36,926 research outputs found

    Data Dissemination Problem in Wireless Networks

    Full text link
    In this work, we formulate and study a data dissemination problem, which can be viewed as a generalization of the index coding problem and of the data exchange problem to networks with an arbitrary topology. We define rr-solvable networks, in which data dissemination can be achieved in r>0r > 0 communications rounds. We show that the optimum number of transmissions for any one-round communications scheme is given by the minimum rank of a certain constrained family of matrices. For a special case of this problem, called bipartite data dissemination problem, we present lower and upper graph-theoretic bounds on the optimum number of transmissions. For general rr-solvable networks, we derive an upper bound on the minimum number of transmissions in any scheme with r\geq r rounds. We experimentally compare the obtained upper bound to a simple lower bound.Comment: Notation clarificatio

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations

    A comparison of epidemic algorithms in wireless sensor networks

    Get PDF
    Cataloged from PDF version of article.We consider the problem of reliable data dissemination in the context of wireless sensor networks. For some application scenarios, reliable data dissemination to all nodes is necessary for propagating code updates, queries, and other sensitive information in wireless sensor networks. Epidemic algorithms are a natural approach for reliable distribution of information in such ad hoc, decentralized, and dynamic environments. In this paper we show the applicability of epidemic algorithms in the context of wireless sensor environments, and provide a comparative performance analysis of the three variants of epidemic algorithms in terms of message delivery rate, average message latency, and messaging overhead on the network. © 2006 Elsevier B.V. All rights reserved

    Efficient multi-resolution data dissemination in wireless sensor networks

    Get PDF
    A large-scale distributed wireless sensor network is composed of a large collection of small low-power, unattended sensing devices equipped with limited memory, processors, and short-range wireless communication. The network is capable of controlling and monitoring ambient conditions, such as temperature, movement, sound, light and others, and thus enable smart environments. Energy efficient data dissemination is one of the fundamental services in large-scale wireless sensor networks. Based on the study of the data dissemination problem, we propose two efficient data dissemination schemes for two categories of applications in large-scale wireless sensor networks. In addition, our schemes provide spatial-based multi-resolution data dissemination for some applications to achieve further energy efficiency. Analysis and simulation results are given to show the performance of our schemes in comparison with current techniques

    A comparison of epidemic algorithms in wireless sensor networks

    Get PDF
    We consider the problem of reliable data dissemination in the context of wireless sensor networks. For some application scenarios, reliable data dissemination to all nodes is necessary for propagating code updates, queries, and other sensitive information in wireless sensor networks. Epidemic algorithms are a natural approach for reliable distribution of information in such ad hoc, decentralized, and dynamic environments. In this paper we show the applicability of epidemic algorithms in the context of wireless sensor environments, and provide a comparative performance analysis of the three variants of epidemic algorithms in terms of message delivery rate, average message latency, and messaging overhead on the network. © 2006 Elsevier B.V. All rights reserved

    JiTS: Just-in-Time Scheduling for Real-Time Sensor Data Dissemination

    Full text link
    We consider the problem of real-time data dissemination in wireless sensor networks, in which data are associated with deadlines and it is desired for data to reach the sink(s) by their deadlines. To this end, existing real-time data dissemination work have developed packet scheduling schemes that prioritize packets according to their deadlines. In this paper, we first demonstrate that not only the scheduling discipline but also the routing protocol has a significant impact on the success of real-time sensor data dissemination. We show that the shortest path routing using the minimum number of hops leads to considerably better performance than Geographical Forwarding, which has often been used in existing real-time data dissemination work. We also observe that packet prioritization by itself is not enough for real-time data dissemination, since many high priority packets may simultaneously contend for network resources, deteriorating the network performance. Instead, real-time packets could be judiciously delayed to avoid severe contention as long as their deadlines can be met. Based on this observation, we propose a Just-in-Time Scheduling (JiTS) algorithm for scheduling data transmissions to alleviate the shortcomings of the existing solutions. We explore several policies for non-uniformly delaying data at different intermediate nodes to account for the higher expected contention as the packet gets closer to the sink(s). By an extensive simulation study, we demonstrate that JiTS can significantly improve the deadline miss ratio and packet drop ratio compared to existing approaches in various situations. Notably, JiTS improves the performance requiring neither lower layer support nor synchronization among the sensor nodes

    UAV-assisted data dissemination based on network coding in vehicular networks

    Get PDF
    Efficient and emergency data dissemination service in vehicular networks (VN) is very important in some situations, such as earthquakes, maritime rescue, and serious traffic accidents. Data loss frequently occurs in the data transition due to the unreliability of the wireless channel and there are no enough available UAVs providing data dissemination service for the large disaster areas. UAV with an adjustable active antenna can be used in light of the situation. However, data dissemination assisted by UAV with the adjustable active antenna needs corresponding effective data dissemination framework. A UAV-assisted data dissemination method based on network coding is proposed. First, the graph theory to model the state of the data loss of the vehicles is used; the data dissemination problem is transformed as the maximum clique problem of the graph. With the coverage of the directional antenna being limited, a parallel method to find the maximum clique based on the region division is proposed. Lastly, the method\u27s effectiveness is demonstrated by the simulation; the results show that the solution proposed can accelerate the solving process of finding the maximum clique and reduce the number of UAV broadcasts. This manuscript designs a novel scheme for the UAV-assisted data dissemination in vehicular networks based on network coding. The graph theory is used to model the state of the data loss of the vehicles. With the coverage of the directional antenna being limited, then a parallel method is proposed to find the maximum clique of the graph based on the region division. The effectiveness of the method is demonstrated by the simulation
    corecore