532 research outputs found

    RPL Routing Protocol a case study: Precision agriculture

    Get PDF
    International audienceThe routing protocol for low power and lossy network (RPL) was designed in the ROLL working group at IETF since the year of 2008. Until the latest version of draft 19 released, this protocol algorithms and its four application scenario, such as home automation, industrial control, urban environment and building automation, have been nearly grounded. However, it is still very difficult to find effective approaches to simulate and evaluate RPL's behavior and other extensions of its application. In this paper, first we provide a brief presentation of the RPL protocol including two case studies ContikiRPL and TinyRPL, and an initial simulation experiment results obtained from the RPL capable COOJA simulator and its developed module. Second we then focus on the utilization of this protocol in the precision agriculture area and propose our dedicated instances hybrid network architecture to meet the specific requirement of this application. As a conclusion, we summarized our ongoing work and future solutions of the current technology issues

    Compression-based Data Reduction Technique for IoT Sensor Networks

    Get PDF
    في شبكات أجهزة استشعار إنترنت الأشياء ، يعد توفير الطاقة أمرًا مهمًا جدًا نظرًا لأن عقد أجهزة استشعار إنترنت الأشياء تعمل ببطاريتها المحدودة. يعد نقل البيانات مكلفًا للغاية في عقد أجهزة استشعار إنترنت الأشياء ويهدر معظم الطاقة ، في حين أن استهلاك الطاقة أقل بكثير بالنسبة لمعالجة البيانات. هناك العديد من التقنيات والمفاهيم التي تعنى بتوفير الطاقة ، وهي مخصصة في الغالب لتقليل نقل البيانات. لذلك ، يمكننا الحفاظ على كمية كبيرة من الطاقة مع تقليل عمليات نقل البيانات في شبكات مستشعر إنترنت الأشياء. في هذا البحث ، اقترحنا طريقة تقليل البيانات القائمة على الضغط (CBDR) والتي تعمل في مستوى عقد أجهزة استشعار إنترنت الأشياء. يتضمن CBDR مرحلتين للضغط ، مرحلة التكميم باستخدام طريقة SAX والتي تقلل النطاق الديناميكي لقراءات بيانات المستشعر ، بعد ذلك ضغط LZW بدون خسارة لضغط مخرجات المرحلة الاولى. يؤدي تكميم قراءات البيانات لعقد المستشعر إلى حجم ابجدية الـ SAX إلى تقليل القراءات ، مع الاستفادة من أفضل أحجام الضغط ، مما يؤدي إلى تحقيق ضغط أكبر في LZW. نقترح أيضًا تحسينًا آخر لطريقة CBDR وهو إضافة ناقل حركة ديناميكي (DT-CBDR) لتقليل إجمالي عدد البيانات المرسلة إلى البوابة والمعالجة المطلوبة. يتم استخدام محاكي OMNeT ++ جنبًا إلى جنب مع البيانات الحسية الحقيقية التي تم جمعها في Intel Lab لإظهار أداء الطريقة المقترحة. توضح تجارب المحاكاة أن تقنية CBDR المقترحة تقدم أداء أفضل من التقنيات الأخرى في الأدبياتEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the sensor data readings, after which a lossless LZW compression to compress the loss quantization output. Quantizing the sensor node data readings down to the alphabet size of SAX results in lowering, to the advantage of the best compression sizes, which contributes to greater compression from the LZW end of things. Also, another improvement was suggested to the CBDR technique which is to add a Dynamic Transmission (DT-CBDR) to decrease both the total number of data sent to the gateway and the processing required. OMNeT++ simulator along with real sensory data gathered at Intel Lab is used to show the performance of the proposed technique. The simulation experiments illustrate that the proposed CBDR technique provides better performance than the other techniques in the literature

    Security Aspects of IPv6-based Wireless Sensor Networks

    Get PDF
    Seamless integration of wireless sensor networks (WSN) with conventional IP-based networks is a very important basis for the Internet of Things (IoT) concept. To realize this goal, it is important to implement the IP protocol stack into a WSN. A global IP-based network is currently going through a transition from IPv4 to IPv6. Therefore, IPv6 should have priority in the implementation of the IP protocol into WSN. The paper analyses the existing security threats and possible countermeasures in IPv6-based WSNs. It also analyzes the implementation of a unique security framework for IPv6-based WSNs. The paper also analyzes a possible intrusion detection system for IPv6-based WSNs

    Security Aspects of IPv6-based Wireless Sensor Networks

    Get PDF
    Seamless integration of wireless sensor networks (WSN) with conventional IP-based networks is a very important basis for the Internet of Things (IoT) concept. To realize this goal, it is important to implement the IP protocol stack into a WSN. A global IP-based network is currently going through a transition from IPv4 to IPv6. Therefore, IPv6 should have priority in the implementation of the IP protocol into WSN. The paper analyses the existing security threats and possible countermeasures in IPv6-based WSNs. It also analyzes the implementation of a unique security framework for IPv6-based WSNs. The paper also analyzes a possible intrusion detection system for IPv6-based WSNs

    220401

    Get PDF
    Internet-of-Things (IoT) devices equipped with temperature and humidity sensors, and cameras are increasingly deployed to monitor remote and human-unfriendly areas, e.g., farmlands, forests, rural highways or electricity infrastructures. Aerial data aggregators, e.g., autonomous drones, provide a promising solution for collecting sensory data of the IoT devices in human-unfriendly environments, enhancing network scalability and connectivity. The flexibility of a drone and favourable line-of-sight connection between the drone and IoT devices can be exploited to improve data reception at the drone. This article first discusses challenges of the drone-assisted data aggregation in IoT networks, such as incomplete network knowledge at the drone, limited buffers of the IoT devices, and lossy wireless channels. Next, we investigate the feasibility of onboard deep reinforcement learning-based solutions to allow a drone to learn its cruise control and data collection schedule online. For deep reinforcement learning in a continuous operation domain, deep deterministic policy gradient (DDPG) is suitable to deliver effective joint cruise control and communication decision, using its outdated knowledge of the IoT devices and network states. A case study shows that the DDPG-based framework can take advantage of the continuous actions to substantially outperform existing non-learning-based alternatives.This work was supported in part by the National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit under Grant UIDP/UIDB/04234/2020, and in part by the National Funds through FCT, under CMU Portugal Partnership under Project CMU/TIC/0022/2019 (CRUAV).info:eu-repo/semantics/publishedVersio

    Keberkesanan program simulasi penapis sambutan dedenyut terhingga (FIR) terhadap kefahaman pelajar kejuruteraan elektrik

    Get PDF
    Kefahaman merupakan aset bagi setiap pelajar. Ini kerana melalui kefahaman pelajar dapat mengaplikasikan konsep yang dipelajari di dalam dan di luar kelas. Kajian ini dijalankan bertujuan menilai keberkesanan program simulasi penapis sambutan dedenyut terhingga (FIR) terhadap kefahaman pelajar kejuruteraan elektrik FKEE, UTHM dalam mata pelajaran Pemprosesan Isyarat Digital (DSP) bagi topik penapis FIR. Metodologi kajian ini berbentuk kaedah reka bentuk kuasi�eksperimental ujian pra-pasca bagi kumpulan-kumpulan tidak seimbang. Seramai 40 responden kajian telah dipilih dan dibahagi secara rawak kepada dua kllmpulan iaitu kumpulan rawatan yang menggunakan program simulasi penapis FIR dan kumpulan kawalan yang menggunakan kaedah pembelajaran berorientasikan modul pembelajaran DSP UTHM. Setiap responden menduduki dua ujian pencapaian iaitu ujian pra dan ujian pasca yang berbentuk kuiz. Analisis data berbentuk deskriptif dan inferens dilakllkan dengan menggunakan Peri sian Statistical Package for Social Science (SPSS) versi 11.0. Dapatan kajian menunjukkan kedua-dua kumpulan pelajar telah mengalami peningkatan dari segi kefahaman iaitu daripada tahap tidak memuaskan kepada tahap kepujian selepas menggunakan kaedah pembelajaran yang telah ditetapkan bagi kumpulan masing-masing. Walaubagaimanapun, pelajar kumpulan rawatan menunjukkan peningkatan yang lebih tinggi sedikit berbanding pelajar kumpulan kawalan. Namun begitu, dapatan kajian secara ujian statistik menunjukkan tidak terdapat perbezaan yang signifikan dari segi pencapaian markah ujian pasca di antara pelajar kumpulan rawatan dengan pelajar kumpulan kawalan. Sungguhpun begitu, penggunaan program simulasi penapis FIR telah membantu dalam peningkatan kefahaman pelajar mengenai topik penapis FIR

    Provenance-enabled Packet Path Tracing in the RPL-based Internet of Things

    Full text link
    The interconnection of resource-constrained and globally accessible things with untrusted and unreliable Internet make them vulnerable to attacks including data forging, false data injection, and packet drop that affects applications with critical decision-making processes. For data trustworthiness, reliance on provenance is considered to be an effective mechanism that tracks both data acquisition and data transmission. However, provenance management for sensor networks introduces several challenges, such as low energy, bandwidth consumption, and efficient storage. This paper attempts to identify packet drop (either maliciously or due to network disruptions) and detect faulty or misbehaving nodes in the Routing Protocol for Low-Power and Lossy Networks (RPL) by following a bi-fold provenance-enabled packed path tracing (PPPT) approach. Firstly, a system-level ordered-provenance information encapsulates the data generating nodes and the forwarding nodes in the data packet. Secondly, to closely monitor the dropped packets, a node-level provenance in the form of the packet sequence number is enclosed as a routing entry in the routing table of each participating node. Lossless in nature, both approaches conserve the provenance size satisfying processing and storage requirements of IoT devices. Finally, we evaluate the efficacy of the proposed scheme with respect to provenance size, provenance generation time, and energy consumption.Comment: 14 pages, 18 Figure

    Discovery and Group Communication for Constrained Internet of Things Devices using the Constrained Application Protocol

    Get PDF
    The ubiquitous Internet is rapidly spreading to new domains. This expansion of the Internet is comparable in scale to the spread of the Internet in the ’90s. The resulting Internet is now commonly referred to as the Internet of Things (IoT) and is expected to connect about 50 billion devices by the year 2020. This means that in just five years from the time of writing this PhD the number of interconnected devices will exceed the number of humans by sevenfold. It is further expected that the majority of these IoT devices will be resource constrained embedded devices such as sensors and actuators. Sensors collect information about the physical world and inject this information into the virtual world. Next processing and reasoning can occur and decisions can be taken to enact upon the physical world by injecting feedback to actuators. The integration of embedded devices into the Internet introduces new challenges, since many of the existing Internet technologies and protocols were not designed for this class of constrained devices. These devices are typically optimized for low cost and power consumption and thus have very limited power, memory, and processing resources and have long sleep periods. The networks formed by these embedded devices are also constrained and have different characteristics than those typical in todays Internet. These constrained networks have high packet loss, low throughput, frequent topology changes and small useful payload sizes. They are referred to as LLN. Therefore, it is in most cases unfeasible to run standard Internet protocols on this class of constrained devices and/or LLNs. New or adapted protocols that take into consideration the capabilities of the constrained devices and the characteristics of LLNs, are required. In the past few years, there were many efforts to enable the extension of the Internet technologies to constrained devices. Initially, most of these efforts were focusing on the networking layer. However, the expansion of the Internet in the 90s was not due to introducing new or better networking protocols. It was a result of introducing the World Wide Web (WWW), which made it easy to integrate services and applications. One of the essential technologies underpinning the WWW was the Hypertext Transfer Protocol (HTTP). Today, HTTP has become a key protocol in the realization of scalable web services building around the Representational State Transfer (REST) paradigm. The REST architectural style enables the realization of scalable and well-performing services using uniform and simple interfaces. The availability of an embedded counterpart of HTTP and the REST architecture could boost the uptake of the IoT. Therefore, more recently, work started to allow the integration of constrained devices in the Internet at the service level. The Internet Engineering Task Force (IETF) Constrained RESTful Environments (CoRE) working group has realized the REST architecture in a suitable form for the most constrained nodes and networks. To that end the Constrained Application Protocol (CoAP) was introduced, a specialized RESTful web transfer protocol for use with constrained networks and nodes. CoAP realizes a subset of the REST mechanisms offered by HTTP, but is optimized for Machine-to-Machine (M2M) applications. This PhD research builds upon CoAP to enable a better integration of constrained devices in the IoT and examines proposed CoAP solutions theoretically and experimentally proposing alternatives when appropriate. The first part of this PhD proposes a mechanism that facilitates the deployment of sensor networks and enables the discovery, end-to-end connectivity and service usage of newly deployed sensor nodes. The proposed approach makes use of CoAP and combines it with Domain Name System (DNS) in order to enable the use of userfriendly Fully Qualified Domain Names (FQDNs) for addressing sensor nodes. It includes the automatic discovery of sensors and sensor gateways and the translation of HTTP to CoAP, thus making the sensor resources globally discoverable and accessible from any Internet-connected client using either IPv6 addresses or DNS names both via HTTP or CoAP. As such, the proposed approach provides a feasible and flexible solution to achieve hierarchical self-organization with a minimum of pre-configuration. By doing so we minimize costly human interventions and eliminate the need for introducing new protocols dedicated for the discovery and organization of resources. This reduces both cost and the implementation footprint on the constrained devices. The second, larger, part of this PhD focuses on using CoAP to realize communication with groups of resources. In many IoT application domains, sensors or actuators need to be addressed as groups rather than individually, since individual resources might not be sufficient or useful. A simple example is that all lights in a room should go on or off as a result of the user toggling the light switch. As not all IoT applications may need group communication, the CoRE working group did not include it in the base CoAP specification. This way the base protocol is kept as efficient and as simple as possible so it would run on even the most constrained devices. Group communication and other features that might not be needed by all devices are standardized in a set of optional separate extensions. We first examined the proposed CoAP extension for group communication, which utilizes Internet Protocol version 6 (IPv6) multicasts. We highlight its strengths and weaknesses and propose our own complementary solution that uses unicast to realize group communication. Our solution offers capabilities beyond simple group communication. For example, we provide a validation mechanism that performs several checks on the group members, to make sure that combining them together is possible. We also allow the client to request that results of the individual members are processed before they are sent to the client. For example, the client can request to obtain only the maximum value of all individual members. Another important optional extension to CoAP allows clients to continuously observe resources by registering their interest in receiving notifications from CoAP servers once there are changes to the values of the observed resources. By using this publish/subscribe mechanism the client does not need to continuously poll the resource to find out whether it has changed its value. This typically leads to more efficient communication patterns that preserve valuable device and LLN resources. Unfortunately CoAP observe does not work together with the CoAP group communication extension, since the observe extension assumes unicast communication while the group communication extension only support multicast communication. In this PhD we propose to extend our own group communication solution to offer group observation capabilities. By combining group observation with group processing features, it becomes possible to notify the client only about certain changes to the observed group (e.g., the maximum value of all group members has changed). Acknowledging that the use of multicast as well as unicast has strengths and weaknesses we propose to extend our unicast based solution with certain multicast features. By doing so we try to combine the strengths of both approaches to obtain a better overall group communication that is flexible and that can be tailored according to the use case needs. Together, the proposed mechanisms represent a powerful and comprehensive solution to the challenging problem of group communication with constrained devices. We have evaluated the solutions proposed in this PhD extensively and in a variety of forms. Where possible, we have derived theoretical models and have conducted numerous simulations to validate them. We have also experimentally evaluated those solutions and compared them with other proposed solutions using a small demo box and later on two large scale wireless sensor testbeds and under different test conditions. The first testbed is located in a large, shielded room, which allows testing under controlled environments. The second testbed is located inside an operational office building and thus allows testing under normal operation conditions. Those tests revealed performance issues and some other problems. We have provided some solutions and suggestions for tackling those problems. Apart from the main contributions, two other relevant outcomes of this PhD are described in the appendices. In the first appendix we review the most important IETF standardization efforts related to the IoT and show that with the introduction of CoAP a complete set of standard protocols has become available to cover the complete networking stack and thus making the step from the IoT into the Web of Things (WoT). Using only standard protocols makes it possible to integrate devices from various vendors into one bigWoT accessible to humans and machines alike. In the second appendix, we provide an alternative solution for grouping constrained devices by using virtualization techniques. Our approach focuses on the objects, both resource-constrained and non-constrained, that need to cooperate by integrating them into a secured virtual network, named an Internet of Things Virtual Network or IoT-VN. Inside this IoT-VN full end-to-end communication can take place through the use of protocols that take the limitations of the most resource-constrained devices into account. We describe how this concept maps to several generic use cases and, as such, can constitute a valid alternative approach for supporting selected applications
    corecore