80,751 research outputs found

    Transaction management in object-oriented data base systems

    Get PDF
    Object-oriented data bases are fast gaining in popularity, especially with the advent of advanced applications like computer aided design (CAD) and multimedia data bases (MMDB). The modeling techniques required by these applications cannot be met by conventional data base systems. The semantic richness of the object-oriented model facilitates the modeling of advanced data base applications. These applications are characterized by long-duration cooperating transactions. Unlike the conventional data bases, serializability can no linger be the correctness criterion for concurrent transaction execution. A new transaction model for object-oriented data bases is needed. This dissertation describes our research in the area of transaction management for object-oriented data bases. A new transaction model for object-oriented data bases is defined. This model takes into consideration the unique requirements of the advanced applications. Data base consistency is now defined in terms of correctability. Object-oriented Correct Schedules (OOCS) and Object-oriented Correctable Schedules (OOCLS) are defined. This dissertation also describes a new concurrency control protocol that satisfies the correctness criterion for concurrent execution of transactions in an object-oriented data base environment, i.e. it allows only Object-oriented Correctable Schedules. Users of a data base interact with it through means of queries. Queries are then translated into transactions. The data base functionality necessary to support queries is also discussed in this research work

    Flattening an object algebra to provide performance

    Get PDF
    Algebraic transformation and optimization techniques have been the method of choice in relational query execution, but applying them in object-oriented (OO) DBMSs is difficult due to the complexity of OO query languages. This paper demonstrates that the problem can be simplified by mapping an OO data model to the binary relational model implemented by Monet, a state-of-the-art database kernel. We present a generic mapping scheme to flatten data models and study the case of straightforward OO model. We show how flattening enabled us to implement a query algebra, using only a very limited set of simple operations. The required primitives and query execution strategies are discussed, and their performance is evaluated on the 1-GByte TPC-D (Transaction-processing Performance Council's Benchmark D), showing that our divide-and-conquer approach yields excellent result

    Implementing PRISMA/DB in an OOPL

    Get PDF
    PRISMA/DB is implemented in a parallel object-oriented language to gain insight in the usage of parallelism. This environment allows us to experiment with parallelism by simply changing the allocation of objects to the processors of the PRISMA machine. These objects are obtained by a strictly modular design of PRISMA/DB. Communication between the objects is required to cooperatively handle the various tasks, but it limits the potential for parallelism. From this approach, we hope to gain a better understanding of parallelism, which can be used to enhance the performance of PRISMA/DB.\ud The work reported in this document was conducted as part of the PRISMA project, a joint effort with Philips Research Eindhoven, partially supported by the Dutch "Stimuleringsprojectteam Informaticaonderzoek (SPIN)

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability

    Component Based System Framework for Dynamic B2B Interaction

    Get PDF
    Business-to-business (B2B) collaboration is becoming a pivotal way to bring today's enterprises to success in the dynamically changing, e-business environment. Though many business-to-business protocols are developed to support B2B interaction, none are generally accepted. A B2B system should support different B2B protocols dynamically to enable interaction between diverse enterprises. This paper proposes a framework for dynamic B2B interaction. A B2B transaction is divided into the interaction part and business implementation part to support flexible interaction. A component based system framework is proposed,to support the B2B transaction execution. To support. dynamic B2B services, dynamic component composition is required. Service and component notions are combined into a composable service component. The composition architecture is also presented

    Set-oriented data mining in relational databases

    Get PDF
    Data mining is an important real-life application for businesses. It is critical to find efficient ways of mining large data sets. In order to benefit from the experience with relational databases, a set-oriented approach to mining data is needed. In such an approach, the data mining operations are expressed in terms of relational or set-oriented operations. Query optimization technology can then be used for efficient processing.\ud \ud In this paper, we describe set-oriented algorithms for mining association rules. Such algorithms imply performing multiple joins and thus may appear to be inherently less efficient than special-purpose algorithms. We develop new algorithms that can be expressed as SQL queries, and discuss optimization of these algorithms. After analytical evaluation, an algorithm named SETM emerges as the algorithm of choice. Algorithm SETM uses only simple database primitives, viz., sorting and merge-scan join. Algorithm SETM is simple, fast, and stable over the range of parameter values. It is easily parallelized and we suggest several additional optimizations. The set-oriented nature of Algorithm SETM makes it possible to develop extensions easily and its performance makes it feasible to build interactive data mining tools for large databases

    Set-Oriented Mining for Association Rules in Relational Databases

    Get PDF
    Describe set-oriented algorithms for mining association rules. Such algorithms imply performing multiple joins and may appear to be inherently less efficient than special-purpose algorithms. We develop new algorithms that can be expressed as SQL queries, and discuss the optimization of these algorithms. After analytical evaluation, an algorithm named SETM emerges as the algorithm of choice. SETM uses only simple database primitives, viz. sorting and merge-scan join. SETM is simple, fast and stable over the range of parameter values. The major contribution of this paper is that it shows that at least some aspects of data mining can be carried out by using general query languages such as SQL, rather than by developing specialized black-box algorithms. The set-oriented nature of SETM facilitates the development of extension
    corecore