8 research outputs found

    DAPDAG: Domain Adaptation via Perturbed DAG Reconstruction

    Full text link
    Leveraging labelled data from multiple domains to enable prediction in another domain without labels is a significant, yet challenging problem. To address this problem, we introduce the framework DAPDAG (\textbf{D}omain \textbf{A}daptation via \textbf{P}erturbed \textbf{DAG} Reconstruction) and propose to learn an auto-encoder that undertakes inference on population statistics given features and reconstructing a directed acyclic graph (DAG) as an auxiliary task. The underlying DAG structure is assumed invariant among observed variables whose conditional distributions are allowed to vary across domains led by a latent environmental variable EE. The encoder is designed to serve as an inference device on EE while the decoder reconstructs each observed variable conditioned on its graphical parents in the DAG and the inferred EE. We train the encoder and decoder jointly in an end-to-end manner and conduct experiments on synthetic and real datasets with mixed variables. Empirical results demonstrate that reconstructing the DAG benefits the approximate inference. Furthermore, our approach can achieve competitive performance against other benchmarks in prediction tasks, with better adaptation ability, especially in the target domain significantly different from the source domains

    Learning deep kernels for non-parametric two-sample tests

    Get PDF
    We propose a class of kernel-based two-sample tests, which aim to determine whether two sets of samples are drawn from the same distribution. Our tests are constructed from kernels parameterized by deep neural nets, trained to maximize test power. These tests adapt to variations in distribution smoothness and shape over space, and are especially suited to high dimensions and complex data. By contrast, the simpler kernels used in prior kernel testing work are spatially homogeneous, and adaptive only in lengthscale. We explain how this scheme includes popular classifier-based two-sample tests as a special case, but improves on them in general. We provide the first proof of consistency for the proposed adaptation method, which applies both to kernels on deep features and to simpler radial basis kernels or multiple kernel learning. In experiments, we establish the superior performance of our deep kernels in hypothesis testing on benchmark and real-world data

    Supervised learning in time-dependent environments with performance guarantees

    Get PDF
    151 p.En esta tesis, establecemos metodologías para el aprendizaje supervisado a partir de una secuencia de tareas dependientes del tiempo que explotan eficazmente la información de todas las tareas, proporcionan una adaptación multidimensional a los cambios de tareas y ofrecen garantías de rendimiento ajustadas y computables. Desarrollamos métodos para entornos de aprendizaje supervisado en los que las tareas llegan a lo largo del tiempo, incluidas técnicas de clasificación supervisada bajo concept drift y técnicas de continual learning. Además, presentamos técnicas de previsión de la demanda de energía que pueden adaptarse a los cambios temporales en los patrones de consumo y evaluar las incertidumbres intrínsecas de la demanda de carga. Los resultados numéricos muestran que las metodologías propuestas pueden mejorar significativamente el rendimiento de los métodos existentes utilizando múltiples conjuntos de datos de referencia. Esta tesis hace contribuciones teóricas que conducen a algoritmos eficientes para múltiples escenarios de aprendizaje automático que proporcionan garantías de rendimiento computables y un rendimiento superior al de las técnicas más avanzadas

    Supervised Learning in Time-dependent Environments with Performance Guarantees

    Get PDF
    In practical scenarios, it is common to learn from a sequence of related problems (tasks). Such tasks are usually time-dependent in the sense that consecutive tasks are often significantly more similar. Time-dependency is common in multiple applications such as load forecasting, spam main filtering, and face emotion recognition. For instance, in the problem of load forecasting, the consumption patterns in consecutive time periods are significantly more similar since human habits and weather factors change gradually over time. Learning from a sequence tasks holds promise to enable accurate performance even with few samples per task by leveraging information from different tasks. However, harnessing the benefits of learning from a sequence of tasks is challenging since tasks are characterized by different underlying distributions. Most existing techniques are designed for situations where the tasks’ similarities do not depend on their order in the sequence. Existing techniques designed for timedependent tasks adapt to changes between consecutive tasks accounting for a scalar rate of change by using a carefully chosen parameter such as a learning rate or a weight factor. However, the tasks’ changes are commonly multidimensional, i.e., the timedependency often varies across different statistical characteristics describing the tasks. For instance, in the problem of load forecasting, the statistical characteristics related to weather factors often change differently from those related to generation. In this dissertation, we establish methodologies for supervised learning from a sequence of time-dependent tasks that effectively exploit information from all tasks, provide multidimensional adaptation to tasks’ changes, and provide computable tight performance guarantees. We develop methods for supervised learning settings where tasks arrive over time including techniques for supervised classification under concept drift (SCD) and techniques for continual learning (CL). In addition, we present techniques for load forecasting that can adapt to time changes in consumption patterns and assess intrinsic uncertainties in load demand. The numerical results show that the proposed methodologies can significantly improve the performance of existing methods using multiple benchmark datasets. This dissertation makes theoretical contributions leading to efficient algorithms for multiple machine learning scenarios that provide computable performance guarantees and superior performance than state-of-the-art techniques

    Data-Driven Approach to Multiple-Source Domain Adaptation

    Get PDF
    A key problem in domain adaptation is determining what to transfer across different domains. We propose a data-driven method to represent these changes across multiple source domains and perform unsupervised domain adaptation. We assume that the joint distributions follow a specific generating process and have a small number of identifiable changing parameters, and develop a data-driven method to identify the changing parameters by learning low-dimensional representations of the changing class-conditional distributions across multiple source domains. The learned low-dimensional representations enable us to reconstruct the target-domain joint distribution from unlabeled target-domain data, and further enable predicting the labels in the target domain. We demonstrate the efficacy of this method by conducting experiments on synthetic and real datasets
    corecore