6,786 research outputs found

    Data fusion algorithms for Density Reconstruction in Road Transportation Networks

    Get PDF
    International audienceThis paper addresses the problem of density reconstruction in traffic networks with heterogeneous information sources. The network is partitioned in cells in which vehicles flow from their origin to their destination. The state of the network is represented by the densities of vehicles in each cell.Density estimation is of crucial importance in future Intelligent Transportation Systems for monitoring, control, and navigation purposes. However, deploying fixed sensors for this purpose can be very expensive. Therefore, most of fixed sensors networks are rather sparse. On the contrary, recent technologies have enormously increased the availability of relatively inexpensive Floating Car Data. A data fusion algorithm is then proposedto incorporate the two sources of information into a single observer of density of vehicles. The efficiency of the proposed algorithm is shown in a real scenario using data from the Grenoble Traffic Lab fixed sensor network and INRIX Floating Car Data on the Rocade Sud in Grenoble

    Reconstructing the Traffic State by Fusion of Heterogeneous Data

    Full text link
    We present an advanced interpolation method for estimating smooth spatiotemporal profiles for local highway traffic variables such as flow, speed and density. The method is based on stationary detector data as typically collected by traffic control centres, and may be augmented by floating car data or other traffic information. The resulting profiles display transitions between free and congested traffic in great detail, as well as fine structures such as stop-and-go waves. We establish the accuracy and robustness of the method and demonstrate three potential applications: 1. compensation for gaps in data caused by detector failure; 2. separation of noise from dynamic traffic information; and 3. the fusion of floating car data with stationary detector data.Comment: For more information see http://www.mtreiber.de or http://www.akesting.d

    Fusing Loop and GPS Probe Measurements to Estimate Freeway Density

    Full text link
    In an age of ever-increasing penetration of GPS-enabled mobile devices, the potential of real-time "probe" location information for estimating the state of transportation networks is receiving increasing attention. Much work has been done on using probe data to estimate the current speed of vehicle traffic (or equivalently, trip travel time). While travel times are useful to individual drivers, the state variable for a large class of traffic models and control algorithms is vehicle density. Our goal is to use probe data to supplement traditional, fixed-location loop detector data for density estimation. To this end, we derive a method based on Rao-Blackwellized particle filters, a sequential Monte Carlo scheme. We present a simulation where we obtain a 30\% reduction in density mean absolute percentage error from fusing loop and probe data, vs. using loop data alone. We also present results using real data from a 19-mile freeway section in Los Angeles, California, where we obtain a 31\% reduction. In addition, our method's estimate when using only the real-world probe data, and no loop data, outperformed the estimate produced when only loop data were used (an 18\% reduction). These results demonstrate that probe data can be used for traffic density estimation

    A Transferable Intersection Reconstruction Network for Traffic Speed Prediction

    Full text link
    Traffic speed prediction is the key to many valuable applications, and it is also a challenging task because of its various influencing factors. Recent work attempts to obtain more information through various hybrid models, thereby improving the prediction accuracy. However, the spatial information acquisition schemes of these methods have two-level differentiation problems. Either the modeling is simple but contains little spatial information, or the modeling is complete but lacks flexibility. In order to introduce more spatial information on the basis of ensuring flexibility, this paper proposes IRNet (Transferable Intersection Reconstruction Network). First, this paper reconstructs the intersection into a virtual intersection with the same structure, which simplifies the topology of the road network. Then, the spatial information is subdivided into intersection information and sequence information of traffic flow direction, and spatiotemporal features are obtained through various models. Third, a self-attention mechanism is used to fuse spatiotemporal features for prediction. In the comparison experiment with the baseline, not only the prediction effect, but also the transfer performance has obvious advantages.Comment: 14 pages, 12 figure
    • …
    corecore