19 research outputs found

    Using Similarity Metrics on Real World Data and Patient Treatment Pathways to Recommend the Next Treatment

    Get PDF
    Non-small-cell lung cancer (NSCLC) is one of the most prevalent types of lung cancer and continues to have an ominous five year survival rate. Considerable work has been accomplished in analyzing the viability of the treatments offered to NSCLC patients; however, while many of these treatments have performed better over populations of diagnosed NSCLC patients, a specific treatment may not be the most effective therapy for a given patient. Coupling both patient similarity metrics using the Gower similarity metric and prior treatment knowledge, we were able to demonstrate how patient analytics can complement clinical efforts in recommending the next best treatment. Our retrospective and exploratory results indicate that a majority of patients are not recommended the best surviving therapy once they require a new therapy. This investigation lays the groundwork for treatment recommendation using analytics, but more investigation is required to analyze patient outcomes beyond survival

    Visual analytics: tackling data related challenges in healthcare process mining

    Get PDF
    2018 Conference paper presented at Strathmore University. Thematic area(Health, Healthcare Management and Research Ethics)Data-science approaches such as Visual analytics tend to be process blind whereas process-science approaches such as process mining tend to be model-driven without considering the “evidence” hidden in the data. Use of either approach separately faces limitations in analysis of healthcare data. Visual analytics allows humans to exploit their perceptual and cognitive capabilities in processing data, while process mining represents the data in terms of activities and resources thereby giving a complete process picture. We use a literature survey of research that has deployed either or both Visual analytics and process mining in the healthcare environments to discover strengths that can help solve open problems and challenges in healthcare data when using process mining. We present a visual analytics (data science) approach in solving data challenges in healthcare process mining (process science). Historical data (event logs) obtained from organizational archives are used to generate accurate and evidence-based activity sequences that are manipulated and analysed to answer questions that could not be tackled by process mining. The approach can help hospital management and clinicians among others, audit their business processes in addition to providing important operational information. Other beneficiaries are those organizations interested in forensic information regarding individuals and groups of patients.1.Institute of Computing and Informatics, Technical University of Mombasa; 2.Faculty of information Technology, Strathmore University 3.School of Computing and Information technology, Muranga University of technology; 4.School of Computing and Informatics, Masinde Muliro University of Science and Technolog

    Using Dashboard Networks to Visualize Multiple Patient Histories: A Design Study on Post-operative Prostate Cancer

    Get PDF
    In this design study, we present a visualization technique that segments patients' histories instead of treating them as raw event sequences, aggregates the segments using criteria such as the whole history or treatment combinations, and then visualizes the aggregated segments as static dashboards that are arranged in a dashboard network to show longitudinal changes. The static dashboards were developed in nine iterations, to show 15 important attributes from the patients' histories. The final design was evaluated with five non-experts, five visualization experts and four medical experts, who successfully used it to gain an overview of a 2,000 patient dataset, and to make observations about longitudinal changes and differences between two cohorts. The research represents a step-change in the detail of large-scale data that may be successfully visualized using dashboards, and provides guidance about how the approach may be generalized

    Visual Analysis of High-Dimensional Event Sequence Data via Dynamic Hierarchical Aggregation

    Full text link
    Temporal event data are collected across a broad range of domains, and a variety of visual analytics techniques have been developed to empower analysts working with this form of data. These techniques generally display aggregate statistics computed over sets of event sequences that share common patterns. Such techniques are often hindered, however, by the high-dimensionality of many real-world event sequence datasets because the large number of distinct event types within such data prevents effective aggregation. A common coping strategy for this challenge is to group event types together as a pre-process, prior to visualization, so that each group can be represented within an analysis as a single event type. However, computing these event groupings as a pre-process also places significant constraints on the analysis. This paper presents a dynamic hierarchical aggregation technique that leverages a predefined hierarchy of dimensions to computationally quantify the informativeness of alternative levels of grouping within the hierarchy at runtime. This allows users to dynamically explore the hierarchy to select the most appropriate level of grouping to use at any individual step within an analysis. Key contributions include an algorithm for interactively determining the most informative set of event groupings from within a large-scale hierarchy of event types, and a scatter-plus-focus visualization that supports interactive hierarchical exploration. While these contributions are generalizable to other types of problems, we apply them to high-dimensional event sequence analysis using large-scale event type hierarchies from the medical domain. We describe their use within a medical cohort analysis tool called Cadence, demonstrate an example in which the proposed technique supports better views of event sequence data, and report findings from domain expert interviews.Comment: To Appear in IEEE Transactions on Visualization and Computer Graphics (TVCG), Volume 26 Issue 1, 2020. Also part of proceedings for IEEE VAST 201

    BPCoach: Exploring Hero Drafting in Professional MOBA Tournaments via Visual Analytics

    Full text link
    Hero drafting for multiplayer online arena (MOBA) games is crucial because drafting directly affects the outcome of a match. Both sides take turns to "ban"/"pick" a hero from a roster of approximately 100 heroes to assemble their drafting. In professional tournaments, the process becomes more complex as teams are not allowed to pick heroes used in the previous rounds with the "best-of-N" rule. Additionally, human factors including the team's familiarity with drafting and play styles are overlooked by previous studies. Meanwhile, the huge impact of patch iteration on drafting strengths in the professional tournament is of concern. To this end, we propose a visual analytics system, BPCoach, to facilitate hero drafting planning by comparing various drafting through recommendations and predictions and distilling relevant human and in-game factors. Two case studies, expert feedback, and a user study suggest that BPCoach helps determine hero drafting in a rounded and efficient manner.Comment: Accepted by The 2024 ACM SIGCHI Conference on Computer-Supported Cooperative Work & Social Computing (CSCW) (Proc. CSCW 2024
    corecore