43,380 research outputs found

    Rehabilitation robot cell for multimodal standing-up motion augmentation

    Get PDF
    The paper presents a robot cell for multimodal standing-up motion augmentation. The robot cell is aimed at augmenting the standing-up capabilities of impaired or paraplegic subjects. The setup incorporates the rehabilitation robot device, functional electrical stimulation system, measurement instrumentation and cognitive feedback system. For controlling the standing-up process a novel approach was developed integrating the voluntary activity of a person in the control scheme of the rehabilitation robot. The simulation results demonstrate the possibility of “patient-driven” robot-assisted standing-up training. Moreover, to extend the system capabilities, the audio cognitive feedback is aimed to guide the subject throughout rising. For the feedback generation a granular synthesis method is utilized displaying high-dimensional, dynamic data. The principle of operation and example sonification in standing-up are presented. In this manner, by integrating the cognitive feedback and “patient-driven” actuation systems, an effective motion augmentation system is proposed in which the motion coordination is under the voluntary control of the user

    Fast Predictive Multimodal Image Registration

    Get PDF
    We introduce a deep encoder-decoder architecture for image deformation prediction from multimodal images. Specifically, we design an image-patch-based deep network that jointly (i) learns an image similarity measure and (ii) the relationship between image patches and deformation parameters. While our method can be applied to general image registration formulations, we focus on the Large Deformation Diffeomorphic Metric Mapping (LDDMM) registration model. By predicting the initial momentum of the shooting formulation of LDDMM, we preserve its mathematical properties and drastically reduce the computation time, compared to optimization-based approaches. Furthermore, we create a Bayesian probabilistic version of the network that allows evaluation of registration uncertainty via sampling of the network at test time. We evaluate our method on a 3D brain MRI dataset using both T1- and T2-weighted images. Our experiments show that our method generates accurate predictions and that learning the similarity measure leads to more consistent registrations than relying on generic multimodal image similarity measures, such as mutual information. Our approach is an order of magnitude faster than optimization-based LDDMM.Comment: Accepted as a conference paper for ISBI 201

    Deep-Learning-Driven Techniques for Real-Time Multimodal Health and Physical Data Synthesis

    Get PDF
    With the advent of Artificial Intelligence for healthcare, data synthesis methods present crucial benefits in facilitating the fast development of AI models while protecting data subjects and bypassing the need to engage with the complexity of data sharing and processing agreements. Existing technologies focus on synthesising real-time physiological and physical records based on regular time intervals. Real health data are, however, characterised by irregularities and multimodal variables that are still hard to reproduce, preserving the correlation across time and different dimensions. This paper presents two novel techniques for synthetic data generation of real-time multimodal electronic health and physical records, (a) the Temporally Correlated Multimodal Generative Adversarial Network and (b) the Document Sequence Generator. The paper illustrates the need and use of these techniques through a real use case, the H2020 GATEKEEPER project of AI for healthcare. Furthermore, the paper presents the evaluation for both individual cases and a discussion about the comparability between techniques and their potential applications of synthetic data at the different stages of the software development life-cycle

    Speech-driven Animation with Meaningful Behaviors

    Full text link
    Conversational agents (CAs) play an important role in human computer interaction. Creating believable movements for CAs is challenging, since the movements have to be meaningful and natural, reflecting the coupling between gestures and speech. Studies in the past have mainly relied on rule-based or data-driven approaches. Rule-based methods focus on creating meaningful behaviors conveying the underlying message, but the gestures cannot be easily synchronized with speech. Data-driven approaches, especially speech-driven models, can capture the relationship between speech and gestures. However, they create behaviors disregarding the meaning of the message. This study proposes to bridge the gap between these two approaches overcoming their limitations. The approach builds a dynamic Bayesian network (DBN), where a discrete variable is added to constrain the behaviors on the underlying constraint. The study implements and evaluates the approach with two constraints: discourse functions and prototypical behaviors. By constraining on the discourse functions (e.g., questions), the model learns the characteristic behaviors associated with a given discourse class learning the rules from the data. By constraining on prototypical behaviors (e.g., head nods), the approach can be embedded in a rule-based system as a behavior realizer creating trajectories that are timely synchronized with speech. The study proposes a DBN structure and a training approach that (1) models the cause-effect relationship between the constraint and the gestures, (2) initializes the state configuration models increasing the range of the generated behaviors, and (3) captures the differences in the behaviors across constraints by enforcing sparse transitions between shared and exclusive states per constraint. Objective and subjective evaluations demonstrate the benefits of the proposed approach over an unconstrained model.Comment: 13 pages, 12 figures, 5 table

    Zero-Shot Style Transfer for Gesture Animation driven by Text and Speech using Adversarial Disentanglement of Multimodal Style Encoding

    Full text link
    Modeling virtual agents with behavior style is one factor for personalizing human agent interaction. We propose an efficient yet effective machine learning approach to synthesize gestures driven by prosodic features and text in the style of different speakers including those unseen during training. Our model performs zero shot multimodal style transfer driven by multimodal data from the PATS database containing videos of various speakers. We view style as being pervasive while speaking, it colors the communicative behaviors expressivity while speech content is carried by multimodal signals and text. This disentanglement scheme of content and style allows us to directly infer the style embedding even of speaker whose data are not part of the training phase, without requiring any further training or fine tuning. The first goal of our model is to generate the gestures of a source speaker based on the content of two audio and text modalities. The second goal is to condition the source speaker predicted gestures on the multimodal behavior style embedding of a target speaker. The third goal is to allow zero shot style transfer of speakers unseen during training without retraining the model. Our system consists of: (1) a speaker style encoder network that learns to generate a fixed dimensional speaker embedding style from a target speaker multimodal data and (2) a sequence to sequence synthesis network that synthesizes gestures based on the content of the input modalities of a source speaker and conditioned on the speaker style embedding. We evaluate that our model can synthesize gestures of a source speaker and transfer the knowledge of target speaker style variability to the gesture generation task in a zero shot setup. We convert the 2D gestures to 3D poses and produce 3D animations. We conduct objective and subjective evaluations to validate our approach and compare it with a baseline

    AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

    Full text link
    In this paper, we propose an Attentional Generative Adversarial Network (AttnGAN) that allows attention-driven, multi-stage refinement for fine-grained text-to-image generation. With a novel attentional generative network, the AttnGAN can synthesize fine-grained details at different subregions of the image by paying attentions to the relevant words in the natural language description. In addition, a deep attentional multimodal similarity model is proposed to compute a fine-grained image-text matching loss for training the generator. The proposed AttnGAN significantly outperforms the previous state of the art, boosting the best reported inception score by 14.14% on the CUB dataset and 170.25% on the more challenging COCO dataset. A detailed analysis is also performed by visualizing the attention layers of the AttnGAN. It for the first time shows that the layered attentional GAN is able to automatically select the condition at the word level for generating different parts of the image
    corecore