6,675 research outputs found

    Detecting event-related recurrences by symbolic analysis: Applications to human language processing

    Get PDF
    Quasistationarity is ubiquitous in complex dynamical systems. In brain dynamics there is ample evidence that event-related potentials reflect such quasistationary states. In order to detect them from time series, several segmentation techniques have been proposed. In this study we elaborate a recent approach for detecting quasistationary states as recurrence domains by means of recurrence analysis and subsequent symbolisation methods. As a result, recurrence domains are obtained as partition cells that can be further aligned and unified for different realisations. We address two pertinent problems of contemporary recurrence analysis and present possible solutions for them.Comment: 24 pages, 6 figures. Draft version to appear in Proc Royal Soc

    Characterisation of Dynamic Process Systems by Use of Recurrence Texture Analysis

    Get PDF
    This thesis proposes a method to analyse the dynamic behaviour of process systems using sets of textural features extracted from distance matrices obtained from time series data. Algorithms based on the use of grey level co-occurrence matrices, wavelet transforms, local binary patterns, textons, and the pretrained convolutional neural networks (AlexNet and VGG16) were used to extract features. The method was demonstrated to effectively capture the dynamics of mineral process systems and could outperform competing approaches

    Atrial Signals 2021. Book of Abstracts

    Get PDF

    Phase Synchronization Operator for On-Chip Brain Functional Connectivity Computation

    Get PDF
    This paper presents an integer-based digital processor for the calculation of phase synchronization between two neural signals. It is based on the measurement of time periods between two consecutive minima. The simplicity of the approach allows for the use of elementary digital blocks, such as registers, counters, and adders. The processor, fabricated in a 0.18- μ m CMOS process, only occupies 0.05 mm 2 and consumes 15 nW from a 0.5 V supply voltage at a signal input rate of 1024 S/s. These low-area and low-power features make the proposed processor a valuable computing element in closed-loop neural prosthesis for the treatment of neural disorders, such as epilepsy, or for assessing the patterns of correlated activity in neural assemblies through the evaluation of functional connectivity maps.Ministerio de Economía y Competitividad TEC2016-80923-POffice of Naval Research (USA) N00014-19-1-215

    Seismic Risk Analysis of Revenue Losses, Gross Regional Product and transportation systems.

    Get PDF
    Natural threats like earthquakes, hurricanes or tsunamis have shown seri- ous impacts on communities. In the past, major earthquakes in the United States like Loma Prieta 1989, Northridge 1994, or recent events in Italy like L’Aquila 2009 or Emilia 2012 earthquake emphasized the importance of pre- paredness and awareness to reduce social impacts. Earthquakes impacted businesses and dramatically reduced the gross regional product. Seismic Hazard is traditionally assessed using Probabilistic Seismic Hazard Anal- ysis (PSHA). PSHA well represents the hazard at a specific location, but it’s unsatisfactory for spatially distributed systems. Scenario earthquakes overcome the problem representing the actual distribution of shaking over a spatially distributed system. The performance of distributed productive systems during the recovery process needs to be explored. Scenario earthquakes have been used to assess the risk in bridge networks and the social losses in terms of gross regional product reduction. The proposed method for scenario earthquakes has been applied to a real case study: Treviso, a city in the North East of Italy. The proposed method for scenario earthquakes requires three models: one representation of the sources (Italian Seismogenic Zonation 9), one attenuation relationship (Sa- betta and Pugliese 1996) and a model of the occurrence rate of magnitudes (Gutenberg Richter). A methodology has been proposed to reduce thou- sands of scenarios to a subset consistent with the hazard at each location. Earthquake scenarios, along with Mote Carlo method, have been used to simulate business damage. The response of business facilities to earthquake has been obtained from fragility curves for precast industrial building. Fur- thermore, from business damage the reduction of productivity has been simulated using economic data from the National statistical service and a proposed piecewise “loss of functionality model”. To simulate the economic process in the time domain, an innovative businesses recovery function has been proposed. The proposed method has been applied to generate scenarios earthquakes at the location of bridges and business areas. The proposed selection method- ology has been applied to reduce 8000 scenarios to a subset of 60. Subse- quently, these scenario earthquakes have been used to calculate three system performance parameters: the risk in transportation networks, the risk in terms of business damage and the losses of gross regional product. A novel model for business recovery process has been tested. The proposed model has been used to represent the business recovery process and simulate the effects of government aids allocated for reconstruction. The proposed method has efficiently modeled the seismic hazard using scenario earthquakes. The scenario earthquakes presented have been used to assess possible consequences of earthquakes in seismic prone zones and to increase the preparedness. Scenario earthquakes have been used to sim- ulate the effects to economy of the impacted area; a significant Gross Regional Product reduction has been shown, up to 77% with an earthquake with 0.0003 probability of occurrence. The results showed that limited funds available after the disaster can be distributed in a more efficient way

    Changing User Interests through Prior-Learning of Context

    Get PDF
    The paper presents an algorithm for learning drifting and recurring user interests. The algorithm uses a prior-learning level to find out the current context. After that, searches into past observations for episodes that are relevant to the current context, ‘remembers’ them and ‘forgets’ the irrelevant ones. Finally, the algorithm learns only from the selected relevant examples. The experiments conducted with a data set about calendar scheduling recommendations show that the presented algorithm improves significantly the predictive accuracy
    corecore