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Abstract
We consider the following general scheduling problem stud-
ied recently by Moseley [27]. There are n jobs, all released
at time 0, where job j has size pj and an associated arbitrary
non-decreasing cost function fj of its completion time. The
goal is to find a schedule on m machines with minimum to-
tal cost. We give an O(1) approximation for the problem,
improving upon the previous O(log log nP ) bound (P is the
maximum to minimum size ratio), and resolving the open
question in [27].

We first note that the scheduling problem can be reduced
to a clean geometric set cover problem where points on a line
with arbitrary demands, must be covered by a minimum cost
collection of given intervals with non-uniform capacity pro-
files. Unfortunately, current techniques for such problems
based on knapsack cover inequalities and low union com-
plexity, completely lose the geometric structure in the non-
uniform capacity profiles and incur at least an Ω(log logP )
loss.

To this end, we consider general covering problems with
non-uniform capacities, and give a new method to handle
capacities in a way that completely preserves their geometric
structure. This allows us to use sophisticated geometric ideas
in a black-box way to avoid the Ω(log logP ) loss in previous
approaches. In addition to the scheduling problem above, we
use this approach to obtain O(1) or inverse Ackermann type
bounds for several basic capacitated covering problems.

1 Introduction
Recently, Moseley [27] considered the following general
scheduling problem on multiple machines, that captures a
wide class of problems studied previously, and much more.
There are n jobs, all released at time 0, and there arem iden-
tical machines. Each job j ∈ [n] has a processing require-
ment or size pj and an associated arbitrary non-decreasing,
non-negative cost function fj . The goal is to find a sched-
ule that minimizes

∑
j fj(cj), where cj is the completion
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time of job j. As fj can be completely arbitrary and
job dependent, this models several well-studied objectives
such as arbitrary functions of weighted completion times,
weighted tardiness, hard deadlines, their mixtures and so on
[4, 23, 27]. Here we allow jobs to be preempted and migrated
across machines: a simple reduction from the Partition prob-
lem shows that no finite approximation is possible otherwise.
We refer to this as the General Scheduling Problem (GSP).

In the simpler single machine setting, the problem was
considered by Bansal and Pruhs [4], who gave an O(1) ap-
proximation, based on a strong LP relaxation based on Knap-
sack cover (KC) inequalities and viewing the constraints in a
geometric way. They also gave an O(log logP ) approxima-
tion, where P is the ratio of the maximum to minimum job
size, when jobs have arbitrary release times rj . Building on
this formulation and underlying geometric ideas, there have
been several improvements and breakthrough results on var-
ious classic scheduling problems [7, 19, 22, 16, 21, 1].

The multiple machine setting however seems much
harder and the LP relaxation that works for the single ma-
chine case is too weak here. Until the recent work of Mose-
ley [27], where he introduced new job-cover inequalities,
no good LP relaxation was known. In fact, we still do not
know of any good LP for arbitrary release times, and finding
one seems to be a challenging open question. Based on this
new formulation, and using a sophisticated rounding based
on quasi-uniform sampling [30, 14], Moseley obtained an
O(log log nP ) approximation for GSP.

1.1 Our Results We give anO(1) approximation for GSP,
answering an open question of Moseley [27].

THEOREM 1.1. There is anO(1) approximation for GSP on
multiple machines with migration, when all the jobs have
identical release times.

Our starting point is an observation that the job-cover in-
equalities in [27] can be viewed in a clean geometric way.
This allows us to reduce GSP (up to O(1) factors) to a prob-
lem of covering demands on a line by intervals that have tri-
angular or rectangular capacities (see Figure 1). Formally,
consider the following TRC problem. The input consists of
points on a line, and a collection of intervals. A point p has
demand dp, and an interval z = [az, bz] has cost wz , and it
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contributes capacity cz(p) to p ∈ z. Let us call cz the ca-
pacity profile or simply profile of z. The profiles are either
(i) rectangular, i.e. cz(p) = c for all p ∈ z, or (ii) triangular
with slope 1, i.e. cz(p) = p − az or cz(p) = bz − p. Find a
minimum cost subset Z of intervals so that each demand is
satisfied, i.e.

∑
z∈Z cz(p) ≥ dp for all p.

In other words, the TRC problem is the same as the well-
studied UFP-cover problem on a line [6, 13, 21], except that
the capacity profiles of intervals can be non-uniform, and in
particular, triangular with slope 1.

We show the following reduction, which implies that to
prove Theorem 1.1, it suffices to obtain an O(1) approxima-
tion for TRC.

THEOREM 1.2. For any α ≥ 1, an α approximation for
TRC implies a 12α approximation for GSP.

Capacitated set cover. This leads us to consider the
TRC problem, and more general covering problems with
non-uniform capacities.

A very general and systematic approach for capacitated
covering problems, based on KC inequalities [12], was de-
veloped by Chakrabarty et al. [13]. They show that any ca-
pacitated covering instance I can be reduced to multiple (un-
capacitated) set cover sub-instances, where (roughly speak-
ing) each resulting sub-instance corresponds to a different
capacity scale in I . If sets in I have uniform capacities,
i.e. cz(p) = cz for all p ∈ z, then each set lies in a different
sub-instance and hence an α-approximate solution to each
of the sub-instances can be combined to obtain an O(α)-
approximation for I .

Unfortunately, this framework gives much worse results
when the set capacities are non-uniform, as a set S can
now lie in multiple sub-instances, and combining these sub-
instances can lead to up to an O(logC) loss in general
(where C is the maximum to minimum capacity ratio). In
the case of TRC, one can additionally exploit the geometric
structure of profiles (using non-trivial ideas from quasi-
uniform sampling) to reduce this loss to O(log logC), but
this seems to be the limit of this approach. This was also
the implicit reason for the log log nP loss in the result in
[27]. It is useful to contrast this with UFP-cover on a line
with uniform capacities, for which there are several different
O(1) approximations [6, 13, 21].

Handling non-uniform capacities. Our main contri-
bution is a new general way to reduce non-uniform capac-
itated covering problems to (uncapacitated) set cover prob-
lems, that preserves the structure of capacities in the origi-
nal instance. This allows us to use sophisticated geometric
machinery based on low union/shallow-cell complexity and
small ε-nets in a black box way, to avoid the losses inherent
in previous approaches. In particular, this directly gives an
O(1) approximation for TRC, and other non-trivial approxi-
mation results for much more general problems.

We now state our general result. Even though this
reduction is combinatorial, it is best stated in geometric
terms.

THEOREM 1.3. Consider an instance I of covering de-
mands dp of points p ∈ Rd with a minimum cost collection of
sets z with capacity profiles cz(p). With each set z, associate
an induced object in Rd+1 given by ∪p(p× [0, cz(p)]).

Then, there is an efficiently constructible set cover in-
stance P in Rd+1 with sets corresponding to the objects in-
duced by the profiles z, that satisfies the following property:
any γ-approximation for P based on rounding the standard
LP relaxation for set cover, gives a 9γ-approximation for I.

Intuitively, this means that we can simply include the capac-
ity profile of a set into its shape, and work with these new
induced (uncapacitated) sets. For example, in the TRC prob-
lem, the induced objects simply becomes rectangles and tri-
angles. See for example, the right half of Figure 1, which
shows the induced objects corresponding to the sets for the
instance on the left. More formally, for the profile cz(p) = cz
for p ∈ [az, bz], the induced object is an axis-parallel rect-
angle with corners (az, 0) and (bz, c). Similarly if cz(p) =
bz − p for p ∈ [az, bz], the induced object is a (right an-
gled isosceles) triangle with vertices (az, 0), (az, bz − az)
and (bz, 0).

As the union complexity (see definitions below) of any t
such triangles will be easily seen to be O(t) (if the triangles
have arbitrary slopes, instead of all slopes 1 as in the TRC
problem), the known results for geometric set cover with
low union complexity [30, 14, 5] directly give the following
result, which together with Theorem 1.2 gives Theorem 1.1.

THEOREM 1.4. There is a O(1)-approximation for the TRC
problem (even if the triangles are allowed to have different
slopes).

More generally, there has been extensive work on geo-
metric set cover where the underlying sets (objects) have low
union complexity, or more generally shallow-cell complex-
ity, and for unweighted geometric set cover where the dual
of the underlying set system has small ε-nets (we give the
relevant definitions in Section 1.2). In particular, Theorem
1.3 together with the results of Varadarajan [30, 14, 5] for
weighted set cover with low union complexity objects gives
the following result.

THEOREM 1.5. Consider an instance I of covering de-
mands dp of n points p ∈ Rd with a minimum cost collec-
tion of profiles (or sets) z having capacities cz(p). If the
union complexity of any t of the induced objects in Rd+1 is
O(tφ(t)), then I has a O(log φ(n)) approximation.

This also directly extends to the more general shallow-cell
complexity framework of Chan et al. [14] in a straightfor-
ward way. Similarly, for unweighted or minimum cardinal-
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u

dv = 7

v

z2
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Figure 1: 1. A TRC instance with Z = {z1, z2, z3} and two points u, v. The solution {z2, z3} is feasible since
z2(u) + z3(u) = 2 + 0 ≥ 1 = du and z2(v) + z3(v) = 5 + 2 = 7 = dv .
2. The (uncapacitated) set cover problem resulting from the TRC instance. The points to be covered are qu,i, qv,i for i = 1, 2
and the sets are z′1, z

′
2, z
′
3.

ity set cover problems, the framework of Brönnimann and
Goodrich [10] and Even et al. [18] gives the following.

THEOREM 1.6. Consider an instance I of covering de-
mands dp of n points p ∈ Rd with a minimum cardinal-
ity collection of profiles (or sets) z having capacities cz(p).
If the dual system of the induced objects has ε-nets of size
(1/ε)Φ(1/ε), then there is an LP-based O(Φ(OPT )) ap-
proximation for I.

There is a rich history of results proving near linear union
complexity for many natural geometric set systems including
half-spaces in R3 and R2, fat objects in R2 [2], pseudo-
disks in the plane with few intersections [25] and so on,
leading to obtain better guarantees for a variety of covering
problems. Similarly, many natural geometric set systems
admit small ε-nets. In general, as any set system of VC-
dimension d admits ε-nets of size O((d/ε) log(1/ε)) [20, 8],
this immediately gives a O(d logOPT ) approximation for
such systems. More importantly, much smaller ε-nets are
known for many natural geometric set systems such as
planar disks and pseudo-disks [28], axis-parallel rectangles
and fat triangles in R2 [3], and axis-parallel boxes, axis-
aligned octants and unit cubes in R3 [3, 9]; giving improved
guarantees for such systems for covering problems [10, 18,
17, 24].

Some consequences. Even though Theorems 1.5 and 1.6
follow easily from Theorem 1.3, some of the consequences
are quite surprising. In Table 1 we list some of these non-
trivial consequences. In particular, we have the following.

THEOREM 1.7. There is an O(1) approximation for cover-
ing points in R2 with arbitrary demands with linear capacity
profiles of the form c(x, y) = max(0, ax + by + d). For
points in R, there is an O(log s) approximation if the pro-
files are piecewise linear functions with s pieces. If the pro-
files are polynomial curves of degree at most s, there is an
Õ(α(n)bs/2c−1) approximation, where α(n) is the inverse
Ackermann function and Õ(·) hides a logα(n) factor.

Some of these results also use some additional proper-
ties satisfied by the reduction in Theorem 1.3, such as that
we can split an object into O(1) objects to simplify the ge-
ometry while losing only an O(1) approximation. In some
cases, such as s-piece-wise linear profiles, we can even split
an object into s pieces while only losing an O(log s) fac-
tor, due to an interesting property of union complexity [15].
Our approach also subsumes the framework of Chakrabarty
et al. [13] for uniform capacity profiles and just as in [13],
the slack obtained from KC inequalities can be used to round
the capacities to integer powers of 2. We discuss these con-
sequences in more detail in Section 3.2.

In general, given the ubiquity of capacitated covering
problems in resource allocation and scheduling, and exten-
sive work on geometric problems, we expect that our con-
nection will have more applications.

1.2 Preliminaries We now describe some notations and
basic results that we will need.

A crucial distinction will be between set-cover and
capacitated set cover. By set cover we will always mean
an instance where the capacity of every set z is exactly 1. An
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Type of capacity profile Universe Approximation ratio
Piece-wise linear functions with s pieces R O(log s)

Polynomial curves of degree at most s ≥ 2 R O((α(n))k−1) for s = 2k
O((α(n))k−1 logα(n)) for s = 2k + 1

Linear functions R2 O(1)

Table 1: Some applications of our result, here α(n) is the inverse of Ackermann’s function

element p has some covering requirement mp ≥ 1, which
means that it should be covered with at least mp distinct sets
to be satisfied (strictly speaking, this should be called multi-
cover, but we use set cover to avoid clutter with too many
variants of set cover, and as far as we know all results that
hold for set cover also hold for multi-cover.)

In a capacitated set cover problem, the elements have
arbitrary demands dp and sets have capacity profile (or
function) cz(·). We call the problem non-uniform if cz(p)
for p ∈ z can depend on p, and uniform if cz(p) = cz for all
p ∈ z. To make the distinction even clearer, note that we use
the notation dp and mp to distinguish the demands of points
in capacitated and uncapacitated versions.

Knapsack-cover (KC) inequalities. Capacities can make a
covering problem much harder. Already for a single element,
we get the NP-hard Knapsack Cover problem (given items
with cost wi and size ci, find a minimum cost subset of items
to cover a knapsack of size d). The following natural LP
relaxation for it

min
∑
i

xiwi s.t.
∑
i

cixi ≥ d xi ∈ [0, 1], ∀i ∈ [n]

has an arbitrarily large integrality gap. The following
stronger LP based on exponentially many KC inequalities,
was introduced by Carr et al., [12] and they showed that this
reduces the integrality gap to 2.

min
∑
i

xiwi s.t.
∑
i/∈S

min(pi, d− p(S))xi ≥ d− p(S)

∀S ⊂ [n], p(S) ≤ d xi ∈ [0, 1], ∀i ∈ [n]

where p(S) =
∑
i∈S pi. Roughly, the inequalities say that

even if all the items in S are chosen, the residual demand of
d−p(S) must still be covered by items not in S. Even though
exponentially large, the LP can be solved to any accuracy in
polynomial time. These inequalities have been very useful
for various capacitated covering problems. An alternate
perspective using primal-dual and local ratio methods is in
[11, 6].

Geometric set cover. We will be interested in settings
where the sets correspond to geometric objects in Rd, in
fixed dimension d, such as rectangles, triangles, boxes and
so on. Given a collection X of such geometric objects,

the union complexity of X is the number of faces of all
dimensions (vertices, edges and so on) on the boundary of
the object formed by the union of all objects in X . We say
that a geometric set system has union complexity function
φ(·), if for every t, every collection of t sets has union
complexity at most tφ(t).

In a breakthrough result [30], Varadarajan developed
a powerful quasi-uniform sampling technique to give im-
proved bounds for geometric set cover problems with low
union complexity. This was extended to more general
shallow-cell complexity [14]1 and to multi-cover [5]. These
results give the following.

THEOREM 1.8. There is a polynomial time LP-based
O(log φ(n)) approximation for instances of geometric set
cover on n points, where the set system has union complexity
function φ(·).

For several natural geometric objects in 2 and 3 dimensions
(axis-parallel rectangles, fat triangles, disks etc.), φ(t) is
typically O(1) or O(log t) [30], leading to better O(1) or
O(log log n) approximations.
ε-nets defined below have been very useful for understand-
ing the complexity of geometric set systems.

DEFINITION 1.1. For a set system X , Y ⊆ X is said to
be an ε-net if Y covers all elements which are covered by
at least an ε-fraction of the sets in X i.e. if e ∈ Y for all
elements e satisfying |{X : e ∈ X}| ≥ ε|X|.

Bronnimann and Goodrich [10] showed (theorem 1.9) that
a set system (U,F ) admits good approximations for un-
weighted set cover if the dual system has small ε-nets. Here
the dual system to (U,F ) is the system (U∗, F ∗) where
U∗ = F and F ∗ consists of the sets {S ∈ F : e ∈ S}
for each e ∈ U .

THEOREM 1.9. Suppose for a set system (U,F ), an ε-net
of size (1/ε)Φ(1/ε) can be found for the dual system in
polynomial time for any ε > 02. Then the unweighted set
cover problem for (U,F ) admits an LP-based O(Φ(OPT ))
approximation.

1We do not discuss this here to keep the exposition simple, but Theorem
1.5 also works directly in this setting.

2Techincally, this requires an ε-net with respect to weights of the sets,
but this is not an issue in natural applications.
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1.3 Organization and Overview The rest of the paper is
organized as follows. In Section 2, we consider the GSP
problem and show that it reduces to the TRC problem. In
Section 3, we give the reduction from non-uniform capaci-
tated geometric set cover to geometric set cover, and prove
our main result Theorem 1.3. In Section 3.1, we show how
Theorem 1.4 for TRC follows from Theorem 1.5, and in
Section 3.2 we give other applications of our results beyond
TRC, and describe some additional useful properties of the
reduction in Theorem 1.3.

2 Geometric view of GSP
We now consider the GSP problem. The jobs are indexed
1, . . . , n, and all are released at time 0. Without loss of
generality, we assume that all job sizes pj are integers, and
time is slotted, referring to the time interval (i− 1, i] as time
i. As pj are integers, we can assume that at most one job
executes at any slot on any machine, and that the functions
fj are defined on non-negative integers.

As the objective
∑
j fj(cj) only depends on the com-

pletion times cj , solving GSP is equivalent to finding dead-
lines cj , so that each job j can be feasibly scheduled by
cj , and

∑
j fj(cj) is minimized. By standard preprocess-

ing, see e.g. [4], losing at most factor 2 in the objective, we
can assume that fj(x) is piece-wise constant and takes at
most O(log n) values3). So for each j, it suffices to consider
k = O(log n) candidate deadlines cj,0, . . . , cj,k. Here, cj,0
is the latest time until which fj(x) = 0.

Let v =
∑
j pj . A key result of Moseley was the

following characterization of feasible deadlines.

THEOREM 2.1. ([27]) Given a set of deadlines cj , a feasi-
ble schedule exists iff the following holds:∑

j∈[n]

min(pj ,max(cj − b, 0)) ≥
∑
j∈[n]

pj −mb(2.1)

for all b = 0, 1, . . . , v.

This result is based on considering a flow network to find a
feasible schedule, and observing that any min-cut must have
a specific form. For completeness, we give a proof in the
Appendix A.

The geometric reduction. We show that the feasibility
condition (2.1) has a clean geometric view. We first define a
wedge. For parameters p, c, let a wedge up,c be the following
function (see Figure 2).

up,c(t) = min(p, c− t) for t ≤ c, and 0 otherwise.

In other words, up,c is decreasing at slope 1 from t =
min(c − p, 0) to t = c, and is constant with value min(p, c)
from t = 0 to t = min(c− p, 0).

3Roughly, we can round fj(x) to powers of 2 or down to 0 if fj(x) ≤
Opt/n, where Opt is some guessed upper bound on the optimum value.

A key observation is that (2.1) can be viewed equiva-
lently as follows.

OBSERVATION 2.1. Given a candidate deadline cj for each
job j, consider the wedge upj ,cj . Consider each point
b = 0, 1, . . . , v, with demand db =

∑
j pj −mb. Then the

collection of deadlines cj are feasible iff the wedges satisfy
all the demands, i.e.

∑
j upj ,cj (b) ≥ db for all b.

As GSP is equivalent to finding feasible cj’s with minimum
total cost, GSP reduces (without any loss in objective) to the
following geometric wedge-cover problem: For each job j,
and every possible deadline c for j, there is a wedge upj ,c of
cost fj(c). Choose exactly one wedge for each job j so that
the demand db for each b is satisfied, and the total cost of
the chosen wedges is minimized. This is almost a covering
problem, except that exactly one wedge must be picked for
a job, which is a packing condition,. Another issue is that as
v = O(nP ), there are potentially exponentially many points
b to be covered. Both these issues are easily fixed as we show
next.

Getting a purely covering problem. First, by the
preprocessing for the fj’s described earlier, we can assume
(at the expense of losing an approximation factor of at most
2) that each job j has only k = O(log n) possible candidate
deadlines cj,0, . . . , cj,k. Moreover, these deadlines have
geometrically increasing costs fj(cj,i) ≥ 2fj(cj,i−1).

We now exploit these geometrically increasing costs and
the structure of the wedges to remove the packing constraint,
at the expense of losing a factor of at most 2. Let Wj,i

denote the wedge upj ,cj,i for job j with deadline cj,i. For
each i ∈ [k], let us define the function (profile) Tj,i =
Wj,i −Wj,i−1 and assign Ti,j cost fj(cj,i). For i = 0, set
Tj,0 = Wj,0 and assign it cost fj(cj,0) = 0. Note that Tj,i
has a “trapezoid” profile given by tj,i = upj ,cj,i − upj ,cj,i−1

(see Figure 2), with a rectangular part (possibly empty),
and up to two triangular parts, either rising or falling at
slope 1. Moreover, for any point z, the capacity of Wj,i

at z is exactly equal to the total capacity of Tj,0, . . . , Tj,i,
i.e. upj ,cj,i(z) =

∑i
g=0 tj,g(z).

We now describe the formal reduction.

Trapezoid-cover problem. Given a GSP instance, first
preprocess it and create Tj,i as defined above. Consider
the trapezoid-cover problem of finding a minimum cost
collection of Tj,i (possibly choosing several for each job j)
so that the demand db =

∑
j pj −mb for each b is satisfied.

Given a GSP instance I , let T denote the corresponding
trapezoid cover instance obtained by the reduction above.
We have the following simple relation between the value of
their optimum solutions.

LEMMA 2.1. OPT (I) ≤ OPT (T ) ≤ 4OPT (I).

Proof. Consider some feasible solution to I with value w.
After preprocessing (rounding the fj(c)), this solution, and
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pj

cj,i cj,i cj,icj,i−1

pj pj
tj,i

upj ,cj,i upj ,cj,iupj ,cj,i−1

Figure 2: 1. A single wedge Wj,i 2. Splitting into Wj,i −Wj,i−1 3. Trapezoid Tj,i

hence the corresponding wedge-cover instance has a solution
of value at most 2w. If this solution picks the wedgeWj,i for
job j, pick trapezoids Tj,g for g = 0, . . . , i in the trapezoid-
cover instance. This gives a feasible cover, and as tj,g have
geometrically increasing costs, the total cost of tj,g is at most
twice that of Wj,i. Hence OPT (T ) ≤ 4w.

Conversely, given a feasible solution to T of cost w, for
each job j let i(j) be the highest index such that Tj,i(j) is
in the cover. If no trapezoid for j is chosen, set i(j) = 0.
Then choosing the wedge Wj,i(j), for each j gives a feasible
wedge-cover with cost at most w, and hence a feasible
solution to GSP.

The TRC problem. To obtain the problem of covering
with rectangles and triangles, split each trapezoid Tj,i, into
at most one rectangle and two triangles, each with the same
cost as that of Tj,i. This loses at most another factor 3
in the approximation. Next a simple idea, whose proof
is in Appendix A, ensures that the TRC instance has size
polynomial in n and the bit-complexity of fj and pj .

LEMMA 2.2. The number of points b in the TRC instance
can be reduced to O(n log n).

Together with Lemma 2.1, this proves Theorem 1.2.

3 Non-uniform capacitated cover
We now prove Theorem 1.3, which we restate here for
convenience.

THEOREM 3.1. Consider an instance I of covering de-
mands dp of points p ∈ Rd with a minimum cost collec-
tion of profiles (or sets) z with capacities cz(p). With each
profile z, associate an induced object in Rd+1 given by
∪p(p× [0, cz(p)]).

Then, there is an efficiently constructible set cover in-
stance P in Rd+1 with sets corresponding to the objects in-
duced by the profiles z, that satisfies the following property:
any γ-approximation for P based on rounding the standard
LP relaxation, gives a 9γ-approximation for I.

To do this, we first solve an LP for I strengthened
by KC inequalities. Given some solution x to this LP

with cost w∗, we create the set cover instance P with sets
corresponding to objects induced from I as described above.
The instance P will satisfy the following two properties.
First, any feasible integral solution to P of cost w(P ) gives
a solution to I of cost at most w(P ) +O(1)w∗. Second, the
basic set cover LP for P has a feasible solution of value at
most O(1)w∗. We then show how these properties directly
imply Theorem 3.1. We now give the details.

KC LP for I. The standard LP relaxation for I has variables
xz for each set z ∈ Z, and is the following.

min
∑
z

wzxz
∑
z

cz(p)xz ≥ dp ∀p, xz ∈ [0, 1]

This has unbounded integrality gap, and we strengthen the
constraint for each p by KC inequalities to get,∑
z/∈S

min(cz(p), dp − cS(p))xz ≥ dp − cS(p)

∀p,∀S ⊂ Z, cS(p) ≤ dp

where Z denotes the collection of sets (objects) in I and for
a subset S of objects, cS(p) =

∑
z∈S cz(p).

Let x denote some optimum solution to this LP, and let
w∗ be its cost. To create instance P , we first pre-process x as
follows. Let S be the set of objects z with xz ≥ 1/β, where
β = O(1) will be specified later. We select the objects in S
integrally in the cover for I. Let d′p = max(0, dp−cS(p)) be
the residual demand of point p. Then by the KC inequalities
(applied to this set S), x satisfies the following for each p,∑

z∈Z\S

min(cz(p), d
′
p)xz ≥ d′p.

Let Z ′ denote the residual objects Z \ S, and note that
xz ≤ 1/β for each z ∈ Z ′. Consider the solution x′ where
x′z = βxz for z ∈ Z ′ (and hence x′z ≤ 1 for z ∈ Z ′). Then,
the solution x′ satisfies

(3.2) min(cz(p), d
′
p)x
′
z ≥ βd′p ∀p,

covering the residual demands d′p by an extra β factor, and
has cost at most β

∑
z∈Z′ wzxz ≤ βw∗.
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The instance P . We use x′ to create the set cover
instance P . For each z ∈ Z ′, we create the induced object
z̃ as defined in Theorem 3.1. For each point p ∈ I , we will
create multiple points qp,j for each j = 0, 1, . . . , blog2 d

′
pc,

where qp,j = (p, 2−jd′p), i.e. the first d coordinates of qp,j
are the same as that of p, and the d+1-th coordinate is 2−jd′p.

For z ∈ Z ′, we define the class cl(z, p) of z with
respect to p as the smallest non-negative integer j such that
cz(p) ≥ 2−jd′p. In other words,

cl(z, p) = j, if cz(p) ∈ [2−jd′p, 2
−j+1d′p) for j ≥ 1,

and cl(z, p) = 0 if cz(p) ≥ d′p.
We set the covering requirement of qp,j to be

mp,j = b
∑

z:cl(z,p)≤j

x′zc.

This completes the description of P . We now show that
it satisfies the properties mentioned earlier.

Let x̃ denote an LP solution induced from x′ to objects
in P by defining x̃z̃ = x′z for each z ∈ Z ′.

CLAIM 3.1. x̃ is a feasible solution for the basic set cover
LP for P .

Proof. We need to show that each qp,j is covered fractionally
to extent at least mp,j . Now, by construction of P , the point
qp,j is covered by some object z̃ iff cz(p) ≥ 2jd′p. By the
definition of mp,j and cl(z, p) this directly gives∑

z̃:qp,j∈z̃
x̃z̃ =

∑
z

x′z · 1[cz(p) ≥ 2−jd′p]

=
∑

z:cl(z,p)≤j

x′z ≥ mp,j

Let Z̃ denote the set of objects in P . Given a subset
S̃ ⊆ Z̃ of objects, let S′ denote the corresponding sets in Z ′.

CLAIM 3.2. If β ≥ 8, then given any feasible integral set
cover S̃ ⊆ Z̃ for P , the corresponding S′ satisfies the
demands d′p for each p, i.e.

∑
z∈S′ cz(p) ≥ d′p.

Proof. Fix a point p. For any j, let S̃p,j be the objects in
S̃ that cover qp,j . As S̃ is feasible, |S̃p,j | ≥ mp,j and by
construction each z ∈ Z ′ corresponding to an object in S̃p,j
has class cl(z, j) ≤ j. Let rp,j = |S̃p,j | − |S̃p,j−1| be the
number of objects of class exactly j. Here S̃p,−1 is the empty
set.

Then the capacity contributed to p by objects in S′

satisfies∑
z∈S′

cz(p) ≥
∑
j≥0

rp,j2
−jd′p =

∑
j≥0

(|S̃p,j | − |S̃p,j−1|)2−jd′p

=
∑
j≥0

|S̃p,j |2−j−1d′p ≥
∑
j≥0

mp,j2
−j−1d′p

≥

(∑
j≥0

( ∑
z:cl(z,p)≤j

x′z

)
− 1

)
2−j−1d′p

where the first inequality uses that cz(p) ≥ 2−jd′p if
cl(z, p) = j, the second inequality uses that S̃p,j ≥ mp,j

and the third inequality uses that by definition mp,j ≥
(
∑
z:cl(z,p)≤j x

′
z)− 1.

As
∑
j≥0 2−j−1d′p ≤ d′p, and lower bounding∑

z:cl(z,p)≤j x
′
z by

∑
z:cl(z,p)=j x

′
z , the quantity above is at

least ∑
j≥0

( ∑
z:cl(z,p)=j

x′z

)
2−j−1d′p − d′p

As min(cz(p), d
′
p) ≤ d′p2−j+1 if cl(z, p) = j for any j, this

is at least∑
j≥0

( ∑
z:

cl(z,p)=j

1

4
min(cz(p), d

′
p)x
′
z

)
−d′p ≥

β

4
d′p−d′p ≥ d′p

where the first inequality uses (3.2) and the second inequality
that β ≥ 8.

We can now complete the proof of Theorem 3.1. Let
S̃ ⊆ Z̃ be a γ-approximate solution for P with respect to
the basic set cover LP relaxation for P . Then by Claim
(3.1) as x̃ is a feasible LP solution, the cost of S̃ is at most
γw(x̃) = γw(x′). As x′ ≤ βx, this is at most γβw∗.
Moreover, by Claim 3.2, the solution S′ satisfies the residual
demands and hence S ∪ S′ is a feasible solution for I . As
S has cost at most βw∗, this gives an overall approximation
guarantee of (γ + 1)β ≤ 9γ for β = 8.

3.1 O(1) approximation for TRC We now apply Theo-
rem 1.3 to obtain an O(1) approximation for TRC. The TRC
instance has three types of objects: axis-aligned rectangles
and right angled triangles of slope 1 and -1 respectively (de-
note these objects by R,T (1) and T (−1) respectively). By
scaling an optimum solution to the LP relaxation by a factor
of 3, it is enough to obtain an LP-based O(1) approximation
for each one of the classes R, T (1), T (−1). It suffices to up-
per bound the union complexity byO(t) due to Theorem 1.8.

To upper bound the union complexity, consider the
upper envelope of t induced objects, and define an edge to be
a maximal connected piece of the upper envelope belonging
to the same object (see figure 3). Then clearly, the union
complexity of t induced objects is O(t+ number of edges).

To bound the number of edges, let us label them by the
objects they belong to and consider the sequence of cells
from left to right in the upper envelope of t objects. To
bound the length of the sequence, let us use the notion of
a Davenport-Schinzel sequence [29], as we will also need
this later for other applications.
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a

b

c a
b c

Capacity

a
b

a b

Figure 3: 1. Edges of upper envelope of by rectangles a, b, c have sequence abcba
2. Edges of upper envelope of right triangles a, b, c of slope 1 have sequence abc
3. Upper envelopes of right triangles a, b of positive slope intersect in ≤ 2 points, with edge sequence aba.
4. Decomposing a linear profile supported on [a, b] into a rectangular and right triangular profile.

DEFINITION 3.1. A Davenport-Schinzel (DS) sequence of
order s on n symbols is a sequence a1, a2, . . . , am satisfying
ai 6= ai+1 for all 1 ≤ i ≤ m − 1, which has no
alternating subsequence of length s+ 2 i.e. no subsequence
like aba · · · a. Let λs(n) denote the maximum length of a DS
sequence of order s on n symbols.

It is well-known (and easily verified) that for any two
rectangles {a, b} in R, there cannot be a subsequence of
edges abab, and hence the edge sequence is DS of order
2. Similarly, there cannot be a subsequence of edges aba for
any one of T (1) or T (−1) (as the slopes are 1), and hence
the edge sequence is DS of order 1 (see Figure 3). We will
consider triangles with arbitrary slopes (or more generally
piece-wise linear functions) in Section 3.2.

Using the well-known bounds λ1(n) = n, λ2(n) ≤
2n − 1 [29], we have that the union complexity of t objects
in any one of R, T (1) or T (−1) is O(t), implying our O(1)-
approximation for TRC.

3.2 Further applications of Theorem 1.3 We now con-
sider various other applications of Theorem 1.3. Some of
these applications use additional flexibility that our setting
and the proof of Theorem 1.3 gives such as being able to
round capacities to powers of 2, or splitting an object into
multiple objects.

Decomposing capacity profiles. Instead of using The-
orem 1.3 directly, note that we can also first decompose a
capacity profile z into two (or more) simpler capacity pro-
files z1, z2 with cz = cz1 + cz2 , assigning them the same
cost as z. This operation at most doubles the approximation
factor, but allows us to work with simpler geometric struc-
tures giving improved guarantees, similar to our algorithm
for TRC.

We now prove the applications in Theorem 1.7 (and
Table 1) using these ideas.

Covering points on the plane with linear capacity
profiles. Consider an instance I of covering points (x, y)

in the plane with sets z with capacity profiles cz(x, y) =
(ax + by)+ where m+ denotes max(m, 0). Then, applying
the framework of theorem 1.3 to I, we get an instance P of
covering points in the upper half-space ((x, y, q) with q ≥ 0)
of R3, with the induced objects corresponding to half-spaces
{(x, y, q) : 0 ≤ q ≤ ax+by} for capacity profile (ax+by)+.
Now, a point (x, y, q) with q ≥ 0 lies in the object induced
by (ax + by)+ if and only if (x, y, q) lies in the half-space
ax + by ≥ q. Hence, P is simply a problem of covering
points by half-spaces in R3.

The O(1) approximation now follows from the well-
known fact that the union complexity of t half-spaces in R3

is O(t). To see this fact, observe that the union of half-
planes is the complement of a convex polyhedron. Using
the point-plane duality for the planes involved in the half-
planes, we have the equivalence of the faces of the convex
polyhedron and those of the convex hull of the dual points.
By McMullen’s Upper Bound theorem [26], the total number
of faces of the convex hull of n points is O(nbd/2c), which
is O(n) for d = 3.

Covering points on a line. Let us fix the universe to
be the real line. Let us note that if we have a collection of
capacity profiles such that any two of them intersect in at
most s positions, then by definition of DS sequences, the
upper envelope of the induced objects obtained by applying
Theorem 3.1 is a DS sequence of order s, and hence has
union complexityO(λs(n)). Given the well-known and non-
trivial bounds for λs(n) [29] (see table 2), Theorem 1.5 gives
several interesting results.

Linear capacity profiles on intervals. Consider linear
capacity profiles supported on intervals [a, b] i.e. profiles z
of the form cz(x) = mx + q for x ∈ [a, b] (this generalizes
the triangular profiles of slope 1 considered before). Losing
at most factor 2, assume that m > 0 (we partition into
two sub-problems each with slopes m of the same sign).
At another factor 2 loss, break the linear profile into two
profiles cz1(x) = m(x − a) (a right triangular profile) and
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Order s λs(n)

1 n
2 2n− 1
3 O(nα(n))

4 O(n2α(n))

> 4, s = 2k O(n2O((α(n))k−1))

> 4, s = 2k + 1 O(n2O((α(n))k−1 logα(n)))

Table 2: Maximum length of Davenport-Schinzel sequence λs(n) for various s, here α(n) is the very slowly growing inverse
of Ackermann’s function

cz2(x) = ma + q (a rectangular profile) both supported
on [a, b]. Applying Theorem 1.3 we obtain a problem of
covering points in the plane by induced objects that are right
triangles (of positive slope) and rectangles, both touching the
x-axis. As any two such rectangles intersect in at most 2
places, and similarly for any two such triangles, the union
complexity will be O(λ2(t)) = O(t), giving an O(1)-
approximation.

Piece-wise linear profiles. We can extend this to piece-
wise linear profiles with at most s pieces. Naively decompos-
ing the piece-wise linear profile into s linear pieces would
give an O(s)-approximation. Instead, we can use the fol-
lowing result of Chekuri and Inamdar [15], which relies
of properties of shallow-cell complexity and quasi-uniform
sampling to lose only an O(log s) factor.

THEOREM 3.2. [15] Suppose the union complexity of any t
objects in a geometric set family F in Rd is O(tφ(t)). Then,
there is an LP-basedO(log s+log φ(st))-approximation for
covering by objects formed by taking unions of ≤ s objects
in F .

Viewing the object induced by a s-piece-wise linear profile
as a union of s right triangular profiles and s rectangular
profiles, and using that Φ(t) = O(t) for right triangular
profiles and rectangular profiles, Theorem 3.2 directly gives
an O(log s) approximation.

Low degree polynomial curves. Suppose each profile
is a degree ≤ s polynomial curve. Then, the number
of intersections of the envelopes of any pair of induced
objects is at most s and hence the union complexity will be
O(λs(t)). Theorem 1.5 now gives the results for degree s
polynomials given in Table 1.

Uniform capacities. For uniform capacity pro-
files, Theorem 1.3 directly generalizes the framework of
Chakrabarty et al. [13]. In particular, the notion of prior-
ity cover which they introduce is exactly captured by the
point-set incidences of the induced objects in our construc-
tion. Similarly as in [13], we can use the slack obtained from
KC inequalities to assume that there are only O(logC) dif-
ferent capacities where C is the range of the capacities. This

reduced number of capacities could be useful for many appli-
cations (see e.g. [4]). For instance if the union complexity of
the underlying set system is tφ(t), then the union complexity
of the induced objects will only be O(t logCφ(t)) giving an
O(log logC + log φ(t)) approximation.
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A Deadline Feasibility and Flow Network
Here we give a necessary and sufficient condition for feasi-
bility of candidate deadlines, as developed by Moseley [27].
Let cj be the candidate deadline for job j. Consider the fol-
lowing flow network.
The flow network G. See figure 4. There is a source node
s and sink node t. Layer 1 consists of n nodes, one for each
job j. Layer 2 consists of at most v =

∑
j pj nodes, one

for each possible time slot where a job can execute. There
is a directed edge from s to j with capacity pj . Each job
node j has a directed edge of capacity 1 to each time slot in
{1, . . . , cj}. From each time slot in [v], there is a directed
edge to t with capacity m.

It is clear that a feasible schedule exists if and only if
a flow of value

∑
j pj exists (in fact any feasible integral

flow corresponds to a valid schedule, and conversely). In
other words, if and only if the minimum s-t cut does not
have value less than

∑
j pj . Note that while the network

is of size O(nP ) which can be exponentially large, we do
not actually solve it algorithmically, and only use it to derive
valid inequalities.

1

1

1

1

1

pj ms t

1

2

. . .

. . .

cj

Jobs Time-slots

j

Figure 4: The flow network for testing feasibility

LEMMA A.1. ([27]) Given a set of completion times cj ,
there is a feasible schedule if and only if the following
condition holds for b = 0, 1, . . . , v.

(A.1)
∑
j∈[n]

min(pj ,max(cj − b, 0)) ≥
∑
j∈[n]

pj −mb
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Proof. For a subset J ⊆ [n] of jobs and subset T ⊆ [v]
of times slots, let (J, T ) denote the s-t cut with the part
containing s as {s} ∪ J ∪ T , and let δ(J, T ) denote its
value. By considering the contribution of each type of edge
to δ(J, T ), we have that

(A.2) δ(J, T ) =
∑
j /∈J

pj +
∑
j∈J
|[cj ] \ T |+m|T |,

where [cj ] \ T denotes the time slots in {1, . . . , cj} that do
not lie in T .

For any cut (J, T ), note that replacing some t ∈ T with
an earlier time t′ < t, t′ /∈ T can only reduce δ(J, T ).
Indeed, for T ′ = T ∪ {t′} \ {t}, |T | = |T ′| and for each
j, |[cj ] \ T ′| ≤ |[cj ] \ T | as t′ < t, and hence by (A.2),
δ(J, T ′) ≤ δ(J, T ). Repeating this process, we can assume
that there is some min-cut of the form δ(J, [b]) (possibly with
b = 0, corresponding to T = ∅). By (A.2), we get

δ(J, [b]) =
∑
j /∈J

pj +
∑
j∈J

max(cj − b, 0) +mb

Finally, for a fixed b, note that each j contributes exactly
max(cj − b, 0) or pj or depending on whether j ∈ J or not.
This implies that

min
J⊆[n]

δ(J, [b]) =
∑
j∈[n]

min(pj ,max(cj − b, 0)) +mb,

and hence the min-cut is at least
∑
j pj iff the right side is at

least
∑
j pj for all b ≥ 0, giving the result.

LEMMA A.2. The number of points b in the TRC can be
reduced to O(n log n).

In our TRC instance, we have one point for each b =
0, 1, 2, . . . , v and at most O(n log n) sets (rectangles, trian-
gles) Z. Identify each set z ∈ Z by the interval [az, bz] on
which it is supported. These intervals divide the line into at
most 2|Z|+1 sub-intervals (equivalence classes of points ly-
ing in the same set of intervals in Z). We show that for each
sub-interval, it suffices to have two points in the instance.

CLAIM A.1. Consider any sub-interval U above and let u1
and u2 be its left-most and right-most points. If a subset
Z ′ ⊆ Z satisfies the demands of u1, u2, then Z ′ satisfies the
demands of all points in U .

Proof. Observe that for any collection of sets Z ′, the total
capacity cZ′(u) for points u in U is a linear function as no
new object begins or ends strictly inside U , and the capacity
of any object z is a linear function in its interval [az, bz]. If
Z ′ satisfies the demands of u1, u2, then
(A.3)
cZ′(u1) ≥

∑
j

pj−m·u1 and cZ′(u2) ≥
∑
j

pj−m·u2

Any point u ∈ U can be expressed as a convex combination
u = λ1u1+λ2u2 with λ1, λ2 ≥ 0, λ1+λ2 = 1. Multiplying
inequalities above by λ1 and λ2 respectively and adding, and
using the linearity of cZ′ gives

cZ(u) = cZ′(λ1u1 + λ2u2) = λ1cZ′(u1) + λ2cZ′(u2)

≥
∑
j

pj −m(λ1u1 + λ2u2) =
∑
j

pj −mu.
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