6,688 research outputs found

    TVWS policies to enable efficient spectrum sharing

    Get PDF
    The transition from analogue to the Digital Terrestrial Television (DTV) in Europe is planned to be completed by the end of the year 2012. The DTV spectrum allocation is such that there are a number of TV channels which cannot be used for additional high power broadcast transmitters due to mutual interference and hence are left unused within a given geographical location, i.e. the TV channels are geographically interleaved. The use of geographically interleaved spectrum provides for the so-called TV white spaces (TVWS) an opportunity for deploying new wireless services. The main objective of this paper is to present the spectrum policies that are suitable for TVWS at European level, identified within the COGEU project. The COGEU project aims the efficient exploitation of the geographical interleaved spectrum (TVWS). COGEU is an ICT collaborative project supported by the European Commission within the 7th Framework Programme. Nine partners from seven EU countries representing academia, research institutes and industry are involved in the project. The COGEU project is a composite of technical, business, and regulatory/policy domains, with the objective of taking advantage of the TV digital switchover by developing cognitive radio systems that leverage the favorable propagation characteristics of the UHF broadcast spectrum through the introduction and promotion of real-time secondary spectrum trading and the creation of new spectrum commons regimes. COGEU will also define new methodologies for compliance testing and certification of TVWS equipment to ensure non-interference coexistence with the DVB-T European standard. The innovation brought by COGEU is the combination of cognitive access to TV white spaces with secondary spectrum trading mechanisms.telecommunications,spectrum management,secondary spectrum market,regulation,TV white spaces,cognitive radio

    Business Model Implications of a Cognitive Pilot Channel as enabler of Flexible Spectrum Management

    Get PDF
    This article argues that both flexible spectrum management and the concept of reconfigurability do not eliminate the need for certain centralized controlling entities, and even introduce a number of new entities performing regulatory, commercial and technical functions. One such entity, the Cognitive Pilot Channel (CPC), is presented, and different configurations of the CPC are outlined. Subsequently, the potential impact of different CPC configurations on business models for wireless services making use of such a channel is explored. The article concludes that a hybrid model combining a meta-level CPC with operator-deployed channels might provide the best mix of technical and strategic control for operators, and value for users

    A Trust-Based Relay Selection Approach to the Multi-Hop Network Formation Problem in Cognitive Radio Networks

    Get PDF
    One of the major challenges for today’s wireless communications is to meet the growing demand for supporting an increasing diversity of wireless applications with limited spectrum resource. In cooperative communications and networking, users share resources and collaborate in a distributed approach, similar to entities of active social groups in self organizational communities. Users’ information may be shared by the user and also by the cooperative users, in distributed transmission. Cooperative communications and networking is a fairly new communication paradigm that promises significant capacity and multiplexing gain increase in wireless networks. This research will provide a cooperative relay selection framework that exploits the similarity of cognitive radio networks to social networks. It offers a multi-hop, reputation-based power control game for routing. In this dissertation, a social network model provides a humanistic approach to predicting relay selection and network analysis in cognitive radio networks

    Sensing as a Service: An Exploration into the Practical Implementations of DSA

    Get PDF
    The cognitive radio literature generally assumes that the functions required for non-cooperative secondary DSA are integrated into a single radio system. It need not be so. In this paper, we model cognitive radio functions as a value chain and explore the implications of different forms of organization of this value chain. We initially explore the consequences of separating the sensing function from other cognitive radio functions

    Efficient Location Privacy In Mobile Applications

    Full text link
    Location awareness is an essential part of today\u27s mobile devices. It is a well-established technology that offers significant benefits to mobile users. While location awareness has triggered the exponential growth of mobile computing, it has also introduced new privacy threats due to frequent location disclosures. Movement patterns could be used to identify individuals and also leak sensitive information about them, such as health condition, lifestyle, political/religious affiliations, etc. In this dissertation we address location privacy in the context of mobile applications. First we look into location privacy in the context of Dynamic Spectrum Access (DSA) technology. DSA is a promising framework for mitigating the spectrum shortage caused by fixed spectrum allocation policies. In particular, DSA allows license-exempt users to access the licensed spectrum bands when not in use by their respective owners. Here, we focus on the database-driven DSA model, where mobile users issue location-based queries to a white-space database in order to identify idle channels in their area. We present a number of efficient protocols that allow users to retrieve channel availability information from the white-space database while maintaining their location secret. In the second part of the dissertation we look into location privacy in the context of location-aware mobile advertising. Location-aware mobile advertising is expanding very rapidly and is forecast to grow much faster than any other industry in the digital era. Unfortunately, with the rise and expansion of online behavioral advertising, consumers have grown very skeptical of the vast amount of data that is extracted and mined from advertisers today. As a result, the consensus has shifted towards stricter privacy requirements. Clearly, there exists an innate conflict between privacy and advertisement, yet existing advertising practices rely heavily on non-disclosure agreements and policy enforcement rather than computational privacy guarantees. In the second half of this dissertation, we present a novel privacy-preserving location-aware mobile advertisement framework that is built with privacy in mind from the ground up. The framework consists of several methods which ease the tension that exists between privacy and advertising by guaranteeing, through cryptographic constructions, that (i) mobile users receive advertisements relative to their location and interests in a privacy-preserving manner, and (ii) the advertisement network can only compute aggregate statistics of ad impressions and click-through-rates. Through extensive experimentation, we show that our methods are efficient in terms of both computational and communication cost, especially at the client side
    • 

    corecore