variable Markov graphs/chains at each layer of the HTM

leveraging different HTM algorithms to combine degree of membership results across

observations. The idea of these experiments is to determine how much different session

identification approaches applied during HTM training impact the ability of the HTM to infer

accurately (when used under conditions that emulate real life scenarios specific to each session

identification algorithm).

Session Identification experiments were performed by creating training data sets for the

HTM that use one of three session identification algorithms: (1) Source IP, (2) Sliding Window,

(3) TCP Timestamp. The train data set to be modified by the session identification algorithms is

based on real network data. The experiments include a preliminary step which runs the session

identification algorithms against real network data to produce a train data set that is altered based

on the bias introduce by each session identification algorithm. The experiment would then train

the HTM with this altered train data set and use the original real network data as the test data set.

The session identification algorithms are:

 Source IP: All input with the same source IP address belongs to the same user

 Sliding Time Window: Select the first (oldest) HTTP request in a time window based

on the source IP address and assign it to user-x, then all subsequent HTTP requests within

the time window for that source IP address, belong to the same user-x. As long as data is

available for user-x within the window over time, then that session belongs to user-x

otherwise a new user (source IP address) is selected at random based on users who have data

falling within the sliding time window.

 TCP Timestamp: Uses the TCP Time stamp value within a clock skew window to track

different users

150

 The source IP and TCP Time stamps leveraged real life scenarios to alter the original train data

set in the form of:

 Source IP: Source IP recycling of the same source IP address among users as done by

NATs and Proxies devices

 Source IP: Re-attach of a device with new source IP as done when users move across

networks

 TCP Timestamp: Data loss simulate creation of holes in the data stream

 TCP Timestamp: Device power on/off simulates resetting the TCP Timestamp

Note that the sliding window approach presented in other related literature (Banse,

Herrmann, & Federrath (2012) and Yang (2010)) only specified that requests occurring

together in time belong to the same session. No other detail was given as to how a specific

session was identified among others occurring at similar times. Thus, the use of the oldest source

IP in a given time window as the seed for identifying a given user is proposed in this paper in

support of this approach. It is important to note that under perfect conditions of no noise or

device resets, no clock skew, no forced change of source IP addresses then both source IP

address and TCP Timestamps are “perfect” tracking algorithms. On the other hand, the sliding

window approach is not perfect even though it actually extends the source IP address algorithm.

This is due to the fact that each time data for user-x within a sliding window runs out, a new

random user is picked. For this reason no noise is added to experiments tied to the sliding

window algorithm.

The number of users in these experiments is 5 and 10 with the following additional experiment

parameters:

151

 Source IP: 10% recycle source IP address and 10% access network re-attaches

 Sliding Window: Sliding window size in seconds (1, 3, 5, 60)

 TCP Timestamp: 10% data loss and 10% device power on/off

The experiments for 5 users were run 3 times with HTM (V2) and averages over the runs

computed as shown in Figure 57. The sliding window algorithm maintains the best performance

even when up to 35% of the original train data set is lost as shown in Figure 58.

Figure 57 Accuracy of different session identification algorithms for 5 users

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Recall

Average Precision

152

Figure 58 Percentage change for 5 users to train files resulting by use of window algorithm

For 10 users the sliding window algorithm continues to outperform the other session

identification algorithms as shown in Figure 59. Figure 60 shows that even with a window size

of one minute and a 57% of the original train data set lost, accuracy is still quite good at 94%.

Figure 59 Accuracy of different session identification algorithms for 10 users

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Window Size = 1
sec

Window Size = 3
secs

Window Size = 5
secs

Window Size = 60
secs

Train Files Change

Train Files Change

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Average Recall

Average Precision

153

Figure 60 Percentage change for 10 users to train files resulting with window algorithm

Summary of Results

A total of 614 experiments were conducted for this study as reported below:

 330 experiments using synthetic data without context drift

 132 experiments using synthetic data simulating context drift

 42 experiments using network data from a real cellular network

 42 experiments simulating DOS attacks

 42 experiments simulating Phish attacks

 18 experiments simulating different session identification approaches

 8 experiments covering user accuracy scalability

A consistent result across all experiments conducted in this study is the fact that HTM

algorithms always outperform in terms of accuracy alternate algorithms (1
st
 and 3

rd
 Order

Markov chains, All-K, PPM). More specifically, for experiments conducted with synthetic data

0

0.1

0.2

0.3

0.4

0.5

0.6

Window Size = 1
sec

Window Size = 3
secs

Window Size = 5
secs

Window Size =
60 secs

Train Files Change

Train Files Change

154

which used no context drift, the difference in accuracy performance between HTM algorithms

and alternate algorithms is substantial. Alternate algorithms with one day worth of test data never

produced recall statistics above 42% (see Figure 32,Figure 33, Figure 34) and when the test data

set consisted of 3 observations, these algorithms never produced recall statistics over 66%. In

contrast, HTM algorithms produced accuracy statistics (recall statistics) as high as 99% for a

sample of 100 users as shown in Figure 33.

The accuracy of HTM algorithms improves as the number of web destinations visited

increases beyond 1000 to 5000 and 10,000. Recall results for experiments conducted with

synthetic data without introducing simulated context drift, produced recall values of 99% for 500

users as shown in Figure 37 and Figure 39.

Overall the best performing HTM algorithms in terms of accuracy and scalability are the

Bottom Up for HTM layers 1 and 3 and the TopTop algorithms (see section “Accuracy

Scalability” for more details). For alternate algorithms the 3
rd

 Markov chain always tends to

perform more poorly than the other algorithms.

Experiments conducted with synthetic data which simulated concept drift show that the

HTM accuracy is mostly impacted by concept drift in test data (reducing accuracy by as much as

25%) that tends to split sequences of destinations often as shown when the “random walk”

algorithm is utilized to apply concept drift. On the other hand concepts drift that tends to

preserve a portion of the original sequence of destinations but adds new connections to existing

destinations or new destinations to existing connections, has much smaller of an impact on the

HTM accuracy (reducing accuracy by no more than 11%) .

155

Several experiments were conducted with real network data collected from a CDMA

cellular operator’s network. The data collected showed very large number of repeated

destinations within observations making it difficult for the HTM to infer unique patterns. The

intra observation repetitiveness reported for some users is as high as 94% (see Figure 47)

meaning that on average only 3 web destinations in 50 are unique within an observation.

Accuracy as reported by the HTM1 (version 1) was as low as 32% and the highest accuracy

reached was 81%, as shown in Figure 44, but most HTM algorithms performed poorly.

A new version of the HTM, (HTM2) was created which accounted for these repeated

patterns. In addition, the real data set used for experiments was modified to remove multiple

repeated destinations that occurred with the exact same timestamp. Results improved for all

HTM algorithms, by raising the worst accuracy recorded to 61% as shown in Figure 52 and

reaching recall values as high as 95% as shown in Figure 51. However, the HTM is still

underperforming with respect to the accuracy performance measured against the synthetic

baseline.

Experiments which simulated DOS and Phish attacks were also conducted. These

experiments showed that the HTM algorithms are minimally impacted by these attacks. Most

HTM algorithms keep accuracy from decreasing by more than 11% after a DOS attack and 5%

after a Phish attack.

The last set of experiments conducted in this study considered the impact of using

different session identification algorithms to train the HTM. These experiments showed that the

sliding window session identification algorithm when measured against “perfect” tracking

algorithms such as source IP address and TCP timestamp that are exposed to simulated real life

156

conditions which introduce noise in the data set can outperform both of these algorithms. To put

things in perspective, a window size of 1 minute, produces a change in the test file (loss of web

destinations) from the original train file of 57% yet recall is reported at 92%, compared to the

best performing TCP timestamp (with 10% data loss and 10% device resets) which reports a

recall value of 83% as shown in Figure 59.

The results reported by these experiments clearly support the goals of this study by

showing that a hierarchical temporal memory produces better accuracy results than alternative

traditional Markov based approaches. HTM results consistently outperformed alternate

algorithms regardless of the algorithm chosen and the data set used (synthetic or real network

data). Accuracy scalability, that is the ability of the solution to maintain accuracy as number of

users/destinations increases, was also shown to be superior for the HTM over alternative Markov

based approaches (see section “Results of experiments to verify user attribution accuracy without

concept drift using synthetic data” for more details).

157

Chapter 5

Conclusions, Implications, Recommendations, and Summary

This study has set out to address the user attribution problem which attempts to identify

communication traffic that belongs to a user, as the user possibly moves across networks, when

the information needed to identify those users is missing. The experiments conducted in this

study have shown that the hierarchical temporal memory (HTM) is quite accurate in correctly

identifying time based patterns that represent user navigational patterns. Test results have shown

that the HTM can provide reliable user attribution in scenarios where malicious users attempt to

access network resources by performing simulated Phish and DOS attacks. The effects and

impacts of mobility so critical in the user attribution problem, was tested against different session

identification algorithms.

The results of the experiments conducted for this study are promising. A recurring theme

in this study shows that alternate algorithms based on the traditional implementation of Markov

chains consistently underperformed HTM algorithms pretty much in all experiments. The

experiments conducted in this study bring to bear very good accuracy and accuracy scalability

results with synthetic data and good results with real network data thus satisfying the original

goals of this research. There is a strong belief that even better accuracy results can be achieved

when processing real network data with specialized algorithms built within the HTM designed to

address specifically extremely repetitive patterns in observations. Experiments also show that the

HTM tolerates quite well noise in test data in the form of either concept drift or DOS and Phish

attacks. The lack of real network TCP timestamps limited session identification experiments to

utilizing synthetically created TCP timestamps however the experiment did show the merits of

158

the sliding window algorithm as an accurate session identification algorithm. It would be a topic

of further study to determine how well the sliding window, source IP address and TCP

timestamp algorithms correctly identify sessions with real network data. The experiments also

brought to bear the fact that the HTM run-time performance scalability, as the number of users

and the amount of test data increase, is not good and represents an area of further investigation.

In this study synthetic data as produced by the input generator algorithm described in

section “Generation of Synthetic Data for the Simulation” represented a reasonable data set to run

experiments since similarity statistics between train and test data sets showed that the test data

generated for a given user is relevant to the train data and yet independent enough to simulate

realistic experiments.

All experiments run with synthetic or real data, which compare HTM algorithms and

alternate algorithms (implemented based on traditional Markov chains), show the HTM

outperforming alternate algorithms as was described in Chapter 4. It is important to note that all

7 HTM algorithms implemented for this study share the same degree of membership calculation

of longest common subsequence, longest common substring and sequence persistence to

determine the similarity of input against learned sequences. These HTM algorithms differ in how

they combine and process the results of multiple degrees of membership calculations within and

across HTM layers for multiple observations.

Accuracy reported by HTM algorithms also scales better with increasing number of users

and web destinations than the accuracy reported by alternate algorithms as shown in Figure 61.

159

Figure 61 Recall Accuracy Scaling for up to 100 users for 1 test day

Figure 61 shows the difference in recall accuracy between experiments run for 5 to 100

users over 5 train days and 1 test day using synthetic data. The high and low recall values of all

HTM algorithms (excluding path probability for layer 3 shown as an outlier) and alternate

algorithms was recorded and the difference between values for 5 and 100 users was tabulated in

Figure 61. It can be seen that excluding the layer 3 path probability algorithm, HTM algorithms

scale better than alternate algorithms with a maximum of 13% loss in accuracy when tracking

1000 web destinations and moving from 5 to 100 users compared to 41% loss in accuracy for

alternate algorithms. For 5000 and 10,000 web destinations the scale factor for the HTM

algorithm is as low as 1% for high recall values.

The HTM scales well also in experiments where the number of users grows to 500 using

5 days of synthetic train data and 3 observations for test data. Figure 62 and Figure 63 show that

the recall difference between high and low recall values moving from 5 users to 100 users and

then to 500 users for 5000 and 10,000 web destinations is about the same and stays below 10%.

HTM1
High

HTM1
Low

HTM1
Path Prob

L3

Alternate
Algorithm

s High

Alternate
Algorithm

s Low

1000 Destinations 0.13 0.05 0.15 0.407 0.342

5000 Destinations 0.01 0.1 0.42 0.41 0.35

10,000 Destinations 0.01 0.06 0.53 0.41 0.41

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

ca
ll

D
if

fe
re

n
ce

s

Scale Factor from 5 to 100 Users

160

For high recall values the scale factor for 5000 and 10,00 web destinations shows perfect scaling

with a scale factor value as low as 0%. Results of experiments run with synthetic data show high

levels of accuracy for ranges of web destinations above 5000. This range of destinations visited

by users matches the range found in the real network data set used in the experiments of 5200

web destinations.

Figure 62 Recall Accuracy Scaling for up to 100 users with 3 observations

Figure 63 Recall Accuracy Scaling for up to 500 users with 3 observations

HTM1 High HTM1 Low
HTM1 Path

Prob L3

1000 Destinations 0.14 0.24 0.46

5000 Destinations 0 0.09 0.2

10,000 Destinations 0.01 0.07 0.4

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

R
e

ca
ll

D
if

fe
re

n
ce

Scale Factor 5 users to 100 users

HTM1 High HTM1 Low
HTM1 Path

Prob L3

1000 Destinations 0.32 0.41 0.203

5000 Destinations 0.01 0.08 0.12

10,000 Destinations 0 0.05 0.11

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

R
e

ca
ll

D
if

fe
re

n
ce

 Scale Factor 100 users to 500 users

161

More targeted experiments were also conducted with synthetic data to measure accuracy

scalability specifically from a user point of view using a fixed optimal number of web

destinations (5000) and leveraging the two best HTM algorithms (BottomUp layer 1 TopTop

layer 3). For these experiments the number of users was: 150, 250, 350 and 450. Results show

that increases in the percentage of the number of users from 11% (from 450 to 500) to 67%

(from 150 to 250) result in accuracy (for both recall and precision) percentage change values that

stay within the very small range of 1.5% to -0.5% while producing consistently high accuracy

values in the range of 95% to 99% (see section “Accuracy Scalability” for more details).

One of the biggest challenges faced when running experiments with 500 users was the

need to reduce the experiment run times. All experiments were executed on a Quad i7-3820QM

2.7-3.7 GHz with 16Gig RAM laptop. Threading (one thread per HTM) and caching (of already

computed results derived by performing inference traversal of the Markov Graph within each

layer of the HTM) were two techniques that considerably improved the inference performance of

the HTM allowing completing the experiments for 500 users in reasonable times. When first

implemented threads improved performance by almost 100% so that running the HTM

algorithms for 2 users would take about 30 minutes to complete in single threaded mode but

using multiple threads the experiment would complete in 16 minutes. By adding caching,

performance dropped from 16 minutes to 6 minutes for the same set of experiments. Further

optimizations in how threads were used (limiting the number of concurrent threads to 8) and

other enhancements in the cache algorithms to maximize cache hits and minimize collisions

resulted in the run times reported below in Figure 64 and Figure 65. It can be seen that as the

162

number of users in conjunction with the test input size increase the run-times do increase

dramatically.

Figure 64 HTM Run-Times for 1 Test Day

Figure 65 HTM Run-Times with 3 observations

The amount of RAM main memory used by the HTM also proved to be a limiting factor

in being able to extend experiments beyond 500 users. The HTM was run with a JVM setting of

14 gigabytes of RAM but a limiting factor of the HTM design is the need for the MAX HTM

5 users 20 users 50 users 100 users

Average 0:00:16 0:02:20 0:17:14 1:15:15

0:00:00

0:28:48

0:57:36

1:26:24

R
u

n
 T

im
e

Average Run Times 5 Train Days,
1Test Day

5 users 20 users 50 users 100 users 500 users

Average 0:00:07 0:00:32 0:02:45 0:10:25 5:09:39

0:00:00

1:12:00

2:24:00

3:36:00

4:48:00

6:00:00

R
u

n
 T

im
e

Average Run Times 5 Train, 3 Test
Observations

163

Output layer (as shown in Figure 8) to receive one observation’s worth of feed forward beliefs

from each HTM before being able to decide which HTM has the “best” feed forward belief.

Increasing the number of users increases the number of HTMs which also increases the amount

of RAM main memory needed to run the experiment. When the Java JVM starts to run out of

the allocated RAM memory and starts to use hard drive virtual memory run-time performance

deteriorates dramatically eventually coming to a near halt.

The performance recall accuracy of the HTM as reported by experiments with real

network data is good as shown in Figure 66 which reports high and low recall values for these

experiments. However, performance still falls short of what has been reported for similar

experiments with synthetic data where observations do not show extreme levels of repeated

destinations.

Figure 66 HTM2++ Recall Accuracy with real network data

5 usersHigh
Recall

10 usersHigh
Recall

5Users Low
Recall

10Users Low
Recall

5Train,1Test 0.95 0.87 0.75 0.64

5Train,2Test 0.9 0.79 0.78 0.61

10Train,3Test 0.86 0.81 0.72 0.64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

ca
ll

HTM2++ Accuracy with Real Network Data

164

Further study is needed to explore new HTM algorithms that specifically address the high

levels of repeated destinations found in real network data. In text mining, a similar problem

exists with commonly occurring words like “the”, which impact negatively the accuracy of text

inference algorithms. To address this problem inverse document frequency is utilized which

diminishes the weight of terms that occur very frequently in the document set and increases the

weight of terms that occur rarely. As an area of further research, a new HTM algorithm could be

developed that could leverage a similar concept.

Experiments also show that the HTM handles concept drift well in test data which

modifies the last portion of a sequence of learned destinations to the point where often it tends to

increase accuracy as shown in Figure 67.

Figure 67 HTM Recall Accuracy in the presence of concept drift above base line

After applying concept drift to test data in the form of 20% new connections to existing

destinations and 10% new connections to not learned before destinations, the figure above shows

that in 3 out of 4 sets of experiments the HTM accuracy of several algorithm actually improves

5Train, 1Test 10Train,3Test 15Train,4Test 20Train,Test

Number of HTM Algorithm
recall results above baseline

0 6 2 1

0

2

4

6

8

Number of HTM Algorithms recall results
above baseline

165

over the baseline which used no concept drift. Because this type of concept drift tends to change

the last portion of an existing learned sequence it is possible that an existing sequence in the train

data set is made even more unique by the changes affected by this form of concept drift. In

contrast, concept drift that tends to split sequences of learned destinations, as done by the

random walk algorithm, has a consistently negative impact on HTM accuracy performance with

recall loss of up to 25% compared to the baseline (see Figure 43).

The accuracy performance of the HTM does also relatively well in experiments which

simulate DOS attacks with synthetic and real data as shown in the figure below never exceeding

a 10% recall impact recorded after the attack.

Figure 68 Recall Accuracy Impact of a DOS Attack

Experiments which simulated Phish attacks against the HTM show even less of an impact

than for DOS attacks, except for layer 3 path probability, after the attack as shown in Figure 69.

HTM-
Layer1-
Simple

Average

HTM-
Layer1-
Bottom

Up
Average

HTM-
Layer1-

Path
Probabil

ity

HTM-
Layer3-
Simple

Average

HTM-
Layer3-
Bottom
UpAver

age

HTM-
Layer3-
TopTop
Average

HTM-
Layer3-

Path
Probabil

ity

Average Difference Synthetic
Data

-0.08733 -0.029 -0.068666 -0.08933 -0.029 -0.038333 -0.017

Average Difference Real
Network Data

-0.054 -0.06566 -0.026 -0.059 -0.065 -0.068 -0.096333

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

R
e

ca
ll

D
if

fe
re

n
ce

Recall Impact of DOS Attacks

166

Figure 69 Recall Accuracy Impact of Phish Attacks

Results from the session identification tests show that the sliding window approach used

without simulated noise conditions is a more accurate session identification algorithm when used

to train the HTM than the TCP Timestamp and source IP address algorithms used under

simulated noise conditions as shown in Figure 70.

HTM-
Layer1-
Simple

Average

HTM-
Layer1-
Bottom

Up
Average

HTM-
Layer1-

Path
Probabil

ity

HTM-
Layer3-
Simple

Average

HTM-
Layer3-
Bottom
UpAver

age

HTM-
Layer3-
TopTop
Average

HTM-
Layer3-

Path
Probabil

ity

Average Difference Synthetic -0.021933 -0.02766 -0.01133 -0.018333 -0.02766 -0.027666 0.1413

Average Difference Real
Network Data

-0.00266 -0.03133 0.002 -0.006 -0.02966 -0.022 -0.01533

-0.04
-0.02

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

R
e

ca
ll

D
if

fe
re

n
ce

Recall Impact of Phish Attacks

167

Figure 70 Session Identification Recall Accuracy Results

These session identification results show the dominance of the sliding windows algorithm

which as opposed to other session identification algorithms was not subjected to noise

conditions. While real network data was used for these experiments to provide realistic timing

for the sliding window algorithm, it would be an important extension of this study to utilize real

network data which contains changing IP addresses and real TCP timestamps, which were

missing in these experiments, and run these session identification algorithms against the sliding

window algorithm.

 The are several contributions that this study has made in extending the hierarchical

temporal memory model originally proposed by George and Widrow (2008) which was not

designed to support sequences. All of the following extensions represent contributions to the

field and were designed to improve HTM inference accuracy.

Source-
IP,Recycle
=10%,Re-
Attach=1

0%

Window
Size = 1

sec

Window
Size = 3

secs

Window
Size = 5

secs

Window
Size = 60

secs

TCP-
Timsesta

mp,
DataLoss
=10%,Po

wer
on/off=10

%

5 Users Average Recall 0.73166 0.9986 0.9956 0.999 0.999 0.754

10 UsersAverage Recall 0.7513 0.998 0.99633 0.99 0.91886 0.8353

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
A

ve
ra

ge
 R

e
ca

ll
Session Identification Accuracy Results

168

 This study implemented sequence inference using a novel technique which combines

traditional variable order Markov chains with the use of longest common subsequence and

longest common substring coupled with the persistence of learned sequences to support a

variety of HTM inference algorithms.

 This study identified the limitations of traditional state cloning and proposed “sequence

cloning” as a technique to address its shortcomings and improve inference accuracy

 This study introduces the concept of “playback” to distribute accurately learned

sequences from lower to higher layers of the HTM to reduce learning times and improve

inference accuracy

Another area of this study that deserves a more in depth analysis is the way the HTM

splits sequences during both learning and inference phases. Experiments that introduce concept

drift using the random walk algorithm have shown that the HTM accuracy degrades substantially

when sequences of web destinations learned from the train data set are split in the test data set.

The current implementation of the HTM terminates a sequence and starts another under the

following conditions:

1. A fixed maximum input size has been processed

2. A maximum learned inter destinations arrival rate is exceeded

3. The same destination is already present in the sequence (HTM version 1). HTM version 2

also uses condition (3) to split a sequence but continues to process repeated destinations

already in the sequence until a new destination not already in the sequence is encountered or

one of conditions (1) or (2) are met.

169

Manipulation of these conditions or the parameters used by these conditions impacts

HTM accuracy performance as was shown for version 2 of the HTM. In addition, preliminary

experiments conducted by disabling and enabling learning for inter destination arrival time

showed improvements (e.g. 5% accuracy improvement for the TopTop HTM algorithm when

inter destination arrival rate learning is enabled versus disabling it and relying on a fixed inter

destination arrival time). Learning for inter destination arrival time was implemented using a K

means clustering algorithm to learn inter destination arrival rates.

A limitation of this study is the restricted number of users (10) that was utilized with real

network data experiments. Fifty users were tracked over a period of one month, but due to of

large periods of traffic inactivity only 14 users provided enough data to support realistic

experiments. It would be beneficial to run experiments with larger number of users as part of

future research that addresses the high levels of repeated destinations found in real network data.

Known Limitations of Proposed Approach

Each time a device is recycled (powered on and then powered off), that device looks like

a new device entering the network even if the device has been previously recognized by the

prototype. This is because the TCP time stamp value of a given device is always reset to either a

given fixed value or a random value and thus it will not match the TCP time stamp value

associated with existing HTMs. These HTMs have their TCP time stamps continuously updated

with the passage of time from the time the user of the device first powered on the device and

entered the network. A device that having being powered on and having entered the network,

powers off and then powers back on and reenters the network will cause the session

identification algorithm to mistake this as a new user session (not seen before) and will create

170

duplicate instances of an HTM for the same user. This occurs only if a user recycles his/her

device after having entered the network. This problem is similar to the situation where the same

user makes use of two different devices to access the network. Even if the user never powers off

both devices, at least 2 HTM instances are created for the same user. A solution to address this

limitation is proposed below as research to be conducted in a further study.

When devices get recycled (powered on and off and then on again) the source

identification algorithm used during training mistakes a known device (source) for a new one and

will mistakenly create multiple instances of HTMs for the same user. A solution to address this

problem, shown in Figure 71, leverages the idea that HTMs representing the same user, when

presented with the same input, are likely to generate similar inference at layer 3 which helps

identify duplicate HTMs representing the same user.

171

Figure 71 Detecting Duplicate HTMs

The high level algorithm below depicts how duplicate HTMs are detected. This algorithm

removes HTMs likely to belong to the same user and keeps the oldest HTM which is likely to

belong to the original user and have his/her longest and most representative behavioral history.

172

Figure 72 Algorithm to detect duplicate HTMs

Summary

The problem of tracking the behavior of users without explicit identifiers is very relevant

and “challenging” because many ISPs assign customers dynamic IP addresses that change

periodically as reported by Hermann, Banse and Federrath (2013). The authors acknowledge

that user behavior tracking is feasible. Their experiments show accuracy results with up to 85%

recall for large number of users (over 3000). However, the authors concede that recall accuracy

degrades when the source IP address changes frequently. For instance, when the source IP

address changes every 3 hours recall accuracy drops to 65%, when it changes each hour recall

accuracy drops to 54% and when it changes each 30 minutes recall accuracy drops to 42%.

WHEN a given number of HTMs in the Prime HTM Pool have reached the “inference” stage since

the last HTM cloning procedure THEN

 - Start the HTM Cloning Procedure:
- Flush the HTM Clone Pool
- Clone all HTMs in “inference” state from the Prime HTM pool
- Disable learning for all of the HTMs in the HTM Clone Pool so that these HTMs

only operate in inference mode

-Feed any single input received by the prototype to all HTMs in the HTM Clone Pool
-Collect the output (feed forward beliefs) of all HTMs from the all HTMs in the HTM Clone
Pool into clusters based on similarity of feed forward beliefs outputs
-For Each cluster select k clone HTMs with the most similar feed forward beliefs readings
 - Of the k clone HTMs select all of k-1 HTMs but the oldest cloned HTM
 - Delete from the Prime HTM Pool the equivalent (twins/clones) HTMs identified
 From the cloned HTM Pool in the previous step

173

This study has addressed the same basic problem as proposed by Herrmann et al. but

from the perspective of user attribution in the context of user mobility across complex networks.

It is when users move within and across networks that the problem described by Herrmann et al.

becomes more difficult to tackle since reliance on explicit identifiers such as source IP address

become ineffective as the source IP address changes periodically within mobile networks (as is

the case for cellular networks) and across networks, each time a user attaches to a new network

(e.g. WIFI hotspots or cellular network).

This study confirmed with synthetic and real network data that past user communication

behavior can be used as a predictor of future user communication behavior even when user

behavior changes over time due to natural concept drift. This study confirmed the power law

distribution of real network data with few web sites being visited often. This research also

confirmed that the presence of long tail web sites (rarely visited) among many repeated

destinations can create unique differentiation. Synthetic data generated using a modified version

of Price’s model (1976) for networks creation enabled generation of test data that was relevant to

a corresponding train data set and independent enough to support realistic experiments. What

was not anticipated prior to the experiments was the high degree of repetitiveness of some web

destinations found in real network data.

The experiments conducted in this study have shown that a hierarchical temporal memory

(HTM) which learns and infers sequences of web destinations leveraging multiple layers (to

learn and infer even longer sequences) has proven to be an effective framework for developing

user attribution inference algorithms. Experiments have shown that the HTM can provide high

levels of accuracy using synthetic data with 99% recall accuracy for 100 and 500 users and good

levels of recall accuracy of 95 % and 87% for 5 users and 10 users respectively when using real

174

network data. Experiments results show that HTM weighted average algorithms in the form of

Bottom-Up and TopTop tend to outperform all other HTM algorithms for both synthetic and real

network data. In addition, the fact that TopTop is an HTM layer-3 only algorithm brings to bear

the improved accuracy that can be achieved when using multiple HTM layers. While accuracy

results were positive for most experiments, run-time performance with increasing test data set

sizes beyond 150 destinations for more than 500 users proved to be poor and represent an area of

future research.

Experiment results consistently showed that HTM algorithms outperformed alternate

traditional Markov chain based algorithms in all experiments. However, when running

calibration tests for real network data alternate algorithms outperformed HTM based algorithms

as shown in Table 17. A possible reason for this result can be attributed to the fact that all

alternate algorithms perform exact or partial “matches” of the context preceding the current input

(sequence of web destinations). A partial match is based on exact matching of a shorter substring

of the original context. HTM algorithms instead seek the best longest common subsequence

within learned web destinations and leverage the concept of “similarity” where the input need

not match exactly the context or be an exact substring of it, instead the input needs to just contain

some of the same destinations in the same order as was previously learned by the HTM.

Experiments have also shown that the HTM does not need much data (as little as 150 web

destinations) to accurately identify users even when the number of user is as high as 500. This

can have important implications in the area of network communication security where malicious

users need to be quickly identified in order to be stopped using as little data as possible. It is

important to note that using identifiers like cookies and source IP addresses to solve the user

attribution problem can expose privacy concerns. This occurs when these identifiers are used to

175

discover the real identity of the user who just logged into the web site that assigned the cookie to

the user or to discover the user who was authorized access to the cellular network after being

assigned a specific source IP address. Because the HTM forgoes use of identifiers to address the

user attribution problem it can recognize users over time without revealing their true identity and

thus be able to maintain high levels of privacy.

The HTM showed to be fairly resistant to noise in the form of concept drift, denial of

service (DOS) and Phish attacks. Specifically, experiments conducted with synthetic data which

simulated concept drift show that the HTM accuracy is mostly impacted by concept drift in test

data (reducing accuracy by as much as 25%) that tends to split sequences of destinations often

as shown when the “random walk” algorithm is utilized to apply concept drift. On the other hand

concepts drift that tends to preserve a portion of the original sequence of destinations but adds

new connections to existing destinations or to new destinations, has much smaller of an impact

on the HTM accuracy (reducing accuracy by no more than 11%) . Experiments which simulated

DOS and Phish attacks were also conducted. These experiments showed that the HTM

algorithms are minimally impacted by these attacks. Most HTM algorithms keep accuracy from

decreasing by more than 11% after a DOS attack and 5% after a Phish attack. These results show

promise for possible utilization of the HTM in a network security environment as part of an

intrusion detection and prevention solution.

How credible are these results? The HTM prototype (version V1 and V2) and the

alternate approaches are completely written from scratch in Java. What was done to minimize the

risk of introducing errors into the logic of the model and code which could bias the results of the

experiments conducted in this study?

176

1. Extensive self-verification code was implemented within the HTM (e.g. code to

verify the integrity of Markov graphs and Markov chains at each layer of the

HTM) as outlined in section “Validating the Instrument”

2. “Calibration” which verifies that the HTM and alternate algorithms can always

recognize the input they were trained with. Each version of the HTM (versions V1

and V2) and alternate algorithms were qualified against calibration tests before

being run against real test scenarios as shown in Appendix H. A prerequisite for

running the HTM against different experiments was to achieve 100% recall

accuracy for experiments that used synthetic network data for all HTM algorithms

both at layers 1 and 3 and for alternate algorithms. For real network data it was

not possible to achieve 100% recall accuracy due to the high levels of

repetitiveness of the input, as a result using HTM version V2 qualification was

established with recall values as low as 98% for HTM algorithms at layer 1 and

93% for HTM algorithms at layer 3 (see Appendix H for more details).

The ability to learn and infer when using streaming network data has been an objective of

this study. To this end the HTM leveraged unsupervised learning by utilizing TCP timestamps

embedded in the input stream. Due to the lack of TCP timestamps in real network data traces,

synthetic timestamps were successfully utilized for this research. Further experiments utilizing

different session identification algorithms run against synthetic data were also performed with a

new sliding window algorithm showing promising results. Session identification experiments

would benefit from further study which would utilize real network data especially due to the

critical nature that session identification plays in the user attribution problem as reported by

several authors in the literature. Yang (2010) acknowledges that her results cannot scale to large

177

number of users due to the inability of her session identification algorithm to link up multiple

sessions belonging to the same user. Herrmann et al. (2013) also reports substantial decrease in

accuracy when the source IP address used to identify users in a session changes often.

In order to appreciate the relevance of this work one needs to consider that the internet of

people is becoming the internet of things where mobility is one of the driving forces. METIS
1
,

Mobile and wireless communications Enablers for the Twenty-twenty (2020) Information

Society is a large EU co-funded research project created in 2012. The project objective was to

respond to societal challenges for the year 2020 and beyond by laying the foundation for the next

generation of the mobile and wireless communications system. METIS is a consortium of 29

partners spanning telecommunications manufacturers, network operators, the automotive

industry and academia. METIS has defined 5G networks of the future as possessing the

following key features:

 Massive machine communication

 Moving networks not just moving users and moving devices

 Ultra dense networks which utilize a variety of access technologies (e.g. WIFI, Cellular,

Bluetooth, etc.)

A key take away from this view is that mobility will dominate our future and as the

internet of people becomes the internet of things, the user attribution problem will eventually

morph into a device/user attribution problem. This research represents an encouraging first step

towards addressing the user attribution problem in a mobile environment that covers multiple

complex networks.

1
 This definition comes from METIS Fact sheet available at www.metis2020.com

178

Appendix A

HTM1 User Attribution Test Results Using Synthetic Data with no Concept

Drift

Five train days, one test day and one thousand destinations

The next graph supports precision statistics for 5 train days, 1 test day and 1000

destinations.

Figure 73 Appendix A Synthetic Data Precision Results for 5 Train, 1 Test, 1000

Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average Precision

20 Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average Precision

50 Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average Precision

100 Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average Precision

179

The next graphs report false negative and false positive statistics for 5 train days, 1 test

day and 1000 destinations.

Figure 74 Appendix A Synthetic Data False Negatives Results for 5 Train, 1 Test, 1000

Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest Train=5,Test=1,
Walk Only, No CD, Average False
Negative

20Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Negative

50Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Negative

100Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Negative

180

Figure 75 Appendix A Synthetic Data False Positives Results for 5 Train, 1 Test, 1000

Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest Train=5,Test=1,
Walk Only, No CD,
Average False Positive

20Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average False Positive

50Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average False Positive

100Users-1000Dest
Train=5,Test=1, Walk Only, No
CD, Average False Positive

181

Five train days, one test day and five thousand destinations

The graph below supports the precision statistics for 5 train days, 1 test day and 5000

destinations.

Figure 76 Appendix A Synthetic Data Precision Results for 5 Train, 1 Test, 5000

Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average Precision

20Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average Precision

50Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average Precision

100Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average Precision

182

The next graphs report false negative and false positive statistics for 5 train days, 1 test

day and 5000 destinations.

Figure 77 Appendix A Synthetic Data False Negatives Results for 5 Train, 1 Test, 5000

Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Negative

20Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Negative

50Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Negative

100Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Negative

183

Figure 78 Appendix A Synthetic Data False Positives Results for 5 Train, 1 Test, 5000

Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Positive

20Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Positive

50Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Positive

100Users-5000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Positive

184

Five Train days one test day and ten thousand destinations

The graph below supports the precision statistics for 5 train days, 1 test day and 10,000

destinations.

Figure 79 Appendix A Synthetic Data Precision Results for 5 Train, 1 Test, 10,000

Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average Precision

20Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average Precision

50Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average Precision

100Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average Precision

185

The next graphs report false negative and false positive statistics for 5 train days, 1 test

day and 10,000 destinations.

Figure 80 Appendix A Synthetic Data False Negatives Results for 5 Train, 1 Test, 10,000

Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Negative

20Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Negative

50Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Negative

100Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Negative

186

Figure 81 Appendix A Synthetic Data False Positives Results for 5 Train, 1 Test, 10,000

Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Positive

20Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Positive

50Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Positive

100Users-10000Dest
Train=5,Test=1, Walk Only, No
CD, Average False
Positive

187

Five train days, three observations and one thousand destinations

The graph below supports the precision statistics for 5 train days, three observations and

1000 destinations.

Figure 82 Appendix A Synthetic Data Precision Results for 5 Train, 3 Observations, 1000

Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

20Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

50Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

100Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

500Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

188

The next graphs report false negative and false positive statistics for 5 train days, 3

observations, and 1000 destinations.

Figure 83 Appendix A Synthetic Data False Negatives Results for 5 Train, 3 Observations,

1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

20Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

50Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

100Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

500Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

189

Figure 84 Appendix A Synthetic Data False Positives Results for 5 Train, 3 Observations,

1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

20Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

50Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

100Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

500Users-1000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

190

Five train days, three observations and five thousand destinations

The graph below supports the precision statistics for 5 train days, three observations and

5000 destinations.

Figure 85 Appendix A Synthetic Data Precision Results for 5 Train, 3 Observations, 5000

Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

20Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

50Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

100Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

500Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

191

The next graphs report false negative and false positive statistics for 5 train days, 3

observations, and 5000 destinations.

Figure 86 Appendix A Synthetic Data False Negatives Results for 5 Train, 3 Observations,

5000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

20Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

50Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

100Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

500Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

192

Figure 87 Appendix A Synthetic Data False Positives Results for 5 Train, 3 Observations,

5000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

20Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

50Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

100Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

500Users-5000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

193

Five train days, three observations and ten thousand destinations

The graph below supports the precision statistics for 5 train days, three observations and

10,000 destinations.

Figure 88 Appendix A Synthetic Data Precision Results for 5 Train, 3 Observations, 10,000

Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

20 Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

50 Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

100 Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

500 Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average Precision

194

The next graphs report false negative and false positive statistics for 5 train days, 3

observations, and 10,000 destinations.

Figure 89 Appendix A Synthetic Data False Negative Results for 5 Train, 3 Observations,

10,000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

20Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

50Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

100Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

500Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Negative

195

Figure 90 Appendix A Synthetic Data False Positives Results for 5 Train, 3 Observations,

10,000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

20Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

50Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

100Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

500Users-10000Dest
Train=5,Test=3Obs, Walk Only,
No CD, Average False
Positive

196

Appendix B

User Attribution Test Results Using Synthetic Data with Concept Drift

Five train days, two test day, one thousand destinations and five users

The graph below supports the precision statistics for 5 train days, two test days and 1000

destinations.

Figure 91 Appendix B Synthetic Data Precision Results with Concept Drift 5 Train, 2 Test,

1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=5,Test=2, Walk Only, No
CD, Average Precision

5Users-1000Dest
Train=5,Test=2,CD=None,Rando
m Walk, Average Precision

5Users-1000Dest
Train=5,Test=2, Walk Only,
CD=20% conectivity,10%New
nodes, Average Precision

197

The next graphs report false negative and false positive statistics for 5 train days, 2 test

days, and 1000 destinations.

Figure 92 Appendix B Synthetic Data False Negatives Results with Concept Drift 5 Train, 2

Test, 1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=5,Test=2, Walk Only,
No CD, Average
False Negative

5Users-1000Dest
Train=5,Test=2,CD=None,R
andom Walk,
Average False Negative

5Users-1000Dest
Train=5,Test=2, Walk Only,
CD=20%
conectivity,10%New nodes,
Average False Negative

198

Figure 93 Appendix B Synthetic Data False Positives Results with Concept Drift 5 Train, 2

Test, 1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=5,Test=2, Walk Only,
No CD, Average False
Positive

5Users-1000Dest
Train=5,Test=2,
CD=None,Random Walk,
Average False Positive

5Users-1000Dest
Train=5,Test=2, Walk Only,
CD=20%
conectivity,10%New nodes,
Average False Positive

199

Ten train days, three test day, one thousand destinations and five users

The graph below supports the recall statistics for 10 train days, three test days and 1000

destinations.

Figure 94 Appendix B Synthetic Data Recall Results with Concept Drift 10 Train, 3 Test,

1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=10,Test=3, Walk Only, No
CD, Average Recall

5Users-1000Dest
Train=10,Test=3, Walk Only,
CD=Random Walk,
Average Recall

5Users-1000Dest
Train=10,Test=3, Walk Only,
CD=20% conectivity,10%New
nodes, Average
Recall

200

The graph below supports the precision statistics for 10 train days, three test days and

1000 destinations.

Figure 95 Appendix B Synthetic Data Precision Results with Concept Drift 10 Train, 3

Test, 1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=10,Test=3, Walk Only, No
CD, Average Precision

5Users-1000Dest
Train=10,Test=3, Walk Only,
CD=Random Walk,
Average Precision

5Users-1000Dest
Train=10,Test=3, Walk Only,
CD=20% conectivity,10%New
nodes, Average
Precision

201

The next graphs report false negative and false positive statistics for 10 train days, 3 test

days, and 1000 destinations.

Figure 96 Appendix B Synthetic Data False Negatives Results with Concept Drift 10 Train,

3 Test, 1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5Users-1000Dest
Train=10,Test=3, Walk Only, No
CD, Average False
Negative

5Users-1000Dest
Train=10,Test=3, Walk Only,
CD=Random Walk,
Average False Negative

5Users-1000Dest
Train=10,Test=3, Walk Only,
CD=20% conectivity,10%New
nodes, Average False
Negative

202

Figure 97 Appendix B Synthetic Data False Positives Results with Concept Drift 10 Train, 3

Test, 1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5Users-1000Dest
Train=10,Test=3, Walk Only,
No CD, Average False
Positive

5Users-1000Dest
Train=10,Test=3, Walk Only,
CD=Random Walk,
Average False Positive

5Users-1000Dest
Train=10,Test=3, Walk Only,
CD=20% conectivity,10%New
nodes, Average False
Positive

203

Recall difference between the baseline (at zero) and the random walk and context drift

algorithms.

Figure 98 Appendix B Recall difference between baseline and Concept Drift for 10 Train, 3

Test, 1000 Destinations

-0.15

-0.1

-0.05

0

0.05

0.1

5Users-1000Dest Train=10,Test=3,
Walk Only, CD=Random Walk,
Recall Difference from baseline

5Users-1000Dest Train=10,Test=3,
Walk Only, CD=20%
conectivity,10%New nodes,
Difference from baseline Recall

204

Fifteen train days, four test day, one thousand destinations and five users

The graph below supports the recall statistics for 15 train days, 4 test days and 1000

destinations.

Figure 99 Appendix B Synthetic Data Recall Results with Concept Drift 15 Train, 4 Test,

1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=15,Test=4, Walk Only, No
CD, Average Recall

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=Random Walk,
Average Recall

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=20% conectivity,10%New
nodes, Average
Recall

205

The graph below supports the precision statistics for 15 train days, 4 test days and 1000

destinations.

Figure 100 Appendix B Synthetic Data Precision Results with Concept Drift 15 Train, 4

Test, 1000 Destinations

The next graphs report false negative and false positive statistics for 15 train days, 4 test

days, and 1000 destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=15,Test=4, Walk Only, No
CD, Average Precision

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=Random Walk,
Average Precision

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=20% conectivity,10%New
nodes, Average
Precision

206

Figure 101 Appendix B Synthetic Data False Negatives Results with Concept Drift 15

Train, 4 Test, 1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=15,Test=4, Walk Only, No
CD, Average False
Negative

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=Random Walk,
Average False Negative

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=20% conectivity,10%New
nodes, Average False Negative

207

Figure 102 Appendix B Synthetic Data False Positives Results with Concept Drift 15 Train,

4 Test, 1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5Users-1000Dest
Train=15,Test=4, Walk Only, No
CD, Average False
Positive

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=Random Walk,
Average False Positive

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=20% conectivity,10%New
nodes, Average False
Positive

208

Recall difference between the baseline (at zero) and the random walk and context drift

algorithms.

Figure 103 Appendix B Recall difference between baseline and Concept Drift for 15 Train,

4 Test, 1000 Destinations

-0.2

-0.15

-0.1

-0.05

0

0.05

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=Random Walk, Recall
Difference from baseline

5Users-1000Dest
Train=15,Test=4, Walk Only,
CD=20% conectivity,10%New
nodes, Recall Difference from
baseline

209

Twenty train days, five test day, one thousand destinations and five users

The graph below supports the recall statistics for 20 train days, 5 test days and 1000

destinations.

Figure 104 Appendix B Synthetic Data Recall Results with Concept Drift 20 Train, 5 Test,

1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5Users-1000Dest
Train=20,Test=5, Walk Only, No
CD, Average Recall

5Users-1000Dest
Train=20,Test=5, Walk Only,
CD=Random Walk,
Average Recall

5Users-1000Dest
Train=20,Test=5, Walk Only,
CD=20% conectivity,10%New
nodes, Average
Recall

210

The graph below supports the precision statistics for 20 train days, 5 test days and 1000

destinations.

Figure 105 Appendix B Synthetic Data Precision Results with Concept Drift 20 Train, 5

Test, 1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5Users-1000Dest
Train=20,Test=5, Walk Only, No
CD, Average Precision

5Users-1000Dest
Train=20,Test=5, Walk Only,
CD=Random Walk,
Average Precision

5Users-1000Dest
Train=20,Test=5, Walk Only,
CD=20% conectivity,10%New
nodes, Average
Precision

211

The next graphs report false negative and false positive statistics for 20 train days, 5 test

days, and 1000 destinations.

Figure 106 Appendix B Synthetic Data False Negatives Results with Concept Drift 20

Train, 5 Test, 1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5Users-1000Dest
Train=20,Test=5, Walk Only,
No CD, Average False
Negative

5Users-1000Dest
Train=20,Test=5, Walk Only,
CD=Random Walk,
Average False Negative

5Users-1000Dest
Train=20,Test=5, Walk Only,
CD=20% conectivity,10%New
nodes, Average
False Negative

212

Figure 107 Appendix B Synthetic Data False Positives Results with Concept Drift 20 Train,

5 Test, 1000 Destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5Users-1000Dest
Train=20,Test=5, Walk Only,
No CD, Average False
Positive

5Users-1000Dest
Train=20,Test=5, Walk Only,
CD=Random Walk,
Average False Positive

5Users-1000Dest
Train=20,Test=5, Walk Only,
CD=20% conectivity,10%New
nodes, Average
False Positive

213

Recall difference between the baseline (at zero) and the random walk and context drift

algorithms.

Figure 108 Appendix B Recall difference between baseline and Concept Drift for 20 Train,

5 Test, 1000 Destinations

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

5Users-1000Dest
Train=20,Test=5, Walk Only,
CD=Random Walk, Recall
Difference from baseline

5Users-1000Dest
Train=20,Test=5, Walk Only,
CD=20% conectivity,10%New
nodes, Recall
Difference from baseline

214

Appendix C

Intra Observation Repetitiveness MATLAB Algorithm

% Computes the result as Intra Observation percentage of

repeated elemenst over size of observation.

% Note that a result of 75% over an observation of size 4 means

that 75% of

 elements in the observation repeat, that is 3 in 4, as in input

= [3 3 3 3]

input = data;

observation_size = length(input);

range = length(input(:,1));

result = [];

for i=1:range

 unique_over_input =

numel(unique(input(i,:)))/observation_size;

 repeated = 1 - unique_over_input;

 result = [result repeated];

end

mean(result)

215

Appendix D

Inter Observation Repetitiveness MATLAB Algorithm

input = data;

range = length(input(:,1));

result = [];

for i=1:range

 mode_val = mode(input(i,:));

 if length(unique(input(i,:))) == length(input(i,:))

 out = 'At least one observation is completely unique'

 end

 result = [result mode_val];

end

 unique_across_input = numel(unique(result))/length(result);

 repeated = 1 - unique_across_input;

 ;result

 ;hist(result,100);figure(gcf);

 repeated

216

Appendix E

User Attribution Test Results when simulating DOS attacks

Experiments using synthetic data for ten users and four infected users

The next graph presents before and after recall and precision statistics for DOS attacks

against 5 destinations sent within 5 milliseconds spaced by 5 milliseconds.

Figure 109 Appendix E 5-5-5 DOS Attack Recall & Precision results before and after

Attack using Synthetic Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Before DOS Attack 5-5-5
Average Recall

Before DOS Attack 5-5-5
Average Precision

After DOS Attack 5-5-5 Average
Recall

After DOS Attack 5-5-5 Average
Precision

217

The next graph presents before and after recall and precision statistics for DOS attacks

against 10 destinations sent within 10 milliseconds spaced by 5 milliseconds.

Figure 110 Appendix E 10-10-5 DOS Attack Recall & Precision results before and after

Attack using Synthetic Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Before DOS Attack 10-10-5
Average Recall

Before DOS Attack 10-10-5
Average Precision

After DOS Attack 10-10-5
Average Recall

After DOS Attack 10-10-5
Average Precision

218

The next graph presents before and after recall and precision statistics for DOS attacks

against 20 destinations sent within 20 milliseconds spaced by 5 milliseconds.

Figure 111 Appendix E 20-20-5 DOS Attack Recall & Precision results before and after

Attack using Synthetic Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Before DOS Attack 20-20-5
Average Recall

Before DOS Attack 20-20-5
Average Precision

After DOS Attack 20-20-5
Average Recall

After DOS Attack 20-20-5
Average Precision

219

Experiments using real network data for ten users and four infected users

The next graph presents before and after recall and precision statistics for DOS attacks

against 5 destinations sent within 5 milliseconds spaced by 5 milliseconds.

Figure 112 Appendix E 5-5-5 DOS Attack Recall & Precision results before and after

Attack using Real Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Before DOS Attack 5-5-5
Average Recall

Before DOS Attack 5-5-5
Average Precision

After DOS Attack 5-5-5 Average
Recall

After DOS Attack 5-5-5 Average
Precision

220

The next graph presents before and after recall and precision statistics for DOS attacks

against 10 destinations sent within 10 milliseconds spaced by 5 milliseconds.

Figure 113 Appendix E 10-10-5 DOS Attack Recall & Precision results before and after

Attack using Real Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Before DOS Attack 10-10-5
Average Recall

Before DOS Attack 10-10-5
Average Precision

After DOS Attack 10-10-5
Average Recall

After DOS Attack 10-10-5
Average Precision

221

The next graph presents before and after recall and precision statistics for DOS attacks

against 20 destinations sent within 20 milliseconds spaced by 5 milliseconds.

Figure 114 Appendix E 20-20-5 DOS Attack Recall & Precision results before and after

Attack using Real Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Before DOS Attack 20-20-5
Average Recall

Before DOS Attack 20-20-5
Average Precision

After DOS Attack 20-20-5
Average Recall

After DOS Attack 20-20-5
Average Precision

222

Appendix F

User Attribution Test Results when simulating Phish attacks

Experiments using synthetic data for ten users and four infected users

The next graph presents before and after recall and precision statistics for Phish attacks

against 1 destination sent within 1 millisecond spaced by a random uniform time between 1

millisecond and 1 hour.

Figure 115 Appendix F 1-1-1 Phish Attacks Recall & Precision results before and after

Attack using Synthetic Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Before Attack,
1BadDests,intra=1ms ,inter=
[1min-1hr], Average
Recall

Before Attack,
1BadDests,intra=1ms ,inter=
[1min-1hr], Average
Precision

After Attack,
1BadDests,intra=1ms ,inter=
[1min-1hr], Average
Recall

After Attack,
1BadDests,intra=1ms ,inter=
[1min-1hr], Average
Precision

223

The next graph presents before and after recall and precision statistics for Phish attacks

against 3 destinations sent within 3 milliseconds spaced by a random uniform time between 1

millisecond and 1 hour.

Figure 116 Appendix F 3-3-1 Phish Attacks Recall & Precision results before and after

Attack using Synthetic Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Before Attack
3BadDests,intra=3ms ,inter
[1min-1hr], Average
Recall

Before Attack
3BadDests,intra=3ms ,inter
[1min-1hr], Average
Precision

After Attack
3BadDests,intra=3ms ,inter
[1min-1hr], Average
Recall

After Attack
3BadDests,intra=3ms ,inter
[1min-1hr], Average
Precision

224

The next graph presents before and after recall and precision statistics for Phish attacks

against 5 destinations sent within 5 milliseconds spaced by a random uniform time between 1

millisecond and 1 hour.

Figure 117 Appendix F 5-5-1 Phish Attacks Recall & Precision results before and after

Attack using Synthetic Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Before Attack
5BadDests,intra=5ms ,inter
[1min-1hr], Average
Recall

Before Attack
5BadDests,intra=5ms ,inter
[1min-1hr], Average
Precision

After Attack
5BadDests,intra=5ms ,inter
[1min-1hr], Average
Recall

After Attack
5BadDests,intra=5ms ,inter
[1min-1hr], Average
Precision

225

Experiments using real network data for ten users and four infected users

The next graph presents before and after recall and precision statistics for Phish attacks

against 1 destination sent within 1 millisecond spaced by a random uniform time between 1

millisecond and 1 hour.

Figure 118 Appendix F 1-1-1 Phish Attacks Recall & Precision results before and after

Attack using Real Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Before Attack,
1BadDests,intra=1ms ,inter=
[1min-1hr], Average
Recall

Before Attack,
1BadDests,intra=1ms ,inter=
[1min-1hr], Average
Precision

After Attack,
1BadDests,intra=1ms ,inter=
[1min-1hr], Average
Recall

After Attack,
1BadDests,intra=1ms ,inter=
[1min-1hr], Average
Precision

226

The next graph presents before and after recall and precision statistics for Phish attacks

against 3 destinations sent within 3 milliseconds spaced by a random uniform time between 1

millisecond and 1 hour.

Figure 119 Appendix F 3-3-1 Phish Attacks Recall & Precision results before and after

Attack using Real Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Before Attack
3BadDests,intra=3ms ,inter
[1min-1hr], Average
Recall

Before Attack
3BadDests,intra=3ms ,inter
[1min-1hr], Average
Precision

After Attack
3BadDests,intra=3ms ,inter
[1min-1hr], Average
Recall

After Attack
3BadDests,intra=3ms ,inter
[1min-1hr], Average
Precision

227

The next graph presents before and after recall and precision statistics for Phish attacks

against 5 destinations sent within 5 milliseconds spaced by a random uniform time between 1

millisecond and 1 hour.

Figure 120 Appendix F 5-5-1 Phish Attacks Recall & Precision results before and after

Attack using Real Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Before Attack
5BadDests,intra=5ms ,inter
[1min-1hr], Average
Recall

Before Attack
5BadDests,intra=5ms ,inter
[1min-1hr], Average
Precision

After Attack
5BadDests,intra=5ms ,inter
[1min-1hr], Average
Recall

After Attack
5BadDests,intra=5ms ,inter
[1min-1hr], Average
Precision

228

Appendix G

HTM2 (++) User Attribution Test Results Using Real Data

Five Users for five train days, one test day and over five thousand destinations

The graphs below compare recall and precision statistics for HTM1, HTM2 and

HTM2++ (HTM2 run on real network data where same time destinations are removed) run

against real network data against a baseline of synthetic data (5 train days, 1 test day, 5000

destinations) run against HTM2.

Figure 121 Appendix G HTM1, HTM2, HTM2++ Real Network Data Recall & Precision

Results for 5 users, 5 Train, 1 Test

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM2 Baseline, 5Users-
5000Dest Train=5,Test=1
Average Recall

HTM2 Baseline, 5Users-
5000Dest Train=5,Test=1
Average Precision

HTM1 5Users-5000Dest
Train=5,Test=1 Average
Recall

HTM1 5Users-
5000Dest Train=5,Test=1,
Average Precision

HTM2 5Users-
5000Dest Train=5,Test=1
Average Recall

HTM2 5Users-5000Dest
Train=5,Test=1, Average
Precision

HTM2++ 5Users-
5000Dest Train=5,Test=1
Average Recall

229

Five users for five train days, two test days and over five thousand destinations

The graphs below compare recall and precision statistics for HTM1, HTM2 and

HTM2++ (HTM2 run on real network data where same time destinations are removed) run

against real network data against a baseline of synthetic data (5 train days, 2 test days, 5000

destinations) run against HTM2.

Figure 122 Appendix G HTM1, HTM2, HTM2++ Real Network Data Recall & Precision

Results for 5 users, 5 Train, 2 Test

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM2 Baseline 5Users-5000Dest
Train=5,Test=2,
Average Recall

HTM2 Baseline 5Users-5000Dest
Train=5,Test=2, Average
Precision

HTM1 5Users-5000Dest
Train=5,Test=2 Average
Recall

HTM1 5Users-5000Dest
Train=5,Test=2, Average
Precision

HTM2 5Users-5000Dest
Train=5,Test=2 Average
Recall

HTM2 5Users-5000Dest
Train=5,Test=2, Average
Precision

HTM2++ 5Users-
5000Dest Train=5,Test=2
Average Recall

HTM2++ 5Users-5000Dest
Train=5,Test=2, Average
Precision

230

Five users for ten train days, three test days and over five thousand destinations

The graphs below compare recall and precision statistics for HTM1, HTM2 and

HTM2++ (HTM2 run on real network data where same time destinations are removed) run

against real network data against a baseline of synthetic data (10 train days, 3 test days, 5000

destinations) run against HTM2.

Figure 123 Appendix G HTM1, HTM2, HTM2++ Real Network Data Recall & Precision

Results for 5 users, 5 Train, 3 Test

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM2 Baseline 5Users-5000Dest
Train=10,Test=3
Average Recall

HTM2 Baseline 5Users-5000Dest
Train=10,Test=3, Average
Precision

HTM1 5Users-5000Dest
Train=10,Test=3 Average
Recall

HTM1 5Users-5000Dest
Train=10,Test=3, Average
Precision

HTM2 5Users-5000Dest
Train=10,Test=3 Average
Recall

HTM2 5Users-5000Dest
Train=10,Test=3, Average
Precision

HTM2++ 5Users-
5000Dest Train=10,Test=3
Average Recall

HTM2++ 5Users-5000Dest
Train=10,Test=3, Average
Precision

231

Ten Users for five train days, one test day and over five thousand destinations

The graphs below compare recall and precision statistics for HTM1, HTM2 and

HTM2++ (HTM2 run on real network data where same time destinations are removed) run

against real network data against a baseline of synthetic data (5 train days, 1 test day, 5000

destinations) run against HTM2.

Figure 124 Appendix G HTM1, HTM2, HTM2++ Real Network Data Recall & Precision

Results for 10 users, 5 Train, 1 Test

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM2 Baseline 10Users-
5000Dest Train=5,Test=1
Average Recall

HTM2 Baseline 10Users-
5000Dest Train=5,Test=1,
Average Precision

HTM1 10Users-
5000Dest Train=5,Test=1
Average Recall

HTM1 10Users-
5000Dest Train=5,Test=1,
Average Precision

HTM2 10Users-
5000Dest Train=5,Test=1
Average Recall

HTM2 10Users-
5000Dest Train=5,Test=1,
Average Precision

HTM2++ 10Users-
5000Dest Train=5,Test=1
Average Recall

HTM2++ 10Users-
5000Dest Train=5,Test=1,
Average Precision

232

Ten users for five train days, two test days and over five thousand destinations

The graphs below compare recall and precision statistics for HTM1, HTM2 and

HTM2++ (HTM2 run on real network data where same time destinations are removed) run

against real network data against a baseline of synthetic data (5 train days, 2 test days, 5000

destinations) run against HTM2.

Figure 125 Appendix G HTM1, HTM2, HTM2++ Real Network Data Recall & Precision

Results for 10 users, 5 Train, 2 Test

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM2 Baseline 10Users-
5000Dest Train=5,Test=2,
Average Recall

HTM2 Baseline 10Users-
5000Dest Train=5,Test=2,
Average Precision

HTM1 10Users-
5000Dest Train=5,Test=2
Average Recall

HTM1 10Users-
5000Dest Train=5,Test=2,
Average Precision

HTM2 10Users-
5000Dest Train=5,Test=2
Average Recall

HTM2 10Users-
5000Dest Train=5,Test=2,
Average Precision

HTM2++ 10Users-
5000Dest Train=5,Test=2
Average Recall

HTM2++ 10Users-
5000Dest Train=5,Test=2,
Average Precision

233

Ten users for ten train days, three test days and over five thousand destinations

The graphs below compare recall and precision statistics for HTM1, HTM2 and

HTM2++ (HTM2 run on real network data where same time destinations are removed) run

against real network data against a baseline of synthetic data (10 train days, 3 test days, 5000

destinations) run against HTM2.

Figure 126 Appendix G HTM1, HTM2, HTM2++ Real Network Data Recall & Precision

Results for 10 users, 10 Train, 3 Test

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTM2 Baseline 10Users-
5000Dest Train=10,Test=3,
Average Recall

HTM2 Baseline 10Users-
5000Dest Train=10,Test=3,
Average Precision

HTM1 10Users-
5000Dest Train=10,Test=3
Average Recall

HTM1 10Users-
5000Dest Train=10,Test=3,
Average Precision

HTM2 10Users-
5000Dest Train=10,Test=3
Average Recall

HTM2 10Users-
5000Dest Train=10,Test=3,
Average Precision

HTM2++ 10Users-
5000Dest Train=10,Test=3
Average Recall

HTM2++ 10Users-
5000Dest Train=10,Test=3,
Average Precision

234

Appendix H

Calibration Results for qualification of HTM V1, HTM V2 and Alternate

Algorithms

Calibration runs for qualifying HTM V1 with Synthetic Data

Users Layer 1 HTM
Algorithms
% Recall Accuracy

Layer 3 HTM
Algorithm
% Recall Accuracy

 Simple Average Simple Average
User-1 100% 100%
User-2 100% 100%
User-3 100% 100%
User-4 100% 100%
User-5 100% 100%
 Average Bottom Up Average Bottom Up
User-1 100% 100%
User-2 100% 100%
User-3 100% 100%
User-4 100% 100%
User-5 100% 100%
 Average Top-Top
User-1 100%
User-2 100%
User-3 100%
User-4 100%
User-5 100%
 Path Probability Path Probability
User-1 100% 100%
User-2 100% 100%
User-3 100% 100%
User-4 100% 100%
User-5 100% 100%

Table 21 Appendix H – Calibrations HTMV1 with Synthetic Data

235

Calibration runs which failed to qualify HTM V1 with Real Network Data

Users Layer 1 HTM
Algorithms
% Recall Accuracy

Layer 3 HTM
Algorithm
% Recall Accuracy

 Simple Average Simple Average
User-1 100% 100%
User-2 99% (1 error) 99% (1 error)
User-3 100% 100%
User-4 100% 100%
User-5 100% 100%
 Average Bottom Up Average Bottom Up
User-1 78% (48 errors) 79% (46 errors)
User-2 82% (53 errors) 85% (44 errors)
User-3 81% (22 errors) 81% (21 errors)
User-4 74% (38 errors) 76% (35 errors)
User-5 71% (4 errors) 79% (3 errors)
 Average Top-Top
User-1 100%
User-2 99% (1 error)
User-3 100%
User-4 100%
User-5 100%
 Path Probability Path Probability
User-1 6% (206 errors) 4% (215 errors)
User-2 27% (221 errors) 22% (236 errors)
User-3 61% (44 errors) 57% (48 errors)
User-4 41% (86 errors) 32% (100 errors)
User-5 36% (9 errors) 36% (9 errors)

Table 22 Appendix H – Calibrations HTMV1 with Real Network Data

236

Calibration runs for qualifying HTM V2 with Synthetic Data

The HTM version 2 was calibrated accounting for continuous repeated destinations at all layers

(1-3) of the HTM during the learning phase. During the inference phase continuous processing of

the same destination was limited to layer 1 only. This configuration was used for calibration of

HTM version 2 and for all experiments conducted with this version of the HTM as this

configuration produced the best results.

Users Layer 1 HTM
Algorithms
% Recall Accuracy

Layer 3 HTM
Algorithm
% Recall Accuracy

 Simple Average Simple Average
User-1 100% 100%
User-2 100% 100%
User-3 100% 100%
User-4 100% 100%
User-5 100% 100%
 Average Bottom Up Average Bottom Up
User-1 100% 100%
User-2 100% 100%
User-3 100% 100%
User-4 100% 100%
User-5 100% 100%
 Average Top-Top
User-1 100%
User-2 100%
User-3 100%
User-4 100%
User-5 100%
 Path Probability Path Probability
User-1 100% 100%
User-2 100% 100%
User-3 100% 100%
User-4 100% 100%
User-5 100% 100%

Table 23 Appendix H – Calibrations HTMV2 with Synthetic Data

237

Calibration runs for qualifying HTM V2 with Real Network Data

Users Layer 1 HTM
Algorithms
% Recall Accuracy

Layer 3 HTM
Algorithm
% Recall Accuracy

 Simple Average Simple Average
User-1 100% 100%
User-2 99% (1 error) 100%
User-3 100% 99% (1 error)
User-4 100% 100%
User-5 100% 100%
 Average Bottom Up Average Bottom Up
User-1 99% (1 error) 99% (1 error)
User-2 99% (1 error) 99% (1 error)
User-3 98% (2 errors) 98% (2 errors)
User-4 100% 100%
User-5 100% 100%
 Average Top-Top
User-1 100%
User-2 99% (1 error)
User-3 100%
User-4 100%
User-5 100%
 Path Probability Path Probability
User-1 100% 93% (14 errors)
User-2 99% (3 errors) 96% (12 errors)
User-3 100% 99% (1 error)
User-4 100% 97% (4 errors)
User-5 100% 100%

Table 24 Appendix H – Calibrations HTMV2 with Real Network Data

238

Calibration runs for qualifying Alternate Approaches with Synthetic Data

Users Alternate Approaches
% Accuracy

 1st Order Markov
User-1 100%
User-2 100%
User-3 100%
User-4 100%
User-5
 3rd Order Markov
User-1 100%
User-2 100%
User-3 100%
User-4 100%
User-5 100%

 All K Order Markov (K=3)
User-1 100%
User-2 100%
User-3 100%
User-4 100%
User-5 100%

 PPM
User-1 100%
User-2 100%
User-3 100%
User-4 100%
User-5 100%

Table 25 Appendix H – Calibrations Alternate Markov Based Approaches with Synthetic

Data

239

Calibration runs for qualifying Alternate Approaches with Real Network Data

Users Alternate Approaches
% Accuracy

 1st Order Markov
User-1 100%
User-2 99% (1 error)
User-3 100%
User-4 100%
User-5
 3rd Order Markov
User-1 100%
User-2 100%
User-3 100%
User-4 100%
User-5 100%

 All K Order Markov (K=3)
User-1 100%
User-2 99% (1 error)
User-3 99% (1 error)
User-4 100%
User-5 100%

 PPM
User-1 100%
User-2 99% (1 error)
User-3 100%
User-4 100%
User-5

Table 26 Appendix H – Calibrations Alternate Markov Based Approaches with Real

Network Data

240

References

Agrawal, R., & Srikant, R. (1995). Mining Sequential Patterns. Conference Data Engineering

(ICDE'95) (pp. 3-14) . Taipei, Taiwan: IEEE Computer Society.

Adamic, A. L. (1999). The Small World Web. ECDL '99 Proceedings of the Third European

Conference on Research and Advanced Technology for Digital Libraries (pp. 443–452).

Paris, France: Springer-Verlag.

Adamic. A. L., & Huberman B. A. (2000a). The Nature of Markets in the World Wide Web.

Quarterly Journal of Electronic Commerce, 1, 5-12.

Adamic. A. L., & Huberman B. A. (2000b). Power-Law Distribution of the World Wide Web.

Science, 287, 2115.

Balakrishnan, M., Mohomed, I., & Ramasubramanian, V. (2009). Where's that phone?:

geolocating IP addresses on 3G networks. Proceedings of the 9th ACM SIGCOMM

conference on Internet measurement conference (pp. 294-300). New York, NY: ACM.

Baldi, P., Frasconi, P., & Smyth, P. (2003). Modelling the Internet and the Web: Probabilistic

Methods and Algorithms. West Sussex, England: JohnWiley & Sons.

Banse, C., Herrmann, D., & Federrath, H. (2012). Tracking Users on the Internet with

Behavioral Patterns: Evaluation of Its Practical Feasibility. Information Security and

Privacy Research, 27th IFIP TC 11 Information Security and Privacy Conference (Vol

376, pp. 235-248). Heraklion, Greece: Springer Berlin Heidelberg.

Barabasi, A. L., & Albert, R. (1999). Emergence of Scaling in Random Network. Science

Journal, 286(5439), 509-512.

Barabasi, A. L., & Albert, R. (2002). Statistical Mechanics of Complex Networks. Reviews of

Modern Physics, 74, 47-97.

Barrat. A., Barthelemy. M., & Vespignani. A. (2008). Dynamical Processes on Complex

Networks. New York, NY: Cambridge University Press.

Beacken, M., Braun, L., Imbesi, D. J., Greenwald, L. G., Geller, M. J., Hartman, A., … Bishop,

D. (2011). LGS' government communications laboratory and research for the U.S.

government. Bell Labs Technical Journal: Vertical Markets, 16(3), 5-28. doi:

10.1002/bltj.20519

Begleiter, R., El-Yaniv, R., & Yona, G. (2004). On prediction using variable order Markov

models. Journal of Artificial Intelligence Research, 22, 385–421.

Belenky, A., & Ansari, N. (2003). On IP Traceback. IEEE Communications Magazine, 41(7),

142-153.

http://link.springer.com/book/10.1007/978-3-642-30436-1
http://link.springer.com/book/10.1007/978-3-642-30436-1
http://link.springer.com/bookseries/6102

241

Bellovin, S., Leech, M., & Taylor, T. (2003). ICMP Traceback Messages (Report No. draft-ietf-

itrace-04). Retrieved from the Internet Engineering Task Force (IETF) website:

https://tools.ietf.org/html/draft-ietf-itrace-04

Bobier, B. (2007). Handwritten Digit Recognition using Hierarchical

Temporal Memory. Unpublished manuscript, Department of Computing and Information

Science, University of Guelph, Ontarion, Canada. Retrieved from

http://arts.uwaterloo.ca/~cnrglab/?q=system/files/SoftComputingFinalProject.pdf

Borges, J. (2000). A data mining model to capture user web navigation patterns. (Doctoral

dissertation). Available from British Library. (OCLC: 556924443)

Borges, J., & Levene, M. (2004). A dynamic clustering-basedMarkov model for web usage

mining. Unpublished manuscript. Retrieved from CoRR: Computing Research

Repository. cs.IR/0406032.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., …Wiener, J.

(2000). Graph Structure in the Web. Proceedings of the 9th International World Wide

Web conference on Computer Networks: The International Journal of Computer and

Telecommunications Networking (pp. 309-320). Amsterdam, Holland: North-Holland

Publishing Co.

Burch, H., & Cheswick, B. (2000). Tracing Anonymous Packets to Their Approximate Source.

Lisa '00 Proceedings of the 14th Conf. Systems Administration (pp. 319-328). Berkeley,

CA: USENIX Association Berkeley.

Carver, C. A. (2002). Intrusion Response Systems: A Survey. Unpublished manuscript.

Department of Computer Science, Texas A&M University, College Station, TX.

Casado, M., & Freedman, M. J. (2007). Peering Through the Shroud: The Effect of Edge Opacity

on IP-Based Client Identification. Proc. 4th USENIX/ACM Symposium on Networked

Systems Design and Implementation (NSDI) (pp. 173-186). Cambridge, MA: USENIX

Association Berkeley.

Chang, H. Y., Narayanan, R., Wu, S. F., Vetter, B. M., Wang, X., Brown, M., … Gong, F.

(1999). Deciduous: Decentralized Source Identification for Network-Based Intrusions.

Proceedings of the Sixth IFIP/IEEE International Symposium on Integrated Network

Management (pp. 701-714). Boston, MA: IEEE Computer Society.

Chen, M. S., Park, J. S., & Yu, P. S. (1996). Data Mining for Path Traversal Patterns in a Web

Environment. Proceedings of the 16th International Conference on Distributed

Computing Systems (pp. 385-392). Hong Kong, China: IEEE Computer Society.

Clark, D. D., & Landau S. (2010). Untangling Attribution. Proceedings of a workshop on

Deterring CyberAttacks: Informing Strategies and Developing Options for U.S. Policy

(pp. 25-40). Washington D.C., USA: The National Academies Press.

https://tools.ietf.org/html/draft-ietf-itrace-04.txt
https://tools.ietf.org/html/draft-ietf-itrace-04.txt

242

Clearly, J.G., & Witten, I.H., (1984). Data Compression using adaptive coding and partial string

matching. IEEE Transactions on Communications, 32(4), 396-402.

Cooley, R., Mobasher, B., & Srivastava, J. (1999). Data Preparation for Mining World Wide

Web Browsing Patterns. Knowledge and Information Systems, 1(1), 5-32.

Cormack, G. V., & Horspool, R. N. S. (1987). Data Compression Using Dyanamic Markov

Modelling. The Computer Journal, 30(6), 541-550.

Cormode, G., Korn, F., Muthukrishnan, S., & Wu, Y. (2008). On Signatures for Communication

Graphs. Proceedings of the IEEE 24th International Conference on Data Engineering

(pp. 189-198). Cancun, Mexico: IEEE Computer Society.

Deshpande, M., & Karypis, G. (2004). Selective Markov Models for Predicting Web-Page

Accesses. ACM Transactions on on Internet Technology, 4(2), 163-184.

Domingos, P., & Hulten, G. (2000). Mining HighSpeed Data Streams. ACM SIGKDD

International Conference Knowledge Discovery in Databases (pp. 71-80). Boston, MA:

ACM.

Donley, C., Howard, L., Kuarsingh, V., Chandrasekaran, A., & Ganti, V. (2010). Assessing the

Impact of NAT444 on Network Applications (Report No. draft-donley-nat444-impacts-01

). Retrieved from the Internet Engineering Task Force (IETF) website:

http://tools.ietf.org/html/draft-donley-nat444-impacts-01

Doremalen, J. V., & Boves, L. (2008). Spoken Digit Recognition using a Hierarchical Temporal

Memory. 9th Annual Conference of the International Speech Communication Association

(pp. 2566-2569). Brisbane, Australia: ISCA.

Duch, W., Oentaryo, R. J., & Pasquier, M. (2008). Cognitive architectures: where do we go from

here?. Proceedings of the First conference on Artificial General Intelligence (pp. 122-

136). Memphis, TN: IOS Press Amsterdam.

Egevang, K., & Francis, P. (1994). The IP Network Address Translator (NAT). (Report No. RFC

1631). Retrieved from the Internet Engineering Task Force (IETF) website:

http://www.ietf.org/rfc/rfc1631.txt

Feder, M., & Merhav, N. (1994). Relations between entropy and error probability. IEEE

Transactions on Information Theory, 40(1), 259-266.

Gates, C. (2009). Coordinated Scan Detection. Proceedings of the 16th Annual Network and

Distributed System Security Symposium (NDSS’09) (pp. 153-165). San Diego, CA: Internet

Society.

George, D., & Widrow, B. (2008). How the brain might work: A hierarchical and temporal

model for learning and recognition. Stanford University. Dissertation Abstract

International, 69(04), 177. (UMI No. 3313576)

243

George, D., & Jaros, B. (2007). The HTM Learning Algorithms. Unpublished manuscript.

Numenta Inc. Retrieved from

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=14&ved=0CDQQ

FjADOAo&url=http%3A%2F%2Fntebooks.googlecode.com%2Fsvn%2Ftrunk%2F%25

D0%259A%25D0%25B8%25D0%25B1%25D0%25B5%25D1%2580%2FNumenta%2F

Numenta_HTM_Learning_Algos.pdf&ei=Lxc1Ut6XC5LtrAGxv4HoBw&usg=AFQjCN

GBqF8d-R0pXy7XUZ7vNzIIXsAAkg&sig2=QFRBe0JWeSYldDC9NZNk3g

Ghorbani, A. A., Lu, W., & Tavallaee, M. (2010). Network Intrusion Detection and Prevention -

Concepts and Techniques. New York, NY: Springer.

Gray. J., Sundaresan. P., Englert. S., Baclawski. K., & Weinberger. P. J. (1994). Quickly

generating billion-record synthetic databases. Proceedings of the 1994 ACM SIGMOD

International Conference on Management of Data (Vol. 23(2), pp. 243-252).

Minneapolis, MN: ACM.

Grčar, M. (2004). USER PROFILING: WEB USAGE MINING. Proceedings of the 7 th

International Multiconference Information Society (pp. 75−78). Ljubljana, Slovenia: Jožef

Stefan Institute.

Greff, K. (2010). Extending Hierarchical Temporal Memory for Sequence Classification.

(Master Thesis, Technische Universität Kaiserslautern AG Wissensbasierte Systeme,
Saarbrücken, Germany). Retrieved from

http://www.dfki.de/lt/publication_show.php?id=5462

Halabi, S. (2001). Internet Routing Architectures (2nd Edition). Indianapolis, IN: Cisco Press.

Han, J., & Kamber, M. (2006). Data Mining Concepts and Techniques, Second Edition. San

Francisco, CA: Morgan Kaufmann.

Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., & Hsu, M.-C. (2000). Freespan:

Frequent pattern-projected sequential pattern mining. ACM SIGKDD International

Conference Knowledge Discovery in Databases (KDD'00) (pp. 355-359). Boston, MA:

ACM.

Hang, Y., & Fong, S. (2010). Investigating the Impact of Bursty Traffic on Hoeffding Tree

Algorithm in Stream Mining over Internet. Proceeding of the 2nd International

Conference on Evolving Internet (INTERNET) (pp. 147-152), Valencia, Spain:

Conference Publishing Services (CPS).

Hawkins, J., George D., & Niemasik, J. (2009). Sequence memory for prediction, inference and

behavior. Philosophical Transactions of the Royal Society B Biological Sciences,

364(1521), 1203-1209.

Herrmann, D., Gerber, C., Banse, C., & Federrath H., (2010). Analyzing Characteristic Host

Access Patterns for Re-identification of Web User Sessions. 15th Nordic Conference on

Secure IT Systems (NordSec) (pp. 136-154). Espoo, Finland: Springer.

http://www.springerlink.com/content/d78355373l8170mr/
http://www.springerlink.com/content/d78355373l8170mr/

244

Herrmann, D., Banse, C., & Federrath, H. (2013). Behavior-based Tracking: Exploiting

Characteristic Patterns in DNS Traffic. Computers & Security. Advance online

publication. doi:http://dx.doi.org/10.1016/j.cose.2013.03.012

Hill, S., & Provost, F. (2003). The Myth of the Double-Blind Review? Author Identification

Using Only Citations. SIGKDD Explorations, 5(2), 179-184.

Hill, S. B., Agarwal, D. K., Bell, R., & Volinsky, C. (2006). Building an Effective

Reppresentation for Dynamic Networks. Journal of Computational and Graphical

Statistics, 15(3), 584–608.

Hills, S., & Nagle, A. (2009). Social Network Signatures: A Framework for Re-Identification in

Networked Data and Experimental Results. Computational Aspects of Social Networks,

CASON '09 (pp. 88-97). Fontainbleu, France: IEEE Computer Society

Hulten, G., Spencer, L., & Domingos, P. (2001). Mining TimeChanging Data Streams. ACM

SIGKDD International Conference Knowledge Discovery in Databases (KDD'01) (pp. 97

- 106). San Francisco,CA: ACM.

Iváncsy, R., & Juhász, S. (2007). Analysis of Web User Identification Methods. International

Journal of Computer Science, 2(3), 212-219.

Jacobson, V., Braden, R., & Borman, D. (1992). TCP Extensions for High Performance Network

Working Group. (Report No. RFC 1323). Retrieved from the Internet Engineering Task

Force (IETF) website: http://www.ietf.org/rfc/rfc1323.txt

Jiang, S., Guo, D., & Carpenter, B. (2011). An Incremental Carrier-Grade NAT (CGN) for IPv6

Transition. (Report No. RFC 6424). Retrieved from the Internet Engineering Task Force

(IETF) website: http://tools.ietf.org/html/rfc6264

Jin, Y., Sharafuddin, E., & Zhang, Z.-L. (2007). Identifying Dynamic IP Address Blocks

Serendipitously through Background Scanning Traffic. Proceedings of ACM CoNext’07

(Article no. 4) . New York, NY: ACM.

Kohno, T., Broido, A., & Claffy, K. (2005). Remote physical device fingerprinting. IEEE

Transactions on Dependable and Secure Computing, 2(2), 93-108.

Kumar, P., Krishna, P. R., & Raju, B. S. (2010). A New Similarity Metric for Sequential Data.

International Journal of Data Wharehousing and Mining, 6(4), 16-32.

Kumpošt, M. (2007). Data Preparation for User Profiling from Traffic Log. Proceedings of The

International Conference on Emerging Security Information, Systems, and Technologies

(pp. 89-94).Valencia, Spain: Conference Publishing Services (CPS).

Kumpošt, M., & Matyáš, V. (2009). User Profiling and Re-identification: Case of University-

Wide Network Analysis. Proceedings of the 6th International Conference on Trust,

Privacy and Security in Digital Business (pp. 1-10). Berlin, Heidelberg: Springer-Verlag.

http://dx.doi.org/10.1016/j.cose.2013.03.012

245

Lee, W., & Stolfo, S. (1998). Data mining approaches for intrusion detection. Proceedings of the

Seventh USENIX Security Symposium (SECURITY ’98) (Vol. 7, pp. 6-6). San Antonio,

TX: USENIX Association.

Levene M., & Loizou G. (2003). Computing the Entropy of User Navigation in the Web.

International Journal of Information Technology and Decision Making, 2(3), 459-476.

Liu, B. (2008). Web Data Mining Exploring Hyperlinks, Contents and Usage Data. Berlin,

Germany: Springer-Verlag.

Liu, J.G., & Wu, W.P. (2004). Web Usage Mining for Electronic Business Applications.

Proceedings of the Third International Conference on Machine Leaming and Cyhemetics

(pp. 1314-1318). Shanghai, China: IEEE Computer Society.

Mankin, A., Massey, D., Wu, C.-L., Wu, S. F., & Zhang, L. (2001). On Design and Evaluation of

“Intention-Driven” ICMP Traceback. Proceedings of the IEEE Int'l Conf. Computer

Comm. and Networks (pp, 159-165). Scottsdale, AZ: IEEE Computer Society.

Manku, G. S., & Motwani, R. (2002). Approximate frequency counts over data streams.

Proceedings of the 28th Very Large Data Bases (VLDB) Conference (pp. 346-357). Hong

kong, China: VLDB Endowment.

Melis, W. J. C., Chizuwa, S., & Kameyama, M. (2009). Evaluation of Hierarchical Temporal

Memory for a Real World Application. Fourth International Conference on Innovative

Computing, Information and Control (pp. 144 -147). Kaohsiung, Taiwan: IEEE

Computer Society.

Mobasher, B., Cooley, R., & Srivastava, J. (1999). Creating Adaptive Web Sites Through Usage-

Based Clustering of URLs. Proceedings of the 1999 IEEE Knowledge and Data

Engineering Exchange Workshop (pp. 19-25). Chicago, Illinois: IEEE Computer Society.

Moffat, A. (1990). Implementing the PPM Data Compression Scheme. IEEE Transactions on

Communications, 38(11), 1917-1921.

Mukund, D., & George, K. (2004). Selective Markov Models for Predicting Web-Page Accesses.

ACM Transactions on Internet Technology, 4, 163-184.

Nakhjiri, M., & Nakhjiri, M. (2005). AAA and Network Security for Mobile Access: Radius,

Diameter, EAP, PKI and IP Mobility. West Sussex, England: John Wiley & Sons.

Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C. (2001).

PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth.

International Conference Data Engineering (ICDE'01) (pp. 215-224). Heidelberg,

Germany: IEEE Computer Society.

246

Peng, T., Leckie, C., & Ramamohanarao, K. (2007). Survey of Network-Based Defense

Mechanisms Countering the DoS and DDoS Problems. ACM Computing Surveys

(CSUR), 39(1), Article 3.

Pitkow, J. (1997). In Search for Reliable Usage Data on the WWW. Proceedings of the Sixth

International WWW Conference (pp. 451-463). Santa Clara, CA: Georgia Institute of

Technology.

Pitkow, J., & Pirolli, P. (1999). Mining Longest Repeating Subsequence to Predict world wide

web surfing. Proceedings. of USITS' 99: The 2nd USENIX Symposium on Internet

Technologies & Systems (Vo.l 2, pp. 13-13). Boulder, CO: USENIX Association.

Price, D.J de S., (1976). A general theory of bibliometric and other cumulative advantage

processes. Journal of the American Society for Information Science, 27(5), 292-306.

Ravasz, E., Barabasi, A.L. (2003). Hierarchical Organization in Complex Networks. Physical

Review E Journal, 67(2), 1-7.

Riesenhuber, M. & Poggio, T. (1999). Hierarchical models of object recognition in cortex.

Nature Neuroscience, 2, 1019–1025.

Ron, D., Singer, Y., Tishby, N. (1996). The Power of Amnesia: Learning Probabilistic Automata

with Variable Memory Length. Machine Learning, 25, 117-149.

Rosenstein, M. (2000). What is Actually Taking Place in Web Sites: E-Commerce Lessons from

Web Server Logs. ACM Conference on Electronic Commerce (pp. 38-43). Minneapolis,

Minnesota: ACM.

Santhanam, L., Kumar, A., & Agrawal, D. P. (2006). Taxonomy of IP Traceback. Journal of

Information Assurance and Security, 1, 79-94.

Sarawagi, S. (2005). Sequence data mining. In Bandyopadhyay, S., Maulik, U., Holder, L. B., &

Cook, D. J., Advanced Methods for Knowledge Discovery from Complex Data (pp. 153–

187). London, England: Springer.

Sarukkai, R. R. (2000). Link prediction and path analysis using Markov chains. Proceedings of

the 9th international World Wide Web conference on Computer networks: the

international journal of computer and telecommunications networking (pp. 377–386).

Amsterdam, Holland: Elsevier North-Holland.

Savage, S., Wetherall, D., Karlin, A., & Anderson, T. (2001). Practical Network Support for IP

Traceback. Proceedings of the ACM SIGCOM 2000, IEEE/ACM Trans. Networking (pp.

295-306). Stockholm, Sweden: ACM.

247

Snoeren, A. C., Patridge, C., Sanchez, L. A., Jones, C. E., Tchakountio, F., Kent, S. T., &

Strayer, W.T.. (2002). Hash-Based IP Traceback. Journal of IEEE/ACM Transactions

Networking, 10(6), 721-734.

Song, D., Venable, P., & Perrig, A. (1997). User recognition by keystroke latency pattern

analysis. Unpublished manuscript. Department of Computer Science, Berkley, CA.

Song. C., Havlin. S., & Makse. H. A. (2005). Self-Similarity of Complex Networks. Nature,

433(7024), 392-395.

Spiliopoulou, M., Mobasher, B., Berendt, B., & Nakagawa, M. (2003). A Framework for the

Evaluation of Session Reconstruction Heuristics in Web-Usage Analysis. INFORMS

Journal on Computing, 15(2), 171–190.

Srikant, R., & Agrawal, R. (1996). Mining Sequential Patterns: Generalizations and Performance

Improvements. Proceedings 5th International Conference Extending Database

Technology (EDBT'96) (pp. 3-17). Avignon, France: Springer-Verlag.

Srivastava, J., Cooley, R., Deshpande, M., & Tan, P.-N. (2000). Web Usage Mining: Discovery

and Applications of Usage Patterns from Web Data. ACM SIGKDD Explorations

Newsletter, 1(2), 12-23.

Stone, R. (2000). CenterTrack: An IP Overlay Network for Tracking DoS Floods. Proceedings

of the 9th Usenix Security Symposium (Vol. 9, pp. 15-15). Denver, Colorado: USENIX

Association.

Watts, D. J., & Strogatz, S. H. (1998). Collective Dynamics of Small World Networks. Nature

Journal of Science, 393, 440-442.

Xie, Y., Yu, F., & Abadi, M. (2009). De-anonymizing the Internet Using Unreliable IDs. ACM

SIGCOMM Computer Communication Review (pp. 75-86). Barcellona, Spain: ACM.

Xing, Z., Pei, J., & Keogh, E. (2010). A brief Survey on Sequence Classification. ACM

SIGKDD Explorations, 12(1), 40-48.

Yan, X., Han, J., & Afshar, R. (2003). CloSpan: Mining Closed Sequential Patterns in Large

Datasets. SIAM International Conference Data Mining (SDM'03) (pp. 166-177). San

Francisco, CA: SIAM.

Yang, Yinghui. (2010). Web user behavioral profiling for user identification. Decision Support

Systems, 49(3), 261-271.

Zaki, M. J. (2001). SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine

Learning, 32(1-2), 31-60.

	Nova Southeastern University
	NSUWorks
	2014

	The User Attribution Problem and the Challenge of Persistent Surveillance of User Activity in Complex Networks
	Claudio Taglienti
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1444354927.pdf.wG3_T

