14,325 research outputs found

    Data Dissemination Problem in Wireless Networks

    Full text link
    In this work, we formulate and study a data dissemination problem, which can be viewed as a generalization of the index coding problem and of the data exchange problem to networks with an arbitrary topology. We define rr-solvable networks, in which data dissemination can be achieved in r>0r > 0 communications rounds. We show that the optimum number of transmissions for any one-round communications scheme is given by the minimum rank of a certain constrained family of matrices. For a special case of this problem, called bipartite data dissemination problem, we present lower and upper graph-theoretic bounds on the optimum number of transmissions. For general rr-solvable networks, we derive an upper bound on the minimum number of transmissions in any scheme with ≥r\geq r rounds. We experimentally compare the obtained upper bound to a simple lower bound.Comment: Notation clarificatio

    Weather data dissemination to aircraft

    Get PDF
    Documentation exists that shows weather to be responsible for approximately 40 percent of all general aviation accidents with fatalities. Weather data products available on the ground are becoming more sophisticated and greater in number. Although many of these data are critical to aircraft safety, they currently must be transmitted verbally to the aircraft. This process is labor intensive and provides a low rate of information transfer. Consequently, the pilot is often forced to make life-critical decisions based on incomplete and outdated information. Automated transmission of weather data from the ground to the aircraft can provide the aircrew with accurate data in near-real time. The current National Airspace System Plan calls for such an uplink capability to be provided by the Mode S Beacon System data link. Although this system has a very advanced data link capability, it will not be capable of providing adequate weather data to all airspace users in its planned configuration. This paper delineates some of the important weather data uplink system requirements, and describes a system which is capable of meeting these requirements. The proposed system utilizes a run-length coding technique for image data compression and a hybrid phase and amplitude modulation technique for the transmission of both voice and weather data on existing aeronautical Very High Frequency (VHF) voice communication channels

    Data Dissemination in Unified Dynamic Wireless Networks

    Full text link
    We give efficient algorithms for the fundamental problems of Broadcast and Local Broadcast in dynamic wireless networks. We propose a general model of communication which captures and includes both fading models (like SINR) and graph-based models (such as quasi unit disc graphs, bounded-independence graphs, and protocol model). The only requirement is that the nodes can be embedded in a bounded growth quasi-metric, which is the weakest condition known to ensure distributed operability. Both the nodes and the links of the network are dynamic: nodes can come and go, while the signal strength on links can go up or down. The results improve some of the known bounds even in the static setting, including an optimal algorithm for local broadcasting in the SINR model, which is additionally uniform (independent of network size). An essential component is a procedure for balancing contention, which has potentially wide applicability. The results illustrate the importance of carrier sensing, a stock feature of wireless nodes today, which we encapsulate in primitives to better explore its uses and usefulness.Comment: 28 pages, 2 figure

    Highly intensive data dissemination in complex networks

    Full text link
    This paper presents a study on data dissemination in unstructured Peer-to-Peer (P2P) network overlays. The absence of a structure in unstructured overlays eases the network management, at the cost of non-optimal mechanisms to spread messages in the network. Thus, dissemination schemes must be employed that allow covering a large portion of the network with a high probability (e.g.~gossip based approaches). We identify principal metrics, provide a theoretical model and perform the assessment evaluation using a high performance simulator that is based on a parallel and distributed architecture. A main point of this study is that our simulation model considers implementation technical details, such as the use of caching and Time To Live (TTL) in message dissemination, that are usually neglected in simulations, due to the additional overhead they cause. Outcomes confirm that these technical details have an important influence on the performance of dissemination schemes and that the studied schemes are quite effective to spread information in P2P overlay networks, whatever their topology. Moreover, the practical usage of such dissemination mechanisms requires a fine tuning of many parameters, the choice between different network topologies and the assessment of behaviors such as free riding. All this can be done only using efficient simulation tools to support both the network design phase and, in some cases, at runtime

    Data Dissemination Performance in Large-Scale Sensor Networks

    Full text link
    As the use of wireless sensor networks increases, the need for (energy-)efficient and reliable broadcasting algorithms grows. Ideally, a broadcasting algorithm should have the ability to quickly disseminate data, while keeping the number of transmissions low. In this paper we develop a model describing the message count in large-scale wireless sensor networks. We focus our attention on the popular Trickle algorithm, which has been proposed as a suitable communication protocol for code maintenance and propagation in wireless sensor networks. Besides providing a mathematical analysis of the algorithm, we propose a generalized version of Trickle, with an additional parameter defining the length of a listen-only period. This generalization proves to be useful for optimizing the design and usage of the algorithm. For single-cell networks we show how the message count increases with the size of the network and how this depends on the Trickle parameters. Furthermore, we derive distributions of inter-broadcasting times and investigate their asymptotic behavior. Our results prove conjectures made in the literature concerning the effect of a listen-only period. Additionally, we develop an approximation for the expected number of transmissions in multi-cell networks. All results are validated by simulations

    Data Dissemination in Wireless Networks with Network Coding

    Full text link
    We investigate the use of network coding for information dissemination over a wireless network. Using network coding allows for a simple, distributed and robust algorithm where nodes do not need any information from their neighbors. In this paper, we analyze the time needed to diffuse information throughout a network when network coding is implemented at all nodes. We then provide an upper bound for the dissemination time for ad-hoc networks with general topology. Moreover, we derive a relation between dissemination time and the size of the wireless network. It is shown that for a wireless network with N nodes, the dissemination latency is between O(N) and O(N^2), depending on the reception probabilities of the nodes. These observations are validated by the simulation results

    Cooperative Coded Data Dissemination for Wireless Sensor Networks

    Full text link
    In this poster paper we present a data dissemination transmission abstraction for over the air programming (OAP) protocol which is fundamentally different from the previous hop by hop transmission protocols. Instead of imposing the greedy requirement that at least one node in the ith hop receives all packets before transmitting packets to the next hop and its neighbours, we take advantage of the spatial diversity and broadcast nature of wireless transmission to adopt a cooperative approach in which node broadcast whatever packets it has received with the expectation that it will recover the lost packets with high probability by overhearing the broadcast transmissions of its neighbours. The use of coded transmissions ensures that this does not lead to the broadcast storm problem. We validate the improved performance our of proposed transmission scheme with respect to the previous state of the art OAP protocols on a proof-of-concept two-hops TelosB wireless sensor network testbed.Comment: This paper appears in: 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), London, 2016, pp. 1-

    User data dissemination concepts for earth resources

    Get PDF
    Domestic data dissemination networks for earth-resources data in the 1985-1995 time frame were evaluated. The following topics were addressed: (1) earth-resources data sources and expected data volumes, (2) future user demand in terms of data volume and timeliness, (3) space-to-space and earth point-to-point transmission link requirements and implementation, (4) preprocessing requirements and implementation, (5) network costs, and (6) technological development to support this implementation. This study was parametric in that the data input (supply) was varied by a factor of about fifteen while the user request (demand) was varied by a factor of about nineteen. Correspondingly, the time from observation to delivery to the user was varied. This parametric evaluation was performed by a computer simulation that was based on network alternatives and resulted in preliminary transmission and preprocessing requirements. The earth-resource data sources considered were: shuttle sorties, synchronous satellites (e.g., SEOS), aircraft, and satellites in polar orbits
    • …
    corecore