581 research outputs found

    ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ์ €์žฅ์žฅ์น˜์˜ ์„ฑ๋Šฅ ๋ฐ ์ˆ˜๋ช… ํ–ฅ์ƒ์„ ์œ„ํ•œ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™” ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๊น€์ง€ํ™.์ปดํ“จํŒ… ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด, ๊ธฐ์กด์˜ ๋Š๋ฆฐ ํ•˜๋“œ๋””์Šคํฌ(HDD)๋ฅผ ๋น ๋ฅธ ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ธฐ๋ฐ˜ ์ €์žฅ์žฅ์น˜(SSD)๋กœ ๋Œ€์ฒดํ•˜๊ณ ์ž ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ตœ๊ทผ ํ™œ๋ฐœํžˆ ์ง„ํ–‰ ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ง€์†์ ์ธ ๋ฐ˜๋„์ฒด ๊ณต์ • ์Šค์ผ€์ผ๋ง ๋ฐ ๋ฉ€ํ‹ฐ ๋ ˆ๋ฒจ๋ง ๊ธฐ์ˆ ๋กœ SSD ๊ฐ€๊ฒฉ์„ ๋™๊ธ‰ HDD ์ˆ˜์ค€์œผ๋กœ ๋‚ฎ์•„์กŒ์ง€๋งŒ, ์ตœ๊ทผ์˜ ์ฒจ๋‹จ ๋””๋ฐ”์ด์Šค ๊ธฐ์ˆ ์˜ ๋ถ€์ž‘์šฉ์œผ ๋กœ NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ˆ˜๋ช…์ด ์งง์•„์ง€๋Š” ๊ฒƒ์€ ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์—์„œ์˜ SSD์˜ ๊ด‘๋ฒ”์œ„ํ•œ ์ฑ„ํƒ์„ ๋ง‰๋Š” ์ฃผ์š” ์žฅ๋ฒฝ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ตœ๊ทผ์˜ ๊ณ ๋ฐ€๋„ ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ˆ˜๋ช… ๋ฐ ์„ฑ๋Šฅ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ์˜ ๊ฐœ์„  ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ ๋œ ๊ธฐ๋ฒ•์€ ์‘์šฉ ํ”„๋กœ ๊ทธ๋žจ์˜ ์“ฐ๊ธฐ ๋ฌธ๋งฅ์„ ํ™œ์šฉํ•˜์—ฌ ๊ธฐ์กด์—๋Š” ์–ป์„ ์ˆ˜ ์—†์—ˆ๋˜ ๋ฐ์ดํ„ฐ ์ˆ˜๋ช… ํŒจํ„ด ๋ฐ ์ค‘๋ณต ๋ฐ์ดํ„ฐ ํŒจํ„ด์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ, ๋‹จ์ผ ๊ณ„์ธต์˜ ๋‹จ์ˆœํ•œ ์ •๋ณด๋งŒ์„ ํ™œ์šฉํ–ˆ ๋˜ ๊ธฐ์กด ๊ธฐ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•จ์œผ๋กœ์จ ํšจ๊ณผ์ ์œผ๋กœ NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์„ฑ๋Šฅ ๋ฐ ์ˆ˜๋ช…์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ I/O ์ž‘์—…์—๋Š” ๋ฌธ๋งฅ์— ๋”ฐ๋ผ ๊ณ ์œ ํ•œ ๋ฐ์ดํ„ฐ ์ˆ˜๋ช…๊ณผ ์ค‘ ๋ณต ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด์ด ์กด์žฌํ•œ๋‹ค๋Š” ์ ์„ ๋ถ„์„์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ๋ฌธ๋งฅ ์ •๋ณด๋ฅผ ํšจ๊ณผ ์ ์œผ๋กœ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ (์“ฐ๊ธฐ ๋ฌธ๋งฅ) ์ถ”์ถœ ๋ฐฉ๋ฒ•์„ ๊ตฌํ˜„ ํ•˜์˜€๋‹ค. ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ ์ •๋ณด๋ฅผ ํ†ตํ•ด ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜ ๋ถ€ํ•˜์™€ ์ œํ•œ๋œ ์ˆ˜๋ช…์˜ NAND ํ”Œ ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ฐœ์„ ์„ ์œ„ํ•œ ๊ธฐ์กด ๊ธฐ์ˆ ์˜ ํ•œ๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ๋ฉ€ํ‹ฐ ์ŠคํŠธ๋ฆผ SSD์—์„œ WAF๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ์ˆ˜๋ช… ์˜ˆ์ธก์˜ ์ •ํ™• ์„ฑ์„ ๋†’์ด๋Š” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ I/O ์ปจํ…์ŠคํŠธ๋ฅผ ํ™œ์šฉ ํ•˜๋Š” ์‹œ์Šคํ…œ ์ˆ˜์ค€์˜ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์˜ ํ•ต์‹ฌ ๋™๊ธฐ๋Š” ๋ฐ์ดํ„ฐ ์ˆ˜๋ช…์ด LBA๋ณด๋‹ค ๋†’์€ ์ถ”์ƒํ™” ์ˆ˜์ค€์—์„œ ํ‰๊ฐ€ ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ ํ”„ ๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ์ดํ„ฐ์˜ ์ˆ˜๋ช…์„ ๋ณด๋‹ค ์ •ํ™•ํžˆ ์˜ˆ์ธกํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๊ธฐ๋ฒ•์—์„œ LBA๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ์ดํ„ฐ ์ˆ˜๋ช…์„ ๊ด€๋ฆฌํ•˜๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค. ๊ฒฐ๋ก ์ ์œผ ๋กœ ๋”ฐ๋ผ์„œ ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜์˜ ํšจ์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ˆ˜๋ช…์ด ์งง์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜๋ช…์ด ๊ธด ๋ฐ์ดํ„ฐ์™€ ํšจ๊ณผ์ ์œผ๋กœ ๋ถ„๋ฆฌ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์“ฐ๊ธฐ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ์˜ ์ค‘๋ณต ๋ฐ์ดํ„ฐ ํŒจํ„ด ๋ถ„์„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถˆํ•„์š”ํ•œ ์ค‘๋ณต ์ œ๊ฑฐ ์ž‘์—…์„ ํ”ผํ•  ์ˆ˜์žˆ๋Š” ์„ ํƒ์  ์ค‘๋ณต ์ œ๊ฑฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ค‘๋ณต ๋ฐ ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜์ง€ ์•Š๋Š” ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ๊ฐ€ ์กด์žฌํ•จ์„ ๋ถ„์„์ ์œผ๋กœ ๋ณด์ด๊ณ  ์ด๋“ค์„ ์ œ์™ธํ•จ์œผ๋กœ์จ, ์ค‘๋ณต์ œ๊ฑฐ ๋™์ž‘์˜ ํšจ์œจ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ค‘๋ณต ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฐœ์ƒ ํ•˜๋Š” ํŒจํ„ด์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๊ธฐ๋ก๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ด€๋ฆฌํ•˜๋Š” ์ž๋ฃŒ๊ตฌ์กฐ ์œ ์ง€ ์ •์ฑ…์„ ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, ์„œ๋ธŒ ํŽ˜์ด์ง€ ์ฒญํฌ๋ฅผ ๋„์ž…ํ•˜์—ฌ ์ค‘๋ณต ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ฑฐ ํ•  ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์ด๋Š” ์„ธ๋ถ„ํ™” ๋œ ์ค‘๋ณต ์ œ๊ฑฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ ๋œ ๊ธฐ์ˆ ์˜ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์‹ค์ œ ์‹œ์Šคํ…œ์—์„œ ์ˆ˜์ง‘ ๋œ I/O ํŠธ๋ ˆ์ด์Šค์— ๊ธฐ๋ฐ˜ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ‰๊ฐ€ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์—๋ฎฌ๋ ˆ์ดํ„ฐ ๊ตฌํ˜„์„ ํ†ตํ•ด ์‹ค์ œ ์‘์šฉ์„ ๋™์ž‘ํ•˜๋ฉด์„œ ์ผ๋ จ์˜ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ๋ฉ€ํ‹ฐ ์ŠคํŠธ๋ฆผ ๋””๋ฐ”์ด์Šค์˜ ๋‚ด๋ถ€ ํŽŒ์›จ์–ด๋ฅผ ์ˆ˜์ •ํ•˜์—ฌ ์‹ค์ œ์™€ ๊ฐ€์žฅ ๋น„์Šทํ•˜๊ฒŒ ์„ค์ •๋œ ํ™˜๊ฒฝ์—์„œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜ ์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ์‹œ์Šคํ…œ ์ˆ˜์ค€ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ด ์„ฑ๋Šฅ ๋ฐ ์ˆ˜๋ช… ๊ฐœ์„  ์ธก๋ฉด์—์„œ ๊ธฐ์กด ์ตœ์ ํ™” ๊ธฐ๋ฒ•๋ณด๋‹ค ๋” ํšจ๊ณผ์ ์ด์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ–ฅํ›„ ์ œ์•ˆ๋œ ๊ธฐ ๋ฒ•๋“ค์ด ๋ณด๋‹ค ๋” ๋ฐœ์ „๋œ๋‹ค๋ฉด, ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ์ดˆ๊ณ ์† ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์˜ ์ฃผ ์ €์žฅ์žฅ์น˜๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋ฐ์— ๊ธ์ •์ ์ธ ๊ธฐ์—ฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Replacing HDDs with NAND flash-based storage devices (SSDs) has been one of the major challenges in modern computing systems especially in regards to better performance and higher mobility. Although the continuous semiconductor process scaling and multi-leveling techniques lower the price of SSDs to the comparable level of HDDs, the decreasing lifetime of NAND flash memory, as a side effect of recent advanced device technologies, is emerging as one of the major barriers to the wide adoption of SSDs in highperformance computing systems. In this dissertation, system-level lifetime improvement techniques for recent high-density NAND flash memory are proposed. Unlike existing techniques, the proposed techniques resolve the problems of decreasing performance and lifetime of NAND flash memory by exploiting the I/O context of an application to analyze data lifetime patterns or duplicate data contents patterns. We first present that I/O activities of an application have distinct data lifetime and duplicate data patterns. In order to effectively utilize the context information, we implemented the program context extraction method. With the program context, we can overcome the limitations of existing techniques for improving the garbage collection overhead and limited lifetime of NAND flash memory. Second, we propose a system-level approach to reduce WAF that exploits the I/O context of an application to increase the data lifetime prediction for the multi-streamed SSDs. The key motivation behind the proposed technique was that data lifetimes should be estimated at a higher abstraction level than LBAs, so we employ a write program context as a stream management unit. Thus, it can effectively separate data with short lifetimes from data with long lifetimes to improve the efficiency of garbage collection. Lastly, we propose a selective deduplication that can avoid unnecessary deduplication work based on the duplicate data pattern analysis of write program context. With the help of selective deduplication, we also propose fine-grained deduplication which improves the likelihood of eliminating redundant data by introducing sub-page chunk. It also resolves technical difficulties caused by its finer granularity, i.e., increased memory requirement and read response time. In order to evaluate the effectiveness of the proposed techniques, we performed a series of evaluations using both a trace-driven simulator and emulator with I/O traces which were collected from various real-world systems. To understand the feasibility of the proposed techniques, we also implemented them in Linux kernel on top of our in-house flash storage prototype and then evaluated their effects on the lifetime while running real-world applications. Our experimental results show that system-level optimization techniques are more effective over existing optimization techniques.I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Garbage Collection Problem . . . . . . . . . . . . . 2 1.1.2 Limited Endurance Problem . . . . . . . . . . . . . 4 1.2 Dissertation Goals . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . 7 II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 NAND Flash Memory System Software . . . . . . . . . . . 9 2.2 NAND Flash-Based Storage Devices . . . . . . . . . . . . . 10 2.3 Multi-stream Interface . . . . . . . . . . . . . . . . . . . . 11 2.4 Inline Data Deduplication Technique . . . . . . . . . . . . . 12 2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.1 Data Separation Techniques for Multi-streamed SSDs 13 2.5.2 Write Traffic Reduction Techniques . . . . . . . . . 15 2.5.3 Program Context based Optimization Techniques for Operating Systems . . . . . . . . 18 III. Program Context-based Analysis . . . . . . . . . . . . . . . . 21 3.1 Definition and Extraction of Program Context . . . . . . . . 21 3.2 Data Lifetime Patterns of I/O Activities . . . . . . . . . . . 24 3.3 Duplicate Data Patterns of I/O Activities . . . . . . . . . . . 26 IV. Fully Automatic Stream Management For Multi-Streamed SSDs Using Program Contexts . . 29 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.1 No Automatic Stream Management for General I/O Workloads . . . . . . . . . 33 4.2.2 Limited Number of Supported Streams . . . . . . . 36 4.3 Automatic I/O Activity Management . . . . . . . . . . . . . 38 4.3.1 PC as a Unit of Lifetime Classification for General I/O Workloads . . . . . . . . . . . 39 4.4 Support for Large Number of Streams . . . . . . . . . . . . 41 4.4.1 PCs with Large Lifetime Variances . . . . . . . . . 42 4.4.2 Implementation of Internal Streams . . . . . . . . . 44 4.5 Design and Implementation of PCStream . . . . . . . . . . 46 4.5.1 PC Lifetime Management . . . . . . . . . . . . . . 46 4.5.2 Mapping PCs to SSD streams . . . . . . . . . . . . 49 4.5.3 Internal Stream Management . . . . . . . . . . . . . 50 4.5.4 PC Extraction for Indirect Writes . . . . . . . . . . 51 4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . 53 4.6.1 Experimental Settings . . . . . . . . . . . . . . . . 53 4.6.2 Performance Evaluation . . . . . . . . . . . . . . . 55 4.6.3 WAF Comparison . . . . . . . . . . . . . . . . . . . 56 4.6.4 Per-stream Lifetime Distribution Analysis . . . . . . 57 4.6.5 Impact of Internal Streams . . . . . . . . . . . . . . 58 4.6.6 Impact of the PC Attribute Table . . . . . . . . . . . 60 V. Deduplication Technique using Program Contexts . . . . . . 62 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Selective Deduplication using Program Contexts . . . . . . . 63 5.2.1 PCDedup: Improving SSD Deduplication Efficiency using Selective Hash Cache Management . . . . . . 63 5.2.2 2-level LRU Eviction Policy . . . . . . . . . . . . . 68 5.3 Exploiting Small Chunk Size . . . . . . . . . . . . . . . . . 70 5.3.1 Fine-Grained Deduplication . . . . . . . . . . . . . 70 5.3.2 Read Overhead Management . . . . . . . . . . . . . 76 5.3.3 Memory Overhead Management . . . . . . . . . . . 80 5.3.4 Experimental Results . . . . . . . . . . . . . . . . . 82 VI. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . 88 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2.1 Supporting applications that have unusal program contexts . . . . . . . . . . . . . 89 6.2.2 Optimizing read request based on the I/O context . . 90 6.2.3 Exploiting context information to improve fingerprint lookups . . . . .. . . . . . 91 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Docto

    HEC: Collaborative Research: SAM^2 Toolkit: Scalable and Adaptive Metadata Management for High-End Computing

    Get PDF
    The increasing demand for Exa-byte-scale storage capacity by high end computing applications requires a higher level of scalability and dependability than that provided by current file and storage systems. The proposal deals with file systems research for metadata management of scalable cluster-based parallel and distributed file storage systems in the HEC environment. It aims to develop a scalable and adaptive metadata management (SAM2) toolkit to extend features of and fully leverage the peak performance promised by state-of-the-art cluster-based parallel and distributed file storage systems used by the high performance computing community. There is a large body of research on data movement and management scaling, however, the need to scale up the attributes of cluster-based file systems and I/O, that is, metadata, has been underestimated. An understanding of the characteristics of metadata traffic, and an application of proper load-balancing, caching, prefetching and grouping mechanisms to perform metadata management correspondingly, will lead to a high scalability. It is anticipated that by appropriately plugging the scalable and adaptive metadata management components into the state-of-the-art cluster-based parallel and distributed file storage systems one could potentially increase the performance of applications and file systems, and help translate the promise and potential of high peak performance of such systems to real application performance improvements. The project involves the following components: 1. Develop multi-variable forecasting models to analyze and predict file metadata access patterns. 2. Develop scalable and adaptive file name mapping schemes using the duplicative Bloom filter array technique to enforce load balance and increase scalability 3. Develop decentralized, locality-aware metadata grouping schemes to facilitate the bulk metadata operations such as prefetching. 4. Develop an adaptive cache coherence protocol using a distributed shared object model for client-side and server-side metadata caching. 5. Prototype the SAM2 components into the state-of-the-art parallel virtual file system PVFS2 and a distributed storage data caching system, set up an experimental framework for a DOE CMS Tier 2 site at University of Nebraska-Lincoln and conduct benchmark, evaluation and validation studies

    The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework

    Full text link
    Computers continue to diversify with respect to system designs, emerging memory technologies, and application memory demands. Unfortunately, continually adapting the conventional virtual memory framework to each possible system configuration is challenging, and often results in performance loss or requires non-trivial workarounds. To address these challenges, we propose a new virtual memory framework, the Virtual Block Interface (VBI). We design VBI based on the key idea that delegating memory management duties to hardware can reduce the overheads and software complexity associated with virtual memory. VBI introduces a set of variable-sized virtual blocks (VBs) to applications. Each VB is a contiguous region of the globally-visible VBI address space, and an application can allocate each semantically meaningful unit of information (e.g., a data structure) in a separate VB. VBI decouples access protection from memory allocation and address translation. While the OS controls which programs have access to which VBs, dedicated hardware in the memory controller manages the physical memory allocation and address translation of the VBs. This approach enables several architectural optimizations to (1) efficiently and flexibly cater to different and increasingly diverse system configurations, and (2) eliminate key inefficiencies of conventional virtual memory. We demonstrate the benefits of VBI with two important use cases: (1) reducing the overheads of address translation (for both native execution and virtual machine environments), as VBI reduces the number of translation requests and associated memory accesses; and (2) two heterogeneous main memory architectures, where VBI increases the effectiveness of managing fast memory regions. For both cases, VBI significanttly improves performance over conventional virtual memory

    ON OPTIMIZATIONS OF VIRTUAL MACHINE LIVE STORAGE MIGRATION FOR THE CLOUD

    Get PDF
    Virtual Machine (VM) live storage migration is widely performed in the data cen- ters of the Cloud, for the purposes of load balance, reliability, availability, hardware maintenance and system upgrade. It entails moving all the state information of the VM being migrated, including memory state, network state and storage state, from one physical server to another within the same data center or across different data centers. To minimize its performance impact, this migration process is required to be transparent to applications running within the migrating VM, meaning that ap- plications will keep running inside the VM as if there were no migration operations at all. In this dissertation, a thorough literature review is conducted to provide a big picture of the VM live storage migration process, its problems and existing solutions. After an in-depth examination, we observe that a severe IO interference between the VM IO threads and migration IO threads exists and causes both types of the IO threads to suffer from performance degradation. This interference stems from the fact that both types of IO threads share the same critical IO path by reading from and writing to the same shared storage system. Owing to IO resource contention and requests interference between the two different types of IO requests, not only will the IO request queue lengthens in the storage system, but the time-consuming disk seek operations will also become more frequent. Based on this fundamental observation, this dissertation research presents three related but orthogonal solutions that tackle the IO interference problem in order to improve the VM live storage migration performance. First, we introduce the Workload-Aware IO Outsourcing scheme, called WAIO, to improve the VM live storage migration efficiency. Second, we address this problem by proposing a novel scheme, called SnapMig, to improve the VM live storage migration efficiency and eliminate its performance impact on user applications at the source server by effectively leveraging the existing VM snapshots in the backup servers. Third, we propose the IOFollow scheme to improve both the VM performance and migration performance simultaneously. Finally, we outline the direction for the future research work. Advisor: Hong Jian
    • โ€ฆ
    corecore