3 research outputs found

    Database workload management through CBR and fuzzy based characterization

    Get PDF
    Database Management System (DBMS) is used as a data source with financial, educational, web and other applications from last many years. Users are connected with the DBMS to update existing records and retrieving reports by executing workloads that consist of complex queries. In order to get the sufficient level of performance, arrangement of workloads is necessary. Rapid growth in data, maximum functionality and changing behavior tends the database workload to be more complex and tricky. Each DBMS experiences complex workloads that are difficult to manage by the humans; human experts take much time to manage database workload efficiently; even in some cases it may become impossible and leads toward malnourishment. This problem leads database practitioners, vendors and researchers toward new challenges. To achieve a satisfactory level of performance, either Database Administrator (DBA) or DBMSs must have the knowledge about the workload shifts. Efficient execution and resource allocation of workload is dependent on the workload type that may be either On Line Transaction Processing (OLTP) or Decision Support System (DSS). The research introduces a way to manage the workload in DBMSs on the basis of the workload type. The main goal of the research is to manage the workload in DBMSs through characterization, scheduler and idleness detection modules. The database workload management is performed by using the case based reasoning characterization; Fuzzy logic based scheduling and finally detection of CPU Idleness. Results are validated through experiments that are performed on real time and benchmark workload to reveal effectiveness and efficiency

    PREDICTION BASED WORKLOAD PERFORMANCE EVALUATION FOR DISASTER MANAGEMENT SPATIAL DATABASE

    Get PDF
    This paper discusses a prediction based workload performance evaluation implementation during Disaster Management, especially at the response phase, to handle large spatial data in the event of an eruption of the Merapi volcano in Indonesia. Complexity associated with a large spatial database are not the same with the conventional database. This implies that in coming complex work loads are difficult to be handled by human from which needs longer processing time and may lead to failure and undernourishment. Based on incoming workload, this study is intended to predict the associated workload into OLTP and DSS workload performance types. From the SQL statements, it is clear that the DBMS can obtain and record the process, measure the analysed performances and the workload classifier in the form of DBMS snapshots. The Case-Based Reasoning (CBR) optimised with Hash Search Technique has been adopted in this study to evaluate and predict the workload performance of PostgreSQL. It has been proven that the proposed CBR using Hash Search technique has resulted in acceptable prediction of the accuracy measurement than other machine learning algorithm like Neural Network and Support Vector Machine. Besides, the results of the evaluation using confusion matrix has resulted in very good accuracy as well as improvement in execution time. Additionally, the results of the study indicated that the prediction model for workload performance evaluation using CBR which is optimised by Hash Search technique for determining workload data on shortest path analysis via the employment of Dijkstra algorithm. It could be useful for the prediction of the incoming workload based on the status of the predetermined DBMS parameters. In this way, information is delivered to DBMS hence ensuring incoming workload information that is very crucial to determine the smooth works of PostgreSQL

    Technical Strategies Database Managers use to Protect Systems from Security Breaches

    Get PDF
    Healthcare organizations generate massive amounts of data through their databases that may be vulnerable to data breaches due to extensive user privileges, unpatched databases, standardized query language injections, weak passwords/usernames, and system weaknesses. The purpose of this qualitative multiple case study was to explore technical strategies database managers in Southeast/North Texas used to protect database systems from data breaches. The target population consisted of database managers from 2 healthcare organizations in this region. The integrated system theory of information security management was the conceptual framework. The data collection process included semistructured interviews with 9 database managers, including a review of 14 organizational documents. Data were put into NVivo 12 software for thematic coding. Coding from interviews and member checking was triangulated with corporate documents to produce 5 significant themes and 1 subtheme: focus on verifying the identity of users, develop and enforce security policies, implement efficient encryption, monitor threats posed by insiders, focus on safeguards against external threats, and a subtheme derived from vulnerabilities caused by weak passwords. The findings from the study showed that the implementation of security strategies improved organizations\u27 abilities to protect data from security incidents. Thus, the results may be applied to create social change, decreasing the theft of confidential data, and providing knowledge as a resource to accelerate the adoption of technical approaches to protect database systems rom security incidents
    corecore