18,380 research outputs found

    ESCAPED: Efficient Secure and Private Dot Product Framework for Kernel-based Machine Learning Algorithms with Applications in Healthcare

    Full text link
    To train sophisticated machine learning models one usually needs many training samples. Especially in healthcare settings these samples can be very expensive, meaning that one institution alone usually does not have enough on its own. Merging privacy-sensitive data from different sources is usually restricted by data security and data protection measures. This can lead to approaches that reduce data quality by putting noise onto the variables (e.g., in ϵ\epsilon-differential privacy) or omitting certain values (e.g., for kk-anonymity). Other measures based on cryptographic methods can lead to very time-consuming computations, which is especially problematic for larger multi-omics data. We address this problem by introducing ESCAPED, which stands for Efficient SeCure And PrivatE Dot product framework, enabling the computation of the dot product of vectors from multiple sources on a third-party, which later trains kernel-based machine learning algorithms, while neither sacrificing privacy nor adding noise. We evaluated our framework on drug resistance prediction for HIV-infected people and multi-omics dimensionality reduction and clustering problems in precision medicine. In terms of execution time, our framework significantly outperforms the best-fitting existing approaches without sacrificing the performance of the algorithm. Even though we only show the benefit for kernel-based algorithms, our framework can open up new research opportunities for further machine learning models that require the dot product of vectors from multiple sources.Comment: AAAI 2021, Preprint version of the full paper with supplementary materia

    Privacy-preserving targeted advertising scheme for IPTV using the cloud

    Get PDF
    In this paper, we present a privacy-preserving scheme for targeted advertising via the Internet Protocol TV (IPTV). The scheme uses a communication model involving a collection of viewers/subscribers, a content provider (IPTV), an advertiser, and a cloud server. To provide high quality directed advertising service, the advertiser can utilize not only demographic information of subscribers, but also their watching habits. The latter includes watching history, preferences for IPTV content and watching rate, which are published on the cloud server periodically (e.g. weekly) along with anonymized demographics. Since the published data may leak sensitive information about subscribers, it is safeguarded using cryptographic techniques in addition to the anonymization of demographics. The techniques used by the advertiser, which can be manifested in its queries to the cloud, are considered (trade) secrets and therefore are protected as well. The cloud is oblivious to the published data, the queries of the advertiser as well as its own responses to these queries. Only a legitimate advertiser, endorsed with a so-called {\em trapdoor} by the IPTV, can query the cloud and utilize the query results. The performance of the proposed scheme is evaluated with experiments, which show that the scheme is suitable for practical usage
    corecore