89 research outputs found

    Определение глубины данных на многомерных выборках

    No full text
    Concepts of depth and depth trimmed regions are considered, their main properties and classification are presented. 5 notions of data depth and results of investigating their correspondence with requirements, imposed on depth and regions, are discussed. One of the latest forms of depth zonoid depth and algorithms for depth computation and constructing regions are outlined. These mathematical tools for nonparametric data analysis can be applied in location and dispersion estimation, cluster analysis and risk estimation

    Intrinsic data depth for Hermitian positive definite matrices

    Full text link
    Nondegenerate covariance, correlation and spectral density matrices are necessarily symmetric or Hermitian and positive definite. The main contribution of this paper is the development of statistical data depths for collections of Hermitian positive definite matrices by exploiting the geometric structure of the space as a Riemannian manifold. The depth functions allow one to naturally characterize most central or outlying matrices, but also provide a practical framework for inference in the context of samples of positive definite matrices. First, the desired properties of an intrinsic data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally fast pointwise and integrated data depth functions that satisfy each of these requirements and investigate several robustness and efficiency aspects. As an application, we construct depth-based confidence regions for the intrinsic mean of a sample of positive definite matrices, which is applied to the exploratory analysis of a collection of covariance matrices associated to a multicenter research trial

    Depth and Depth-Based Classification with R Package ddalpha

    Get PDF
    Following the seminal idea of Tukey (1975), data depth is a function that measures how close an arbitrary point of the space is located to an implicitly defined center of a data cloud. Having undergone theoretical and computational developments, it is now employed in numerous applications with classification being the most popular one. The R package ddalpha is a software directed to fuse experience of the applicant with recent achievements in the area of data depth and depth-based classification. ddalpha provides an implementation for exact and approximate computation of most reasonable and widely applied notions of data depth. These can be further used in the depth-based multivariate and functional classifiers implemented in the package, where the DDα-procedure is in the main focus. The package is expandable with user-defined custom depth methods and separators. The implemented functions for depth visualization and the built-in benchmark procedures may also serve to provide insights into the geometry of the data and the quality of pattern recognition

    Nonparametrically consistent depth-based classifiers

    Full text link
    We introduce a class of depth-based classification procedures that are of a nearest-neighbor nature. Depth, after symmetrization, indeed provides the center-outward ordering that is necessary and sufficient to define nearest neighbors. Like all their depth-based competitors, the resulting classifiers are affine-invariant, hence in particular are insensitive to unit changes. Unlike the former, however, the latter achieve Bayes consistency under virtually any absolutely continuous distributions - a concept we call nonparametric consistency, to stress the difference with the stronger universal consistency of the standard kkNN classifiers. We investigate the finite-sample performances of the proposed classifiers through simulations and show that they outperform affine-invariant nearest-neighbor classifiers obtained through an obvious standardization construction. We illustrate the practical value of our classifiers on two real data examples. Finally, we shortly discuss the possible uses of our depth-based neighbors in other inference problems.Comment: Published at http://dx.doi.org/10.3150/13-BEJ561 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    A Comparison of Depth Functions in Maximal Depth Classification Rules

    Get PDF
    Data depth has been described as alternative to some parametric approaches in analyzing many multivariate data. Many depth functions have emerged over two decades and studied in literature. In this study, a nonparametric approach to classification based on notions of different data depth functions is considered and some properties of these methods are studied. The performance of different depth functions in maximal depth classifiers is investigated using simulation and real data with application to agricultural industry

    Fast implementation of the Tukey depth

    Full text link
    Tukey depth function is one of the most famous multivariate tools serving robust purposes. It is also very well known for its computability problems in dimensions p3p \ge 3. In this paper, we address this computing issue by presenting two combinatorial algorithms. The first is naive and calculates the Tukey depth of a single point with complexity O(np1log(n))O\left(n^{p-1}\log(n)\right), while the second further utilizes the quasiconcave of the Tukey depth function and hence is more efficient than the first. Both require very minimal memory and run much faster than the existing ones. All experiments indicate that they compute the exact Tukey depth.Comment: 16 pages, 13 figure
    corecore