450 research outputs found

    On clustering levels of a hierarchical categorical risk factor

    Full text link
    Handling nominal covariates with a large number of categories is challenging for both statistical and machine learning techniques. This problem is further exacerbated when the nominal variable has a hierarchical structure. The industry code in a workers' compensation insurance product is a prime example hereof. We commonly rely on methods such as the random effects approach (Campo and Antonio, 2023) to incorporate these covariates in a predictive model. Nonetheless, in certain situations, even the random effects approach may encounter estimation problems. We propose the data-driven Partitioning Hierarchical Risk-factors Adaptive Top-down (PHiRAT) algorithm to reduce the hierarchically structured risk factor to its essence, by grouping similar categories at each level of the hierarchy. We work top-down and engineer several features to characterize the profile of the categories at a specific level in the hierarchy. In our workers' compensation case study, we characterize the risk profile of an industry via its observed damage rates and claim frequencies. In addition, we use embeddings (Mikolov et al., 2013; Cer et al., 2018) to encode the textual description of the economic activity of the insured company. These features are then used as input in a clustering algorithm to group similar categories. We show that our method substantially reduces the number of categories and results in a grouping that is generalizable to out-of-sample data. Moreover, when estimating the technical premium of the insurance product under study as a function of the clustered hierarchical risk factor, we obtain a better differentiation between high-risk and low-risk companies

    Clustering of Time Series Data: Measures, Methods, and Applications

    Get PDF
    Clustering is an essential branch of data mining and statistical analysis that could help us explore the distribution of data and extract knowledge. With the broad accumulation and application of time series data, the study of its clustering is a natural extension of existing unsupervised learning heuristics. We discuss the components which configure the clustering of time series data, specifically, the similarity measure, the clustering heuristic, the evaluation of cluster quality, and the applications of said heuristics. Being the groundwork for the task of data analysis, we propose a scalable and efficient time series similarity measure: segmented-Dynamic Time Warping. For time series clustering, we formulate the Distance Density Clustering heuristic, a deterministic clustering algorithm that adopts concepts from both density and distance separation. In addition, we explored the characteristics and discussed the limitations of existing cluster evaluation methods. Finally, all components lead to the goal of real-world applications

    Service quality dealer identification: the optimization of K-Means clustering

    Get PDF
    Service quality and customer satisfaction directly influence company branding, reputation and customer loyalty. As a liaison between producers and consumers, dealers must preserve valuable consumer relationships to increase customer satisfaction and adherence. Lack of comprehensive measurement and standardization regarding service quality emerges as a consideration issue towards the company service excellence. Therefore, identifying the service quality performance and grouping develops into valuable contributions in decision-making to control and enhance the company's intention. This study applies the K-Means Algorithm by optimizing the number of clusters in identifying dealer service quality performance. Hence, the ultimate service quality formation will be performed. The analysis found three dealer identification categories, including Cluster One, with 125 dealers grouped as good performance; Cluster Two, with 30 dealers grouped as very good performance; and Cluster Three, with 38 dealers grouped as not good performance. In order to evaluate the efficacy of optimum k value, the lists of testing approaches are conducted and compared, whereby Calinski-Harabasz, Elbow, Silhouette Score, and Davies-Bouldin Index (DBI) contribute in k=3. As a result, the optimum clusters are determined through the highest performance of k values as three. These three clusters have successfully identified the service quality level of dealers effectively and administered the company guidelines for corrective actions and improvements in customer service quality instead of the standardized normal distribution grouping calculation.

    A New Clustering Algorithm Based on Regions of Influence with Self-Detection of the Best Number of Clusters

    No full text
    6 pagesInternational audienceClustering methods usually require to know the best number of clusters, or another parameter, e.g. a threshold, which is not ever easy to provide. This paper proposes a new graph-based clustering method called ``GBC'' which detects automatically the best number of clusters, without requiring any other parameter. In this method based on regions of influence, a graph is constructed and the edges of the graph having the higher values are cut according to a hierarchical divisive procedure. An index is calculated from the size average of the cut edges which self-detects the more appropriate number of clusters. The results of GBC for 3 quality indices (Dunn, Silhouette and Davies-Bouldin) are compared with those of K-Means, Ward's hierarchical clustering method and DBSCAN on 8 benchmarks. The experiments show the good performance of GBC in the case of well separated clusters, even if the data are unbalanced, non-convex or with presence of outliers, whatever the shape of the clusters

    A Machine Learning-Based Framework for Clustering Residential Electricity Load Profiles to Enhance Demand Response Programs

    Full text link
    Load shapes derived from smart meter data are frequently employed to analyze daily energy consumption patterns, particularly in the context of applications like Demand Response (DR). Nevertheless, one of the most important challenges to this endeavor lies in identifying the most suitable consumer clusters with similar consumption behaviors. In this paper, we present a novel machine learning based framework in order to achieve optimal load profiling through a real case study, utilizing data from almost 5000 households in London. Four widely used clustering algorithms are applied specifically K-means, K-medoids, Hierarchical Agglomerative Clustering and Density-based Spatial Clustering. An empirical analysis as well as multiple evaluation metrics are leveraged to assess those algorithms. Following that, we redefine the problem as a probabilistic classification one, with the classifier emulating the behavior of a clustering algorithm,leveraging Explainable AI (xAI) to enhance the interpretability of our solution. According to the clustering algorithm analysis the optimal number of clusters for this case is seven. Despite that, our methodology shows that two of the clusters, almost 10\% of the dataset, exhibit significant internal dissimilarity and thus it splits them even further to create nine clusters in total. The scalability and versatility of our solution makes it an ideal choice for power utility companies aiming to segment their users for creating more targeted Demand Response programs.Comment: 29 pages, 19 figure

    LinkCluE: A MATLAB Package for Link-Based Cluster Ensembles

    Get PDF
    Cluster ensembles have emerged as a powerful meta-learning paradigm that provides improved accuracy and robustness by aggregating several input data clusterings. In particular, link-based similarity methods have recently been introduced with superior performance to the conventional co-association approach. This paper presents a MATLAB package, LinkCluE, that implements the link-based cluster ensemble framework. A variety of functional methods for evaluating clustering results, based on both internal and external criteria, are also provided. Additionally, the underlying algorithms together with the sample uses of the package with interesting real and synthetic datasets are demonstrated herein.

    Noise resistant generalized parametric validity index of clustering for gene expression data

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Validity indices have been investigated for decades. However, since there is no study of noise-resistance performance of these indices in the literature, there is no guideline for determining the best clustering in noisy data sets, especially microarray data sets. In this paper, we propose a generalized parametric validity (GPV) index which employs two tunable parameters α and β to control the proportions of objects being considered to calculate the dissimilarities. The greatest advantage of the proposed GPV index is its noise-resistance ability, which results from the flexibility of tuning the parameters. Several rules are set to guide the selection of parameter values. To illustrate the noise-resistance performance of the proposed index, we evaluate the GPV index for assessing five clustering algorithms in two gene expression data simulation models with different noise levels and compare the ability of determining the number of clusters with eight existing indices. We also test the GPV in three groups of real gene expression data sets. The experimental results suggest that the proposed GPV index has superior noise-resistance ability and provides fairly accurate judgements
    corecore