52 research outputs found

    Two Approaches to Building Time-Windowed Geometric Data Structures

    Get PDF
    Given a set of geometric objects each associated with a time value, we wish to determine whether a given property is true for a subset of those objects whose time values fall within a query time window. We call such problems time-windowed decision problems, and they have been the subject of much recent attention, for instance studied by Bokal, Cabello, and Eppstein [SoCG 2015]. In this paper, we present new approaches to this class of problems that are conceptually simpler than Bokal et al.\u27s, and also lead to faster algorithms. For instance, we present algorithms for preprocessing for the time-windowed 2D diameter decision problem in O(n log n) time and the time-windowed 2D convex hull area decision problem in O(n alpha(n) log n) time (where alpha is the inverse Ackermann function), improving Bokal et al.\u27s O(n log^2 n) and O(n log n loglog n) solutions respectively. Our first approach is to reduce time-windowed decision problems to a generalized range successor problem, which we solve using a novel way to search range trees. Our other approach is to use dynamic data structures directly, taking advantage of a new observation that the total number of combinatorial changes to a planar convex hull is near linear for any FIFO update sequence, in which deletions occur in the same order as insertions. We also apply these approaches to obtain the first O(n polylog n) algorithms for the time-windowed 3D diameter decision and 2D orthogonal segment intersection detection problems

    On the Extremal Functions of Acyclic Forbidden 0--1 Matrices

    Full text link
    The extremal theory of forbidden 0--1 matrices studies the asymptotic growth of the function Ex(P,n)\mathrm{Ex}(P,n), which is the maximum weight of a matrix A{0,1}n×nA\in\{0,1\}^{n\times n} whose submatrices avoid a fixed pattern P{0,1}k×lP\in\{0,1\}^{k\times l}. This theory has been wildly successful at resolving problems in combinatorics, discrete and computational geometry, structural graph theory, and the analysis of data structures, particularly corollaries of the dynamic optimality conjecture. All these applications use acyclic patterns, meaning that when PP is regarded as the adjacency matrix of a bipartite graph, the graph is acyclic. The biggest open problem in this area is to bound Ex(P,n)\mathrm{Ex}(P,n) for acyclic PP. Prior results have only ruled out the strict O(nlogn)O(n\log n) bound conjectured by Furedi and Hajnal. It is consistent with prior results that P.Ex(P,n)nlog1+o(1)n\forall P. \mathrm{Ex}(P,n)\leq n\log^{1+o(1)} n, and also consistent that ϵ>0.P.Ex(P,n)n2ϵ\forall \epsilon>0.\exists P. \mathrm{Ex}(P,n) \geq n^{2-\epsilon}. In this paper we establish a stronger lower bound on the extremal functions of acyclic PP. Specifically, we give a new construction of relatively dense 0--1 matrices with Θ(n(logn/loglogn)t)\Theta(n(\log n/\log\log n)^t) 1s that avoid an acyclic XtX_t. Pach and Tardos have conjectured that this type of result is the best possible, i.e., no acyclic PP exists for which Ex(P,n)n(logn)ω(1)\mathrm{Ex}(P,n)\geq n(\log n)^{\omega(1)}

    Largest Similar Copies of Convex Polygons in Polygonal Domains

    Get PDF
    Given a convex polygon with k vertices and a polygonal domain consisting of polygonal obstacles with n vertices in total in the plane, we study the optimization problem of finding a largest similar copy of the polygon that can be placed in the polygonal domain without intersecting the obstacles. We present an upper bound O(k1

    Computational Geometry Column 34

    Get PDF
    Problems presented at the open-problem session of the 14th Annual ACM Symposium on Computational Geometry are listed

    On the Complexity of Randomly Weighted Voronoi Diagrams

    Full text link
    In this paper, we provide an O(npolylogn)O(n \mathrm{polylog} n) bound on the expected complexity of the randomly weighted Voronoi diagram of a set of nn sites in the plane, where the sites can be either points, interior-disjoint convex sets, or other more general objects. Here the randomness is on the weight of the sites, not their location. This compares favorably with the worst case complexity of these diagrams, which is quadratic. As a consequence we get an alternative proof to that of Agarwal etal [AHKS13] of the near linear complexity of the union of randomly expanded disjoint segments or convex sets (with an improved bound on the latter). The technique we develop is elegant and should be applicable to other problems

    Non-uniform Geometric Set Cover and Scheduling on Multiple Machines

    Get PDF
    We consider the following general scheduling problem studied recently by Moseley. There are nn jobs, all released at time 00, where job jj has size pjp_j and an associated arbitrary non-decreasing cost function fjf_j of its completion time. The goal is to find a schedule on mm machines with minimum total cost. We give an O(1)O(1) approximation for the problem, improving upon the previous O(loglognP)O(\log \log nP) bound (PP is the maximum to minimum size ratio), and resolving the open question of Moseley. We first note that the scheduling problem can be reduced to a clean geometric set cover problem where points on a line with arbitrary demands, must be covered by a minimum cost collection of given intervals with non-uniform capacity profiles. Unfortunately, current techniques for such problems based on knapsack cover inequalities and low union complexity, completely lose the geometric structure in the non-uniform capacity profiles and incur at least an Ω(loglogP)\Omega(\log\log P) loss. To this end, we consider general covering problems with non-uniform capacities, and give a new method to handle capacities in a way that completely preserves their geometric structure. This allows us to use sophisticated geometric ideas in a black-box way to avoid the Ω(loglogP)\Omega(\log \log P) loss in previous approaches. In addition to the scheduling problem above, we use this approach to obtain O(1)O(1) or inverse Ackermann type bounds for several basic capacitated covering problems

    Sparse Euclidean Spanners with Optimal Diameter: A General and Robust Lower Bound via a Concave Inverse-Ackermann Function

    Get PDF

    Network Farthest-Point Diagrams

    Full text link
    Consider the continuum of points along the edges of a network, i.e., an undirected graph with positive edge weights. We measure distance between these points in terms of the shortest path distance along the network, known as the network distance. Within this metric space, we study farthest points. We introduce network farthest-point diagrams, which capture how the farthest points---and the distance to them---change as we traverse the network. We preprocess a network G such that, when given a query point q on G, we can quickly determine the farthest point(s) from q in G as well as the farthest distance from q in G. Furthermore, we introduce a data structure supporting queries for the parts of the network that are farther away from q than some threshold R > 0, where R is part of the query. We also introduce the minimum eccentricity feed-link problem defined as follows. Given a network G with geometric edge weights and a point p that is not on G, connect p to a point q on G with a straight line segment pq, called a feed-link, such that the largest network distance from p to any point in the resulting network is minimized. We solve the minimum eccentricity feed-link problem using eccentricity diagrams. In addition, we provide a data structure for the query version, where the network G is fixed and a query consists of the point p.Comment: A preliminary version of this work was presented at the 24th Canadian Conference on Computational Geometr

    Kinetic Voronoi Diagrams and Delaunay Triangulations under Polygonal Distance Functions

    Full text link
    Let PP be a set of nn points and QQ a convex kk-gon in R2{\mathbb R}^2. We analyze in detail the topological (or discrete) changes in the structure of the Voronoi diagram and the Delaunay triangulation of PP, under the convex distance function defined by QQ, as the points of PP move along prespecified continuous trajectories. Assuming that each point of PP moves along an algebraic trajectory of bounded degree, we establish an upper bound of O(k4nλr(n))O(k^4n\lambda_r(n)) on the number of topological changes experienced by the diagrams throughout the motion; here λr(n)\lambda_r(n) is the maximum length of an (n,r)(n,r)-Davenport-Schinzel sequence, and rr is a constant depending on the algebraic degree of the motion of the points. Finally, we describe an algorithm for efficiently maintaining the above structures, using the kinetic data structure (KDS) framework
    corecore