100,753 research outputs found

    Data-Rate Driven Transmission Strategies for Deep Learning Based Communication Systems

    Get PDF
    Deep learning (DL) based autoencoder is a promising architecture to implement end-to-end communication systems. One fundamental problem of such systems is how to increase the transmission rate. Two new schemes are proposed to address the limited data rate issue: adaptive transmission scheme and generalized data representation (GDR) scheme. In the first scheme, an adaptive transmission is designed to select the transmission vectors for maximizing the data rate under different channel conditions. The block error rate (BLER) of the first scheme is 80% lower than that of the conventional one-hot vector scheme. This implies that higher data rate can be achieved by the adaptive transmission scheme. In the second scheme, the GDR replaces the conventional one-hot representation. The GDR scheme can achieve higher data rate than the conventional one-hot vector scheme with comparable BLER performance. For example, when the vector size is eight, the proposed GDR scheme can double the date rate of the one-hot vector scheme. Besides, the joint scheme of the two proposed schemes can create further benefits. The effect of signal-to-noise ratio (SNR) is analyzed for these DL-based communication systems. Numerical results show that training the autoencoder using data set with various SNR values can attain robust BLER performance under different channel conditions

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Smart Asset Management for Electric Utilities: Big Data and Future

    Full text link
    This paper discusses about future challenges in terms of big data and new technologies. Utilities have been collecting data in large amounts but they are hardly utilized because they are huge in amount and also there is uncertainty associated with it. Condition monitoring of assets collects large amounts of data during daily operations. The question arises "How to extract information from large chunk of data?" The concept of "rich data and poor information" is being challenged by big data analytics with advent of machine learning techniques. Along with technological advancements like Internet of Things (IoT), big data analytics will play an important role for electric utilities. In this paper, challenges are answered by pathways and guidelines to make the current asset management practices smarter for the future.Comment: 13 pages, 3 figures, Proceedings of 12th World Congress on Engineering Asset Management (WCEAM) 201

    Vision-Based Lane-Changing Behavior Detection Using Deep Residual Neural Network

    Get PDF
    Accurate lane localization and lane change detection are crucial in advanced driver assistance systems and autonomous driving systems for safer and more efficient trajectory planning. Conventional localization devices such as Global Positioning System only provide road-level resolution for car navigation, which is incompetent to assist in lane-level decision making. The state of art technique for lane localization is to use Light Detection and Ranging sensors to correct the global localization error and achieve centimeter-level accuracy, but the real-time implementation and popularization for LiDAR is still limited by its computational burden and current cost. As a cost-effective alternative, vision-based lane change detection has been highly regarded for affordable autonomous vehicles to support lane-level localization. A deep learning-based computer vision system is developed to detect the lane change behavior using the images captured by a front-view camera mounted on the vehicle and data from the inertial measurement unit for highway driving. Testing results on real-world driving data have shown that the proposed method is robust with real-time working ability and could achieve around 87% lane change detection accuracy. Compared to the average human reaction to visual stimuli, the proposed computer vision system works 9 times faster, which makes it capable of helping make life-saving decisions in time
    • …
    corecore