3,990 research outputs found

    Playing for Data: Ground Truth from Computer Games

    Full text link
    Recent progress in computer vision has been driven by high-capacity models trained on large datasets. Unfortunately, creating large datasets with pixel-level labels has been extremely costly due to the amount of human effort required. In this paper, we present an approach to rapidly creating pixel-accurate semantic label maps for images extracted from modern computer games. Although the source code and the internal operation of commercial games are inaccessible, we show that associations between image patches can be reconstructed from the communication between the game and the graphics hardware. This enables rapid propagation of semantic labels within and across images synthesized by the game, with no access to the source code or the content. We validate the presented approach by producing dense pixel-level semantic annotations for 25 thousand images synthesized by a photorealistic open-world computer game. Experiments on semantic segmentation datasets show that using the acquired data to supplement real-world images significantly increases accuracy and that the acquired data enables reducing the amount of hand-labeled real-world data: models trained with game data and just 1/3 of the CamVid training set outperform models trained on the complete CamVid training set.Comment: Accepted to the 14th European Conference on Computer Vision (ECCV 2016

    InLoc: Indoor Visual Localization with Dense Matching and View Synthesis

    Get PDF
    We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with textureless indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Supervised learning and inference of semantic information from road scene images

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2013-2014Nowadays, vision sensors are employed in automotive industry to integrate advanced functionalities that assist humans while driving. However, autonomous vehicles is a hot field of research both in academic and industrial sectors and entails a step beyond ADAS. Particularly, several challenges arise from autonomous navigation in urban scenarios due to their naturalistic complexity in terms of structure and dynamic participants (e.g. pedestrians, vehicles, vegetation, etc.). Hence, providing image understanding capabilities to autonomous robotics platforms is an essential target because cameras can capture the 3D scene as perceived by a human. In fact, given this need for 3D scene understanding, there is an increasing interest on joint objects and scene labeling in the form of geometry and semantic inference of the relevant entities contained in urban environments. In this regard, this Thesis tackles two challenges: 1) the prediction of road intersections geometry and, 2) the detection and orientation estimation of cars, pedestrians and cyclists. Different features extracted from stereo images of the KITTI public urban dataset are employed. This Thesis proposes a supervised learning of discriminative models that rely on strong machine learning techniques for data mining visual features. For the first task, we use 2D occupancy grid maps that are built from the stereo sequences captured by a moving vehicle in a mid-sized city. Based on these bird?s eye view images, we propose a smart parameterization of the layout of straight roads and 4 intersecting roads. The dependencies between the proposed discrete random variables that define the layouts are represented with Probabilistic Graphical Models. Then, the problem is formulated as a structured prediction, in which we employ Conditional Random Fields (CRF) for learning and convex Belief Propagation (dcBP) and Branch and Bound (BB) for inference. For the validation of the proposed methodology, a set of tests are carried out, which are based on real images and synthetic images with varying levels of random noise. In relation to the object detection and orientation estimation challenge in road scenes, this Thesis goal is to compete in the international challenge known as KITTI evaluation benchmark, which encourages researchers to push forward the current state of the art on visual recognition methods, particularized for 3D urban scene understanding. This Thesis proposes to modify the successful part-based object detector known as DPM in order to learn richer models from 2.5D data (color and disparity). Therefore, we revisit the DPM framework, which is based on HOG features and mixture models trained with a latent SVM formulation. Next, this Thesis performs a set of modifications on top of DPM: I) An extension to the DPM training pipeline that accounts for 3D-aware features. II) A detailed analysis of the supervised parameter learning. III) Two additional approaches: "feature whitening" and "stereo consistency check". Additionally, a) we analyze the KITTI dataset and several subtleties regarding to the evaluation protocol; b) a large set of cross-validated experiments show the performance of our contributions and, c) finally, our best performing approach is publicly ranked on the KITTI website, being the first one that reports results with stereo data, yielding an increased object detection precision (3%-6%) for the class 'car' and ranking first for the class cyclist

    Supervised learning and inference of semantic information from road scene images

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2013-2014Nowadays, vision sensors are employed in automotive industry to integrate advanced functionalities that assist humans while driving. However, autonomous vehicles is a hot field of research both in academic and industrial sectors and entails a step beyond ADAS. Particularly, several challenges arise from autonomous navigation in urban scenarios due to their naturalistic complexity in terms of structure and dynamic participants (e.g. pedestrians, vehicles, vegetation, etc.). Hence, providing image understanding capabilities to autonomous robotics platforms is an essential target because cameras can capture the 3D scene as perceived by a human. In fact, given this need for 3D scene understanding, there is an increasing interest on joint objects and scene labeling in the form of geometry and semantic inference of the relevant entities contained in urban environments. In this regard, this Thesis tackles two challenges: 1) the prediction of road intersections geometry and, 2) the detection and orientation estimation of cars, pedestrians and cyclists. Different features extracted from stereo images of the KITTI public urban dataset are employed. This Thesis proposes a supervised learning of discriminative models that rely on strong machine learning techniques for data mining visual features. For the first task, we use 2D occupancy grid maps that are built from the stereo sequences captured by a moving vehicle in a mid-sized city. Based on these bird?s eye view images, we propose a smart parameterization of the layout of straight roads and 4 intersecting roads. The dependencies between the proposed discrete random variables that define the layouts are represented with Probabilistic Graphical Models. Then, the problem is formulated as a structured prediction, in which we employ Conditional Random Fields (CRF) for learning and convex Belief Propagation (dcBP) and Branch and Bound (BB) for inference. For the validation of the proposed methodology, a set of tests are carried out, which are based on real images and synthetic images with varying levels of random noise. In relation to the object detection and orientation estimation challenge in road scenes, this Thesis goal is to compete in the international challenge known as KITTI evaluation benchmark, which encourages researchers to push forward the current state of the art on visual recognition methods, particularized for 3D urban scene understanding. This Thesis proposes to modify the successful part-based object detector known as DPM in order to learn richer models from 2.5D data (color and disparity). Therefore, we revisit the DPM framework, which is based on HOG features and mixture models trained with a latent SVM formulation. Next, this Thesis performs a set of modifications on top of DPM: I) An extension to the DPM training pipeline that accounts for 3D-aware features. II) A detailed analysis of the supervised parameter learning. III) Two additional approaches: "feature whitening" and "stereo consistency check". Additionally, a) we analyze the KITTI dataset and several subtleties regarding to the evaluation protocol; b) a large set of cross-validated experiments show the performance of our contributions and, c) finally, our best performing approach is publicly ranked on the KITTI website, being the first one that reports results with stereo data, yielding an increased object detection precision (3%-6%) for the class 'car' and ranking first for the class cyclist
    • …
    corecore