3 research outputs found

    GRID COMPUTING FOR COLLABORATIVE NETWORKS: A LITERATURE REVIEW

    Get PDF
    This paper describes the methodology and results of a literature review targeting the distinct interpretations of the Grid Computing paradigm within the context of Collaborative Networks. The review is based on the analysis of contributions published in selected scientific journals between 2002 and today. The analysis was performed taking into account the assumptions, scopes and solutions provided to approach the challenges for SMEs’ collaborative networks. The research questions driving this literature review have been the following: (1) How is the concept of Grid Computing associated with the concept of Collaborative Network? (2) How the Grid computing supports Collaborative Networks? (3) What are the business implications in Grid supported Collaborative Networks

    Hybrid ant colony system and genetic algorithm approach for scheduling of jobs in computational grid

    Get PDF
    Metaheuristic algorithms have been used to solve scheduling problems in grid computing.However, stand-alone metaheuristic algorithms do not always show good performance in every problem instance. This study proposes a high level hybrid approach between ant colony system and genetic algorithm for job scheduling in grid computing.The proposed approach is based on a high level hybridization.The proposed hybrid approach is evaluated using the static benchmark problems known as ETC matrix.Experimental results show that the proposed hybridization between the two algorithms outperforms the stand-alone algorithms in terms of best and average makespan values

    SECURING THE DATA STORAGE AND PROCESSING IN CLOUD COMPUTING ENVIRONMENT

    Get PDF
    Organizations increasingly utilize cloud computing architectures to reduce costs and en- ergy consumption both in the data warehouse and on mobile devices by better utilizing the computing resources available. However, the security and privacy issues with publicly available cloud computing infrastructures have not been studied to a sufficient depth for or- ganizations and individuals to be fully informed of the risks; neither are private nor public clouds prepared to properly secure their connections as middle-men between mobile de- vices which use encryption and external data providers which neglect to encrypt their data. Furthermore, cloud computing providers are not well informed of the risks associated with policy and techniques they could implement to mitigate those risks. In this dissertation, we present a new layered understanding of public cloud comput- ing. On the high level, we concentrate on the overall architecture and how information is processed and transmitted. The key idea is to secure information from outside attack and monitoring. We use techniques such as separating virtual machine roles, re-spawning virtual machines in high succession, and cryptography-based access control to achieve a high-level assurance of public cloud computing security and privacy. On the low level, we explore security and privacy issues on the memory management level. We present a mechanism for the prevention of automatic virtual machine memory guessing attacks
    corecore